Release notes

This document describes new features, improvements, and limitations of Firmware Version 3.5.1 for the SPG8000 Master Sync/Clock Reference Generator.

The Version 3.5.1 firmware upgrade package can be downloaded from www.telestream.net/video/resources.htm. The package consists of a ZIP file containing two files: firmware.pkg and transfer.exe. The transfer.exe program is used when upgrading the SPG firmware by a network connection. Alternately, a USB memory device can be used for the upgrade procedure. Complete instructions can be found in the SPG8000 User Manual.

New features

DNS server for NTP client

The NTP client of the SPG can now use a fully-qualified domain name (FQDN) for the remote NTP server, in addition to using a static IP address. The domain name is resolved each time the NTP client needs to make a new request. This is especially useful when using NTP servers from the NTP Pool Project (www.ntppool.org/en/), in which a set of server addresses change randomly each hour.

The SYSTEM : NTP : NTP SERVER ADDRESS menus from the front panel and the corresponding section of the web interface will now accept a domain name (for example “0.pool.ntp.org”) in addition to a numeric IPv4 address. You will also need to configure the management port with the IP address of the DNS server, from the SYSTEM : NET SETUP : DNS SERVER ADDRESS menu from the front panel. The default is 8.8.8.8, which is the Google Public DNS address, but you can change this to a local DNS server.

Fixed firmware limitations

These limitations are fixed in this firmware version:

BLACK 1-3 outputs on system power-up

When the system is first powered on, the BLACK 1 to BLACK 3 outputs will now be disabled (that is, there will be a 0V DC signal) for several seconds until the power-on preset is applied. The correct format will be used when the output is then enabled. In previous versions, an incorrect format was output at power-up, which could have caused a disturbance when the format was changed.

RTC battery reported low voltage

When the internal Real Time Clock (RTC) battery voltage was queried through SNMP (especially when polled repeatedly just a few seconds apart), a low battery (< 20%) condition could sometimes be reported even though the actual voltage was good (> 40%). This has been fixed in version 3.5.1.

LTC 2-4 outputs

In version 3.4.1, only the LTC 1 output was using the correct time. This was fixed in version 3.4.2.
CCIR 17 and CCIR 18 test patterns (option BG)

The Vertical Interval Test Signal (VITS) patterns for the PAL format on the CMPST 1 and CMPST 2 outputs had incorrect waveforms on line 18. This has been fixed in version 3.5.1.

General limitations

This firmware release has general limitations, which are outlined in this section. Check the Telestream website (www.telestream.net/video(sync-and-reference-generators.htm) for any firmware updates to the SPG8000 generator.

Firmware upgrades

- When the SPG8000 firmware is upgraded (using a USB drive or a network connection), all files created or installed by the user are deleted. The deleted files include presets, signal files, frame picture files, logo files, sequence files, and for Option SDI, can also include text and font files. The standard set of factory-installed signal files, logo files, and Option SDI font files are restored when the firmware is upgraded.

 To prevent the loss of your user-created files, use the Backup all User Data to USB function from the SYSTEM menu to save your user files before you upgrade the firmware. After the upgrade, use the Restore all User Data From USB function from the SYSTEM menu to restore your user-created files.

- If you have loaded the SPG8000 memory with a large number of test signals or frame picture files, you may not be able to upgrade the instrument firmware because the memory is too full. If you receive a memory error while attempting to upgrade the firmware, you need to delete some of the test signal or frame picture files and then perform the upgrade.

- Clear the cache on the browser after an update to the Instrument code. This is necessary to get the new features on the Web Interface.

Network configuration using Manual mode

A network connectivity problem may occur when using Manual mode to configure the instrument IP address or subnet mask settings and the instrument is communicating across network boundaries. The problem does not occur when using DHCP mode to configure the network settings. If your instrument is configured for Manual mode, use the following steps to work around this problem:

1. Configure the instrument IP address or subnet mask settings using Manual mode.

2. After configuring the IP address or subnet mask, perform one of the following:
 - Change the network gateway address to a valid value.
 - If the network gateway address is already correct, toggle the gateway address. For example, change the gateway address to some other (incorrect) address, apply the change, and then change the gateway address back to the correct value.
Alert messages

If there is an active alert condition (for example, reference input missing) while the STATUS: ALERT menu is displayed, the alert message(s) will not automatically change if the alert condition is cleared. To view any changes to the alert messages, you must change to another menu, then return to the STATUS: ALERT menu.

Resetting an output signal

A signal output interruption or synchronization shock may occur when the instrument rereads or resets signal data, such as format changing, preset recall, or signal-button assignment.

Incorrect CW reference signal

If an NTSC or PAL signal is connected to the REF input when the reference source is set to CW, the video timing of all SPG8000 outputs will be unstable. To resolve this problem, use the REFERENCE: SOURCE menu to select the signal type that matches the reference input signal.

Web Interface/remote control

Some performance issues have been observed when the SPG8000 Web Interface is used with Internet Explorer 8. We recommend using newer browsers.

- Clear the cache on the browser after an update to the Instrument code. This is necessary to get the new features on the Web Interface.
- In some instances, the Web Interface will not recover well from a power cycle on the instrument. If this occurs, close the Web Interface windows, cycle the power on the SPG, then clear the cache before restarting the Web Interface.
- We recommend only a single external client use the SCPI command interface on TCP port 5000 at any time.

Time of day changes for timecode outputs

When the time of day changes, such as when scheduled Daylight Savings adjustments are made or when the internal time is set from the front panel, there can be a delay before that change is reflected on timecode outputs.

This delay may be a small number of frames (fraction of a second) when all timecode output formats are based on the same clock rate (for example, NTSC black burst and 1080i 59.94 HD tri-level on black outputs in addition to 30 fps drop-frame on LTC outputs), or up to several seconds when timecode formats based on different clock rates are used (for example, 29.97 fps and 24 fps on different outputs).

Daylight Savings Time (DST) scheduler system

The DST scheduler system applies the DST offset even if the Time of Day (TOD) source is set to VITC Input or LTC Input and the SMPTE309 mode is set to Ignore or Use as Input. In these cases, the offset is applied whether or not a valid VITC or LTC Input signal is available. For proper DST scheduling, you need to ensure that the instrument has valid time information and manually enter the correct time of day if the system is not synchronized to an accurate time of day source.

When the TOD source is set to GPS signal and the GPS is not locked to the input signal, the DST scheduler system will apply the DST offset when the internal real-time clock (which is subject to slight drift) reaches the time scheduled for the DST offset to be applied or removed. Ensure that the GPS is locked and that the...
The system time of day is correct before turning on the DST scheduler system.

The manual time of day setting is not automatically reapplied when the instrument power is cycled. If the instrument powers up in with the Time of Day source set to Internal mode, the time of day will be acquired from the internal, real-time clock in the instrument. Check the system time of day and adjust as needed to ensure that it is correct before the next transition of the DST scheduler when the Time of Day source is set to Internal mode.

Option GPS

Missing GPS or GLONASS signal. When the reference source is set to GPS Signal but the external GPS or GLONASS signal is missing, the SPG8000 automatically uses the internal reference signal as the reference source. However, the front-panel INT indicator does not turn green to show that the internal reference is being used. The EXT indicator does correctly turn red to indicate that the external (GPS or GLONASS) reference is missing.

GPS receiver Version 3015 with Firmware Version 1.06. GPS receiver modules with Firmware Version 1.06 installed have a problem with the leap second information they receive from the satellite system. Occasionally, the receiver erroneously reports that the current number of applied leap seconds is 255 instead of the correct number (currently 18). This error causes a 3 minute 59 second offset in the system time of day, which will last until the correct report is received (usually in the next broadcast 12 minutes later). SPG8000 Firmware Versions 2.1 and later contain a fix for this problem.

Receiver Version 3015 with Software 1.06 may occasionally see a small leap second change that lasts for 12.5 minutes. To prevent this from affecting the operation, configure the instrument to defer applying the leap second until a local time such as 1 or 2 AM. Ensure the local time is not the same as UTC midnight, so that the change is deferred at least an hour.

NOTE. SPG8000 Firmware Version 2.2 or later must be installed to view the GPS receiver firmware version.

GPS receiver modules with Firmware Version 1.06 installed also have a problem when they are configured to operate in the GPS & GLONASS dual constellation mode. We recommend configuring the GPS receiver to operate in either the GPS or GLONASS single constellation mode.

GPS receiver Version 3015 with Firmware Version 1.08. GPS receiver modules with Firmware Version 1.08 installed corrected the issue with the occasional erroneous reporting of the currently applied leap second data. However, Firmware Version 1.08 introduced a new problem where the GPS receiver will prematurely apply pending leap second changes when the Pending leap second flag in the GPS signal is asserted instead of waiting until the leap second is actually applied (June 30 or December 31).

CAUTION. To prevent the premature application of a pending leap second, customers with GPS receiver Version 3015 which has Firmware Version 1.08 installed should contact your local Telesystem representative. An upgrade kit is available to replace this version of GPS receiver.
GPS receiver Version 3015 with Firmware Version 1.09. GPS receiver modules with firmware Version 1.09 installed corrected the issue with premature leap second changes. However, Firmware Version 1.09 had an issue with not automatically reacquiring the position after the instrument was moved to a new location. SPG8000 Firmware Versions 2.2 and later contain a fix for this problem. We strongly recommend that SPG8000 Firmware Version 2.2 or later be installed on any instrument with GPS receiver Version 3015 with Firmware Version 1.09.

GPS receiver Version 3023. We strongly recommend that instruments with GPS receiver Version 3023 have Firmware Version 2.5 or later installed. Previous SPG8000 Firmware versions have issues that will cause operational problems with the 3023 Version GPS receiver.

GPS receiver Version 3023 with Software Version 1.03. If receivers of this combination are inside the footprint of the QZSS constellation, they may not maintain lock correctly. Instrument software versions 3.0.1 and later will update most instruments to 1.04 or later module code.

In rare cases, the software update from version 1.03 to 1.04 may not work the first time and the GPS receiver version will display as 0000. If this happens, remove the power to the system to force a reboot.

Contact a local Telestream representative to receive an upgrade kit if a system is not able to update to 1.04.

GLONASS only operation. The GLONASS signal incorporates leap seconds in a different way than the GPS system, so the GPS signal is required for correct operation. If GLONASS only mode is selected, then it will be converted internally to GLONASS plus GPS. The leap seconds will not be maintained correctly if the antenna used only provides the GLONASS signal.

Option SDI

SDI equalizer test signal. According to SMPTE RP198 for HD-SDI, a polarity change word is used to ensure equal probabilities of the DC bias for the equalizer test pattern. However, some SDI formats still exhibit an unequal bias. Enabling a dynamic bit stream in the output signal, such as embedded audio or timecode data, will result in both DC levels appearing in the output signal.

Test signal files. The Option SDI signals use file-based test signal definitions. If you modify a signal file from the factory version, unpredictable results may occur. To recover from this situation, reload the factory version of the signal file from the Telestream website (www.telestream.net/video/sync-and-reference-generators.htm).

Multi-language support. Languages that require combined glyphs in order to be represented may not be correctly rendered in the Text ID display on SDI signals.

Multi-burst signal motion. Do not set a Multi-burst signal in motion on SDI signals. Otherwise, a corrupted signal will be generated.

Overlay and zone plate circles not round. For SD 525 and 625 signal formats, the overlay and zone plate circles are not perfectly round.

Bitmap files for logo overlays. When you create bitmap files for logo overlays, filter the sharp edges within the logo image before you download the bitmap file to the instrument. The SPG8000 applies a filter to the left and right
edges of the bitmap image to reduce high-frequency ringing on the signal waveform. However, this filter is not applied within the span of the image.