MTS4EAV7
HEVC / AVC Video and Compressed Audio Analyzer
User Manual
IMPORTANT: READ BEFORE OPERATING EQUIPMENT

TELESTREAM SOFTWARE LICENSE AGREEMENT

THE PROGRAM, OR PROGRAMS, ENCODED OR INCORPORATED WITHIN EQUIPMENT OR ACCOMPANYING THIS AGREEMENT, IS FURNISHED SUBJECT TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. RETENTION OF THE PROGRAM FOR MORE THAN THIRTY DAYS OR USE OF THE PROGRAM IN ANY MANNER WILL BE CONSIDERED ACCEPTANCE OF THE AGREEMENT TERMS. IF THESE TERMS ARE NOT ACCEPTABLE, THE UNUSED PROGRAM AND ANY ACCOMPANYING DOCUMENTATION SHOULD BE RETURNED PROMPTLY TO TELESTREAM FOR A FULL REFUND OF THE LICENSE FEE PAID. (FOR INFORMATION REGARDING THE RETURN OF PROGRAMS ENCODED OR INCORPORATED WITHIN EQUIPMENT, CONTACT THE NEAREST TELESTREAM SALES OFFICE.)

DEFINITIONS.
"Telestream" means Telestream, LLC, a Delaware limited liability company, and its Affiliates, or the local Telestream legal entity that is supplying the equipment. "Program" means the Telestream software product (executable program and/or data) enclosed with this Agreement or included within the equipment with which this Agreement is packed. "Customer" means the person or organization in whose name the Program was ordered.

LICENSE.
Customer may:
1. Use the Program on a single machine at any one time; and
2. Copy the Program for archival or backup purposes, provided that no more than one (1) such copy is permitted to exist at any one time. Each copy of the Program made by Customer must include a reproduction of any copyright notice or restrictive rights legend appearing in or on the copy of the Program as received from Telestream.

Customer may not:
1. Use the Program on more than one machine at any one time;
2. Transfer the Program to any person or organization outside of Customer or the corporation of which Customer is a part without the prior written consent of Telestream, except in connection with the transfer of the equipment within which the programs are encoded or incorporated;
3. Export or re-export, directly or indirectly, the program, any associated documentation, or the direct product thereof, to any country to which such export or re-export is restricted by law or regulation of the United States or any foreign government having jurisdiction without the prior authorization, if required, of the Office of Export Administration, Department of Commerce, Washington, D.C. and the corresponding agency of such foreign government;
4. Modify the Program, create derivative works, or merge the Program with another program;
5. Reverse compile or disassemble the Program for any purpose, beyond the extent that such activity is expressly permitted by applicable open source licenses or applicable law notwithstanding this limitation; or
6. Copy the documentation accompanying the Program.

For Programs designed to reside on a single-machine and support one or more additional machines, either locally or remotely, without permitting the Program to be transferred to an additional machine for local execution, the additional machines shall be considered within the definition of "single machine." For programs permitting the Program to be transferred to an additional machine for local execution, a separate license shall be required for each such machine with which the Program may be used. Title to the Program and all copies thereof, but not the media on which the Program or copies may reside, shall be and remain with Telestream or others for whom Telestream has obtained a respective licensing right. Customer shall pay when due all property taxes that may now or hereafter be imposed, levied or assessed with respect to the possession or use of the Program or this license and shall file all reports required in connection with such taxes. If the Program or any related documentation is acquired by or for an agency of the U.S. Government, the Program and documentation shall be considered "commercial computer software" or "commercial computer software documentation" respectively, as those terms are used in 48 CFR §12.212, 48 CFR §227.7202, or 48 CFR §252.227-7014, and are licensed with only those rights as are granted to all other licensees as set forth in this Agreement.
THE PROGRAM MAY NOT BE USED, COPIED, MODIFIED, MERGED, OR TRANSFERRED TO ANOTHER EXCEPT AS EXPRESSLY PERMITTED BY THESE TERMS AND CONDITIONS. UPON TRANSFER OF ANY COPY, MODIFICATION, OR MERGED PORTION OF THE PROGRAM, THE LICENSE GRANTED HEREIN IS AUTOMATICALLY TERMINATED WITH RESPECT TO THE PARTY THAT TRANSFERS THE PROGRAM.

TERM.
The license granted herein is effective upon acceptance by Customer, and shall remain in effect until terminated as provided herein. The license may be terminated by Customer at any time upon written notice to Telestream. The license may be terminated by Telestream or any third party from whom Telestream may have obtained a respective licensing right if Customer fails to comply with any term or condition and such failure is not remedied within thirty (30) days after notice hereof from Telestream or such third party. Upon termination by either party, Customer shall return to Telestream or destroy, the Program and all associated documentation, together with all copies in any form.

LIMITED WARRANTY.
The Program is provided “as is” without warranty of any kind, either express or implied. Telestream does not warrant that the functions contained in the Program will meet Customer’s requirements or that the operation of the Program will be uninterrupted or error-free.

TELESTREAM AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. LIMITATION OF LIABILITY, IN NO EVENT SHALL TELESTREAM OR OTHERS FROM WHOM TELESTREAM HAS OBTAINED A LICENSING RIGHT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR CONNECTED WITH CUSTOMER’S POSSESSION OR USE OF THE PROGRAM, EVEN IF TELESTREAM OR SUCH OTHERS HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

THIRD-PARTY DISCLAIMER.
Except as expressly agreed otherwise, third parties from whom Telestream may have obtained a licensing right do not warrant the program, do not assume any liability with respect to its use, and do not undertake to furnish any support or information relating thereto.

GENERAL.
This Agreement contains the entire agreement between the parties with respect to the use, reproduction, and transfer of the Program. Neither this Agreement nor the license granted herein is assignable or transferable by Customer without the prior written consent of Telestream. This Agreement and the license granted herein shall be governed by the laws of the state of California. All questions regarding this Agreement or the license granted herein should be directed to the nearest Telestream Sales Office.

ADDITIONAL LICENSE GRANT FOR VIDEO TEST SEQUENCES. The Software Product may include certain test patterns, video test sequences and video clips (together “Video Test Sequences”). If so, the following terms describe Your rights to the Video Test Sequences:

You may use, copy and modify the Video Test Sequences and display or distribute copies of individual Video Test Sequences in connection with Your video testing activity.

You are not licensed to do any of the following:

1. You may not distribute the collection of Video Test Sequences, except in connection with the sale of original equipment containing the Video Test Sequences, without prior written permission from Telestream.

2. You may not distribute the collection of Video Test Sequences, except in connection with the sale of original equipment containing the Video Test Sequences, without prior written permission from Telestream.

3. You may not sell, license or distribute copies of the Video Test Sequences on a standalone basis or as part of any collection, product, or service where the primary value of the product or service is the Video Test Sequences. You must indemnify, hold harmless, and defend Telestream from and against any claims or lawsuits, including attorneys’ fees, that arise from or result from the use or distribution of Video Test Sequences as modified by You. You must include a valid copyright notice on Your products and services that include copies of the Video Test Sequences.
Table of Contents

Important compliance and safety information .. ix
Preface ... xi
 Related material .. xi
 Product naming conventions .. xii
 Manual conventions ... xii
 Number conventions ... xii
 User manual and tutorials ... xii
Overview .. 1
 Product models ... 1
 Product features .. 2
 Applications .. 4
Software, hardware, and user prerequisites ... 5
 Windows operating system prerequisites ... 5
 Audio playout prerequisites .. 5
 Computer prerequisites ... 5
 User prerequisites .. 6
 MPEG Test Systems .. 6
Installation .. 7
Activate the MTSA software license ... 8
Compression standards and file types ... 15
 Supported video compression standards ... 15
 Supported audio compression standards .. 28
 Supported closed caption standards ... 30
 Permitted video types/formats ... 31
 Permitted audio types/format .. 38
 Standards references .. 39
How to use the MTS4EA .. 43
 Window elements .. 44
 Starting to use the MTS4EA ... 45
 Main menus .. 55
File menu .. 56
 Open stream… Ctrl+O .. 56
 Close stream .. 72
 Save video stream as .. 72
 New project ... 73
 Open project ... 73
Save project .. 73
Save project as ... 73
Close project .. 74
Open other .. 74
Preferences .. 74
Example files ... 75
Export A/V delay streams 84
Recent File ... 85
Exit ... 85

Play menu ... 86
 Audio sounds broken up 87
 Audio/video synchronization 88
 Play Ctrl+P ... 90
 Fast forward Ctrl+F .. 91
 Blind fast forward Ctrl+B 92
 Stop Ctrl+S ... 92
 Pause/step forward Ctrl+A 93
 Reverse play Ctrl+Shift+P 93
 Fast backward Ctrl+Shift+F 93
 Blind fast backward Ctrl+Shift+B 94
 Pause/step backward Ctrl+Shift+A 94
 Skip forward Ctrl+K ... 95
 Skip backward Ctrl+Shift+K 95
 Video start position ... 96
 Continuous play ... 96
 Hold last frame .. 97
 Pause on frame ... 97
 Video decoder options 98
 Audio decoder options 106
 Mute audio ... 107
 Synchronize audio ... 107

Overlay menu .. 108
 Summary and MacroBlock tooltips manipulation 109
 Video-frame summary tooltip Ctrl+U 110
 MB tooltip Ctrl+M ... 122
 CTU tooltip Ctrl+N ... 130
 CU tooltip Ctrl+D ... 132
 Image inspector Ctrl+I 135
 Closed Caption ... 137
 MB types Ctrl+Y ... 139
 CU types Ctrl+J ... 143
Audio trace enable ... 291
Audio analysis options .. 301
View audio ... 301
View audio trace ... 301
View audio stream hex ... 304
View audio stream structure .. 310
Audio/Video delay .. 312
Enforce extra restrictions ... 314
Scalability level selection .. 315
Edit menu ... 316
Edit audio/video stream ... 316
Saving edited stream .. 319
Edit commands .. 319
Alert menu ... 320
Alert levels .. 320
Explanation of Fatal/Error/Warning/Info display 321
Description of alert levels ... 328
Configure alerts ... 330
View Alert log .. 334
Closed caption syntax alerts .. 340
Status bar indication of alert status 342
Window menu .. 343
Quickly switch windows .. 343
Cascade, Tile, Arrange Icons, Close All functions 344
Toolbars ... 346
Status bar ... 347
Video scale .. 347
HexView settings .. 349
Graph view settings ... 350
Synchronize views .. 351
Active views ... 352
Help menu .. 353
User manual (PDF) F1 ... 353
Tutorials (PDF) .. 353
License manager .. 353
About MTS4EA .. 353
Toolbars, Status bar, and shortcut keys 354
Icon toolbars .. 354
Context-sensitive toolbars/tooltips ... 357
Navigation panel .. 366
Status bar ... 370
Ctrl shortcut keys ... 371
Alt menu keys .. 372
Command line/batch mode .. 373
Command line mode .. 373
Batch mode.. 373
Running the MTS4EA in command line/batch mode .. 374
Bitstream syntax debugging... 385
General codes used in Trace files and Alerts .. 385
Bitstream syntax debugging using the MTS4EA .. 393
Procedure for bitstream syntax debugging ... 394
Appendix A: Decoder plugins for the MTS4EA .. 403
Purpose of the MTS4EA Decoder Plugins ... 403
Support of Decoder Plugins ... 403
Decoder Plugin file layout on the CD ... 404
Format for generating Decoder Plugins ... 405
Use of Decoder Plugins... 405
Decoder Plugins provided .. 406
Appendix B: Tests of the MTS4EA ... 407
Tests with MPEG-4 Normative and Donated bitstreams .. 407
Bitstreams: Normative ISO .. 408
Bitstreams: Donated\ I-VOP ... 409
Bitstreams: Donated\ Overall .. 409
Bitstreams: Donated\ Short Header ... 410
Bitstreams: Donated\ P-VOP ... 411
Bitstreams: Donated\ Error .. 413
Appendix C: Third party software licenses ... 415
BSD license.. 415
Glossary
Index
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CU tooltip – Intra Prediction Mode</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>CU tooltip – Inter Prediction Mode</td>
<td>132</td>
</tr>
<tr>
<td>3</td>
<td>Video trace enable in ES Analysis mode</td>
<td>196</td>
</tr>
<tr>
<td>4</td>
<td>Video trace enable in CC Analysis mode</td>
<td>196</td>
</tr>
<tr>
<td>5</td>
<td>Video trace enable for H.265/HEVC</td>
<td>197</td>
</tr>
<tr>
<td>6</td>
<td>Video trace enable for H.264/AVC</td>
<td>197</td>
</tr>
<tr>
<td>7</td>
<td>Video trace enable for H.263</td>
<td>198</td>
</tr>
<tr>
<td>8</td>
<td>MPEG-4 trace parse example</td>
<td>202</td>
</tr>
<tr>
<td>9</td>
<td>H.265/HEVC example, at start of byte stream (full MTS4EA Trace view window)</td>
<td>203</td>
</tr>
<tr>
<td>10</td>
<td>H.264/AVC example, at start of byte stream (full MTS4EA Trace view window)</td>
<td>203</td>
</tr>
<tr>
<td>11</td>
<td>H.264/SVC example, at start of byte stream (full MTS4EA Trace view window)</td>
<td>204</td>
</tr>
<tr>
<td>12</td>
<td>H.263 example, at start of bitstream</td>
<td>204</td>
</tr>
<tr>
<td>13</td>
<td>MPEG-2 example with closed caption content, at start of bitstream</td>
<td>205</td>
</tr>
<tr>
<td>14</td>
<td>MPEG-4 trace interpret example</td>
<td>207</td>
</tr>
<tr>
<td>15</td>
<td>H.264/AVC example, at start of byte stream (full MTS4EA Trace view window)</td>
<td>207</td>
</tr>
<tr>
<td>16</td>
<td>H.264/SVC example, at start of byte stream (full MTS4EA Trace view window)</td>
<td>208</td>
</tr>
<tr>
<td>17</td>
<td>H.263 example, at start of bitstream</td>
<td>208</td>
</tr>
<tr>
<td>18</td>
<td>MPEG-2 example, with closed caption content, at start of bitstream</td>
<td>209</td>
</tr>
<tr>
<td>19</td>
<td>MPEG-2 example (interlaced example with top and bottom fields)</td>
<td>211</td>
</tr>
<tr>
<td>20</td>
<td>H.263 example</td>
<td>212</td>
</tr>
<tr>
<td>21</td>
<td>H.265 example</td>
<td>212</td>
</tr>
<tr>
<td>22</td>
<td>H.264/AVC example</td>
<td>213</td>
</tr>
<tr>
<td>23</td>
<td>MPEG-4 example</td>
<td>213</td>
</tr>
<tr>
<td>24</td>
<td>H.265 example</td>
<td>214</td>
</tr>
<tr>
<td>25</td>
<td>Frame fidelity – H.265/HEVC example</td>
<td>219</td>
</tr>
<tr>
<td>26</td>
<td>H.264 graph</td>
<td>222</td>
</tr>
<tr>
<td>27</td>
<td>H.265 graph</td>
<td>223</td>
</tr>
<tr>
<td>28</td>
<td>Video analysis options – ES analysis mode</td>
<td>243</td>
</tr>
<tr>
<td>29</td>
<td>Video analysis options – CC analysis mode</td>
<td>243</td>
</tr>
<tr>
<td>30</td>
<td>Video navigator — ES Analysis mode</td>
<td>248</td>
</tr>
<tr>
<td>31</td>
<td>Video navigator — CC Analysis mode</td>
<td>248</td>
</tr>
<tr>
<td>32</td>
<td>Bits per Frame Analysis graph – MPEG-4 example</td>
<td>285</td>
</tr>
<tr>
<td>33</td>
<td>Bits per Frame Analysis graph – H.265/HEVC example</td>
<td>285</td>
</tr>
<tr>
<td>34</td>
<td>Bits per Frame Analysis graph – MPEG-2 example of Frame units display</td>
<td>286</td>
</tr>
<tr>
<td>35</td>
<td>Bits per Frame Analysis graph – MPEG-2 example of Picture units display</td>
<td>287</td>
</tr>
<tr>
<td>36</td>
<td>MP4 containing AAC LC</td>
<td>310</td>
</tr>
<tr>
<td>37</td>
<td>Container files, for example, MPEG-2 PES</td>
<td>310</td>
</tr>
<tr>
<td>38</td>
<td>Alert configuration – ES Analysis mode</td>
<td>331</td>
</tr>
</tbody>
</table>
Figure 39: Alert configuration — CC Analysis mode ... 332
Figure 40: Overall alert level: Infos disabled (all other levels enabled) 342
Figure 41: Overall alert level: Warnings disabled (Errors and Fatals enabled) 342
Figure 42: Overall alert level: Errors disabled .. 342
Figure 43: Overall alert level: All disabled - except one/more specified Warning alerts 342
Figure 44: Overall alert level: All disabled - except one/more specific Error alerts 342
Figure 45: H.264/AVC example ... 364
Figure 46: H.264/SVC example ... 365
Figure 47: MPEG-4 example ... 365
Figure 48: MPEG-4 example, at start of bitstream .. 397
Figure 49: MPEG-4 example, at start of VOP .. 397
Figure 50: MPEG-4 Example, at start of bitstream .. 400
Figure 51: MPEG-4 example, at start of VOP .. 400
Figure 52: H.264/AVC example, at start of byte stream .. 401
Figure 53: H.263 example at start of bitstream ... 401
List of Tables

Table 1: H.264/AVC tools (part 1) ... 17
Table 2: H.264/AVC tools (part 2) ... 19
Table 3: H.264/SVC tools ... 21
Table 4: Icons general to all standards ... 267
Table 5: Standard specific icons ... 268
Table 6: Bitstream editor icons ... 318
Table 7: Bitstreams: Normative ISO .. 408
Table 8: Bitstreams: Donated \ I-VOP .. 409
Table 9: Bitstreams: Donated \ Overall .. 409
Table 10: Bitstreams: Donated \ Short Header ... 410
Table 11: Bitstreams: Donated \ P-VOP .. 411
Table 12: Bitstreams: Donated \ Error .. 413
Important compliance and safety information

United States of America Compliance Notices

Class A Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15, Subpart B of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a commercial installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Caution

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesired operation.

Safety

Environmental

Perchlorate Materials: this product contains one or more type CR lithium batteries. According to the state of California, CR lithium batteries are classified as perchlorate materials and require special handling.

See dtsc.ca.gov/perchlorate/ for additional information.

Canada Compliance Notices

Department of Communications Radio Interference Regulations

This digital apparatus does not exceed the Class A limits for radio-noise emissions from a digital apparatus as set out in the Radio Interference Regulations of the Canadian Department of Communications. This Class A digital apparatus complies with Canadian ICES-003.

Reglement sur le brouillage radioélectrique du Quadstere des Communications

Cet appareil numerique respecte les limites de bruits radioelectriques visant les appareils numeriques de classe A prescrites dans le Reglement sur le brouillage radioélectrique du Quadstere des Communications du Canada. Cet appareil numerique de la Classe A est conforme a la norme NMB-003 du Canada.
Safety

Sécurité

CAN / CSA-22.2 NO. 61010-1-12 + Gil + Gl2 :: Exigences de sécurité pour l'électricité Matériel de mesure, de contrôle et d'utilisation en laboratoire - Partie 1: Généralités Exigences.

European Union and European Free Trade Association (EFTA) Compliance Notices

This equipment may be operated in the countries that comprise the member countries of the European Union and the European Free Trade Association. These countries, listed in the following paragraph, are referred to as The European Community throughout this document:

AUSTRIA, BELGIUM, BULGARIA, CYPRUS, CZECH REPUBLIC, DENMARK, ESTONIA, FINLAND, FRANCE, GERMANY, GREECE, HUNGARY, IRELAND, ITALY, LATVIA, LITHUANIA, LUXEMBOURG, MALTA, NETHERLANDS, POLAND, PORTUGAL, ROMANIA, SLOVAKIA, SLOVENIA, SPAIN, SWEDEN, UNITED KINGDOM, ICELAND, LICHTENSTEIN, NORWAY, SWITZERLAND

Declaration of Conformity

Marking by the “CE” symbol indicates compliance with the Essential Requirements of the EMC Directive of the European Union 2014/30/EU

This equipment meets the following conformance standards:

Safety

EN 61010-1: Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use - Part 1: General Requirements
Low Voltage Directive 2014/35/EU

Emissions

EN 61000-3-3: 2013

Immunity

EN 55103-2: 2009, EN 61000-4-2: 2009,
EN 61000-4-5: 2006, EN 61000-4-6: 2009, EN 61000-4-11: 2004
Environments: E2

Warnings

Warning! This is a Class A product. In a domestic environment, this product may cause radio interference, in which case, the user may be required to take appropriate measures.
Achtung! Dieses ist ein Gerät der Funkstorgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerates Rundfunkstörungen auftreten, in welchen Fallen der Benutzer für entsprechende Gegenmaßnahmen verantwortlich ist.

Attention! Ceci est un produit de Classe A. Dans un environnement domestique, ce produit risque de creer des interferences radioelectriques, il appartiendra alors a l'utilisateur de prendre les mesures specifiques appropriees.

Notes:
1. For Compliance with the EMC standards listed here, high quality shielded interface cables should be used.
2. Emissions which exceed the levels required by this standard may occur when this equipment is connected to a test object.

Environmental Compliance
This section provides information about the environmental impact of the product.

Product end-of-life handling
Observe the following guidelines when recycling an instrument or component:

Equipment recycling
Production of this equipment required the extraction and use of natural resources. The equipment may contain substances that could be harmful to the environment or human health if improperly handled at the product's end of life. To avoid release of such substances into the environment and to reduce the use of natural resources, we encourage you to recycle this product in an appropriate system that will ensure that most of the materials are reused or recycled appropriately.

This symbol on the product or its packaging indicates that this product complies with the applicable European Union requirements according to Directives 2012/19/EU and 2006/66/EC on waste electrical and electronic - equipment (WEEE) and batteries.

It also indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can drop off your waste for recycling, please contact your local authority, or where you purchased your product.

Battery Recycling
This product may contain a rechargeable battery, which must be recycled or disposed of properly. Please properly dispose of or recycle the battery according to local government regulations.

Transporting Batteries or products with Batteries in them
The capacity of the lithium ion secondary battery shipped with this product is under 100 Wh. The lithium content of the installed primary battery is under 1 g. Each battery meets the applicable requirements of UN Manual of Tests and Criteria Part III Section 38.3. Battery quantity is under the limit for shipment according to Section II of the relevant Packing Instructions from the IATA Dangerous Goods Regulations. Consult your air carrier for applicability and determination of any special lithium battery transportation requirements.
Restriction of Hazardous Substances
This product is classified as an industrial monitoring and control instrument, and is not required to comply with the substance restrictions of the RoHS 3 Directives 2011/65/EU and EU 2015/863 until July 22, 2021. This product does, however, comply with the RoHS 2 Directive 2011/65/EU.

Korea Compliance Statement

사용 자 안내문
이 기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다.

Taiwan Compliance Statement

警告使用者：
這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策。

This is a Class A product based on the standard of the Bureau of Standards, Metrology and Inspection (BSMI) CNS 13438, Class A. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Japan Compliance Statement

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。VCCI-A

This is a Class A product based on the standard of the VCCI Council (VCCI 32: 2016). If this equipment is used in a domestic environment, radio interference may occur, in which case, the user may be required to take corrective actions.

Important Safety Information

This manual contains information and warnings that must be followed by the user for safe operation and to keep the product in a safe condition.
To safely perform service on this product, see the Service safety summary that follows the General safety summary.

General Safety Summary
Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.
Comply with local and national safety codes.
For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual.

The product is designed to be used by trained personnel only.
Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.

Before use, always check the product with a known source to be sure it is operating correctly.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component manuals for warnings and cautions related to operating the system.

When incorporating this equipment into a system, the safety of that system is the responsibility of the assembler of the system.

To Avoid Fire or Personal Injury
Use proper power cord: Use only the power cord specified for this product and certified for the country of use. Do not use the provided power cord for other products.

Ground the product: This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. Do not disable the power cord grounding connection.

Power disconnect: The power cord disconnects the product from the power source. See instructions for the location. Do not position the equipment so that it is difficult to operate the power cord; it must remain accessible to the user at all times to allow for quick disconnection if needed.

Observe all terminal ratings: To avoid fire or shock hazard, observe all rating and markings on the product. Consult the product manual for further ratings information before making connections to the product. Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Do not operate without covers: Do not operate this product with covers or panels removed, or with the case open. Hazardous voltage exposure is possible.

Avoid exposed circuitry: Do not touch exposed connections and components when power is present.

Do not operate with suspected failures: If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Disable the product if it is damaged. Do not use the product if it is damaged or operates incorrectly. If in doubt about safety of the product, turn it off and disconnect the power cord. Clearly mark the product to prevent its further operation.

Before use, inspect voltage probes, test leads, and accessories for mechanical damage and replace when damaged. Do not use probes or test leads if they are damaged, if there is exposed metal, or if a wear indicator shows.
Examine the exterior of the product before you use it. Look for cracks or missing pieces.

Use only specified replacement parts.
Do not operate in wet/damp conditions: Be aware that condensation may occur if a unit is moved from a cold to a warm environment.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry: Remove the input signals before you clean the product.

Provide proper ventilation: Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Slots and openings are provided for ventilation and should never be covered or otherwise obstructed. Do not push objects into any of the openings.

Provide a safe working environment: Always place the product in a location convenient for viewing the display and indicators.

Be sure your work area meets applicable ergonomic standards. Consult with an ergonomics professional to avoid stress injuries.

Use only the Telestream rackmount hardware specified for this product.

Service Safety Summary
The Service safety summary section contains additional information required to safely perform service on the product. Only qualified personnel should perform service procedures. Read this Service safety summary and the General safety summary before performing any service procedures.

To avoid electric shock: Do not touch exposed connections.

Do not service alone: Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect power: To avoid electric shock, switch off the product power and disconnect the power cord from the mains power before removing any covers or panels, or opening the case for servicing.

Use care when servicing with power on: Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

Verify safety after repair: Always recheck ground continuity and mains dielectric strength after performing a repair.

Terms in the Manual
These terms may appear in this manual:

⚠️ WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

⚠️ CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.
Terms on the Product

These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

Symbols on the Product

When this symbol is marked on the product, be sure to consult the manual to find out the nature of the potential hazards and any actions which have to be taken to avoid them. (This symbol may also be used to refer the user to ratings in the manual.)

The following symbol(s) may appear on the product:

General Safety Product Specific Statements

Use the product only as specified. Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. Carefully read all instructions. Retain these instructions for future reference.

Comply with local and national safety codes.

For correct and safe operation of the product, it is essential that you follow generally accepted safety procedures in addition to the safety precautions specified in this manual. The product is designed to be used by trained personnel only.

Only qualified personnel who are aware of the hazards involved should remove the cover for repair, maintenance, or adjustment.

Before use, always check the product with a known source to be sure it is operating correctly.

This product is not intended for detection of hazardous voltages.

Use personal protective equipment to prevent shock and arc blast injury where hazardous live conductors are exposed.

When incorporating this equipment into a system, the safety of that system is the responsibility of the assembler of the system.

WARNING. In the instrument, only the line conductor is fused for over-current protection. The fuse is internal and not user replaceable. Do not attempt to replace the fuse. If you suspect the fuse has blown, return the unit to an authorized service center for repair.

CAUTION. To minimize the risk of damage to the instrument, we strongly recommend you connect the power cord to the instrument before the power cord is connected to the AC power source.

CAUTION. To prevent instrument damage from overheating, maintain at least two inches (5.1 cm) of
Compliance information

clearance at the rear and sides of the instrument cabinet when locating the instrument on a bench. When the instrument is mounted in an equipment rack, maintain at least 3 inches (7.6 cm) of clearance from the back wall of the rack.

CAUTION. To reduce the risk of fire and shock, ensure that the mains supply voltage fluctuations do not exceed 10% of the operating voltage range.
Preface

This manual describes the functions and use of the Telestream MTS4EA V7 HEVC / AVC Video and Compressed Audio Analyzer. The manual is organized into the following sections:

- Section 1: Introduction
- Section 2: Applications
- Section 3: Software, hardware and user prerequisites
- Section 4: Installation and licensing
- Section 5: Compression standards and file types
- Section 6: How to use the MTS4EA
- Section 7: Bitstream syntax debugging
- Appendix A: Decoder Plugins for the MTS4EA
- Appendix B: Tests of the MTS4EA with MPEG-4 Normative and Donated bitstreams
- Appendix C: Third party software licenses
- Glossary
- Index

Related material

Additional documentation, such as ReadMe files, may be included on the installation CD-ROM.

The following URLs access the Web sites for the standards organizations listed (the URLs listed were valid at the time of writing):

- DVB standards (European Technical Standards Institute) www.etsi.org/
- ATSC standards (Advanced Television Systems Committee) www.atsc.org/

Product naming conventions

The product is generally referred to as MTS4EA throughout the software and documentation regardless of the nomenclature used to order the product.
Manual conventions

Naming conventions for the interface elements are based on standard Microsoft Windows naming conventions. Naming conventions for MPEG-2, ATSC, and DVB structures follow the conventions derived from the referenced standards documents.

Additionally, mono-spaced text can indicate the following:

- Text you enter from a keyboard Example: Enter the network identity (http://TSMonitor01)
- Characters you press on your keyboard Example: Press CTRL+C to copy the selected text.
- Paths to components on your hard drive Example: The program files are installed at the following location: C:\Program Files\Telestream\n
Number conventions

Within MTS4EA all numbers are decimal unless they are preceded by 0x, in which case they are hexadecimal.

For example:

- 16 [decimal] = 16 decimal
- 0x16 [hexadecimal] = 22 decimal

User manual and tutorials

All user manuals and tutorials can be found on: https://www.telestream.net/video/resources.htm

Look under “Literature & Documentation” and click on the “MPEG Analyzers” pulldown tab to see available documentation.
Overview

The MTS4EA HEVC / AVC Video and Compressed Audio Analyzer is a powerful real-time analytical tool for the investigation of compressed video and audio data that has been encoded using the H.265/HEVC, H.264/AVC, H.264/SVC, MPEG-1/2, MPEG-4 (including AAC and HE-AAC), VC-1, AC-3, and H.263 video standards.

The MTS4EA operates as a standalone software application for use on a personal computer (PC) in a Windows environment. It can also be installed in Telestream MTSA-HW Series MPEG Test Systems.

Product models

The MTS4EA is ordered using the following order code:

- MTSA-HW option ESA
- MTSA-HW option ALZRPK (part of the Analyzer package)
- MTSA-PC option ESA (Standalone software)
- MTSA-PC option ALZRPK (Standalone software; part of the Analyzer package)
Product features

The MTS4EA enables the display, analysis, debug, and optimization of video compression algorithms or equipment by providing the following features:

- Video, audio, and closed caption decode and analysis
- Verification of the stream’s compliance with the encoding standard
- Extraction of elementary streams from containers
- Comprehensive stream navigation and tracking to follow all aspects of the decoding process
- Multiple displays and overlays of codec information
- Synchronized video, audio, and data views for instant cross reference
- Wide range of frame and macroblock statistics, syntax traces including bitstream, interpret, alerts, frame, macroblock, transform, pixel level, and fidelity traces
- Buffer analysis with graphical plots including spatial bits/MB, MV histogram, quantization, DCT frequency, MB coded frequency, and intra-coding frequency
- Video differencing and fidelity analysis
- Closed Caption syntax and compliance analysis with ability to render captions over video, save captions to standard file format (SRT, SCC, MCC), and debug capabilities
- Support for Korean language Closed Captions according to Korean standard KSC-5601-1987
- Bitstream editor for making changes, reanalyzing the stream then saving
- Exports data for detailed graphical analysis (requires Microsoft Excel®)
- Comprehensive batch mode for automated regression testing with log reports
- YUV decoded video output for baseband video analysis
- Generation and analysis of Trace files up to 2 GB
- Easy navigation using the Zoom feature for the Video View (Mouse scroll buttons and Keyboard shortcuts)
- Video buffer size (up to 1 GB) allows longer rewind and play
- Decoded frame number shown on the status bar along with the display frame number
- Audio compression analysis (option)
- AV delay measurement (option)
Overview

- Built in help and tutorials
- For H.264 streams:
 - Handling of AVC streams that have DPB errors
 - Level-specific tests according to Annex A of AVC

Optional H.265/HEVC features

With Option HEVC installed, the MTS4EA enables the display, analysis, debug, and optimization of H.265/HEVC (High Efficiency Video Coding) video compression algorithms or equipment by providing the additional features listed below:

- Analysis and verification of HEVC streams according to HM 12.0
- Analysis of all levels in Main and Main 10 profiles
- Shows Decoded, Predicted and Residual pictures for every HEVC frame
- Tooltips provide comprehensive data about CUs, CTUs, Frames and Streams
- HEVC specific overlays - Coding Tree Units, Coding Units, Prediction Units, Transform Units (Chroma and Luma separately), Slices and Tiles
- Motion Vectors overlays for HEVC streams
- Trace support for HEVC streams
- HEVC support in existing graphs and statistical views – Bits per frame, Spatial bits, MV Histogram, CTU coded frequency, Average bits, quants, etc.
- HEVC specific graphs – CU Size distribution and QP Variation
- HEVC Picture Level and sub-Picture Level Buffer Analysis
- HEVC support in the Video Navigator View
- Image Inspector shows the pixel values at the CU Level for HEVC streams (other standards shown the MB Level)
- Hovering the mouse over a CTU displays the CTU, CU, and PU boundaries
- The window position of the HEVC toolbar, HEVC tooltips, and HEVC views such as the CU Size Distribution graph and QP Variation graph are stored in the MTS4EA project files
- Support for HEVC tracks contained in Transport Streams
Applications

The key uses for a next generation compression ES analysis tool are as follows:

- Analyze the performance (qualitative and quantitative) of audio and video compression algorithms, to assist with optimization, comparison, and evaluation.
- Check conformity and correctness of a compressed audio or video bit-stream against the various standards.
- Confirm interoperability between different vendor’s audio and video compression algorithms.
- Provide comprehensive statistics that will enable the informed user to optimize audio and video compression algorithms.
- Display analysis results in text or graphical formats.
- Closed Caption syntax and compliance analysis with ability to render captions over video, save captions to standard file format (SRT, SCC MCC), and debug capabilities

Equipment manufacturers

- Semiconductor device designers and manufacturers
- Video and audio codec software and hardware developers
- STB, PVR, DVD consumer electronics developers for cable, satellite, terrestrial, and IP applications
- Video conferencing and communications equipment developers
- Mobile video and audio infrastructure and handset developers

Video content transmission and distribution

- CODEC and equipment evaluation and comparison in cable, satellite, terrestrial, and IP applications
- Network operators
- Network equipment providers
- Application and service providers
- Streaming media applications
- Broadcasters checking for introduction of AV delay
Software, hardware, and user prerequisites

This section lists the various software, hardware, and user prerequisites for operating the MTS4EA software.

Windows operating system prerequisites

The MTS4EA software has been tested to run on the Microsoft Windows 7, Windows 8.1, and Windows 10 operating systems.

The MTS4EA software is not supported under any other operating system.

Audio playout prerequisites

In order to extract and play audio streams in the MTS4EA, the PC requires an audio device, correctly configured.

Computer prerequisites

The MTS4EA software will work satisfactorily on relatively modest PC systems.

To decode and display CIF (Common Intermediate Format) video streams in real time the following minimum PC configuration is recommended:

- Windows 7, Windows 8.1, and Windows 10 64-bit operating system
- Processor speed > 2.5 GHz
- Memory at least 4 GB RAM
- Screen resolution at least 1152x864
- 250 GB minimum hard disk space

When writing trace information to the hard disk, the limiting factor is the speed of the hard disk (regardless of the video standard), so the faster the better. Also, the video and Trace files can be large (hundreds of MB) so a large hard disk is needed:

- Hard disk speed: at least 7200 rpm, however an SSD is preferred
- Hard disk size: as required for high-speed access to the video files to be analyzed plus Trace information
Trace file writing/RAM disk

The real limitation on speed is when the trace information is being written to disk. This is the slowest operation; roughly 2 MB to 4 MB of data are written per video frame for the more extensive trace functions. For H.265/HEVC video, if all of the options are selected, 800 MB to 1 GB of data are written per video frame.

For most customers, this is not a problem, but if you want to have the highest speed when playing video and writing the trace files, a RAM disk can be used. This uses some of the system memory to emulate a disk drive.

There are several software products that offer this functionality; search on the Internet for ‘RAM disk’.

If a RAM disk is used, a memory configuration of at least 512 MB is recommended, with approximately 200 MB of RAM reserved for the RAM disk. This would allow a 200 MB Trace file to be saved on the RAM disk.

User prerequisites

The MTS4EA is sophisticated analysis software, which presents detailed information relating to the video and audio standards.

It therefore assumes that you understand these audio and video standards in significant detail and can therefore interpret the information presented by the MTS4EA.

A list of references are provided. (See page 15, Compression standards and file types.)

MPEG Test Systems

You can install version 7.0 and above of the MTS4EA software on Telestream MTSA-HW Series MPEG test systems.
MTS4EA software is available on www.telestream.net for new installations and for upgrades. Follow the instructions below to install the MTS4EA software.

1. If you are upgrading your copy of MTS4EA, it is required that you first uninstall the current version using Windows Control Panel.

2. Download the latest version of MTS4EA software from www.telestream.net/video/resources.htm#Software. The MTS4EA software can be found under the MPEG Analyzers section of the software download page.

3. Right-click on the downloaded zip file and select Extract All to extract the MTS4EA folder.

4. Open the MTS4EA folder and run setup.exe to begin the installation procedure.

5. When the installation is finished, reboot your PC and proceed to the instructions on how to activate your software license.
Activate the MTSA software license

You should have received an email that includes information about your order as well as the Software Serial Number (SSN) required to activate your product. Contact your Sales Representative or Technical Support if you don't have this information.

License activation is performed using the MTSA Option Wizard. Perform the following steps to activate your license.

1. It is required to open the MTSA Option Wizard application in Administrator Mode.
 a. From the Start Menu, go to Telestream MTSA applications
 b. Right click on the MTSA Option Wizard application and select More > Run as administrator

2. Select Yes when the application launches.
3. If there is an already activated license then the MTSA Option Wizard will show the existing options and the active Serial Number.

4. If license activation is being done for the first time, the MTSA Option Wizard will show no options or serial number.
5. Enter the Software Serial Number you received in the Serial Number box and click **Activate**.

Online activation: If the computer is connected to the internet, the license will be activated in Online Mode. If the specified serial number is activated successfully, the application will list all the enabled options and the key status will be updated to **Successfully Activated** as shown here.

Once this process is complete, you can close the MTSA Option Wizard and begin to use your product.

6. If the computer is NOT connected to the internet or if the computer is being blocked by a firewall, causing failure to connect to the Telestream license activation server, the application will prompt for offline activation.

NOTE. If you are a behind a firewall, please give access to CWS.Telstream.net and ports 80 and 443. That could resolve the online mode activation issue.

If you want to proceed with offline activation, do not close this dialog, and perform the following steps.
7. In offline mode, you need to manually activate the software using another computer that has internet access.

Open a text editor such as Notepad and copy the **Code to enter** code highlighted in the **Offline Activation Required** dialog. Save the text file and move the saved file onto a USB drive.

NOTE. The code highlighted in the **Offline Activation Required** dialog is linked to this computer. If you move the license to a new computer, you will need to generate a new **Offline Activation** code on that computer.

8. Using another computer with internet access:
 a. Copy the code from the USB drive and enter the offline activation code at:
 http://cws.telestream.net/offlineactivation.aspx
 b. After entering the code, select the **Submit** button to receive the license file.
 c. Once the license file is downloaded, place the file on a USB drive.
9. Go back to the **Offline Activation Required** dialog on the computer where the MTSA software is installed.

Select Choose License File... button and select the License file from the USB drive.

10. If the offline activation is successful, the list of options and the key status will be updated in the dialog as shown.

After activating the license, the enabled MTSA software applications can be used.
Deactivate the MTSA software license

If you need to move your software to a different computer, you must first deactivate your existing license. License deactivation is performed using the MTSA Option Wizard. Perform the following steps to deactivate your license.

1. It is required to open the MTSA Option Wizard application in Administrator Mode.
 a. From the Start Menu, go to Telestream MTSA applications
 b. Right click on the MTSA Option Wizard application and select More > Run as administrator

2. Select Yes when the application launches.
3. Open the MTSA Option Wizard and click the **Deactivate** button.

NOTE. Deactivation will work only in the online mode when there is internet connection.

After successfully deactivation, the options list will be emptied, and the key status will be updated.

If you are moving your software to a new computer, install the applications on the new computer and perform the **Activate the MTSA software license** procedure.
Compression standards and file types

This section contains the following information:

- A description of the standards (and elements within those standards), that MTS4EA supports, both video and audio
- The file types MTS4EA can work with, both video and audio
- The exact titles and numbers of the standards on which the MTS4EA is based

Supported video compression standards

The video compression standards supported in this version of the MTS4EA are:

- H.265/HEVC
- H.264/AVC
- H.264/SVC
- VC-1
- MPEG-4 Part 2
- MPEG-2 Part 2
- H.263

The MTS4EA will open container files (containing the above types of video):

- MP4 (MPEG-4 Part 2, H.263 Baseline only and H.264)
- 3GPP (MPEG-4 Part 2, H.263 Baseline only and H.264)
- VOB/MPEG-2 Program Stream (MPEG-2 only)
- Microsoft ASF files
- RCV files
- MXF (SMPTE 377)
The MTS4EA will also open uncompressed video files: (See page 67, *Opening an uncompressed video file (any file extension)*.)

The MTS4EA will also open audio files of the standards given in *Supported Audio Compression Standards* and container files that have these types of audio within them. (See page 28, *Supported audio compression standards*.)

NOTE. Not all container files support all types of audio listed under Supported Audio Compression Standards. (See page 28, *Supported audio compression standards*) and (See page 38, *Permitted audio types/format*.)

H.265/HEVC

This version of the MTS4EA supports the following elements of the H.265/HEVC standard (see Reference [27] and Reference [28] under *Standards references*).

H.265/HEVC Profiles, Levels. The following Profiles and Levels are supported:

Main Profile
- All Levels from 1 to 6.2 inclusive

Main 10 Profile
- All Levels from 1 to 6.2 inclusive

H.264/AVC

This version of MTS4EA supports the following elements of the H.264/AVC standard (see Reference [12] under *Standards references*).

H.264/AVC Profiles, Levels. The following Profiles and Levels are supported:

Baseline Profile
- All Levels from 1 to 5.1 inclusive

Extended Profile
- All Levels from 1 to 5.1 inclusive

Main Profile
- All Levels from 1 to 5.1 inclusive

High Profile
- All Levels from 1 to 5.1 inclusive

High 10-bit Profile
- All Levels from 1 to 5.1 inclusive
Compression standards and file types

High 4:2:2 Profile
- All Levels from 1 to 5.1 inclusive

High 4:4:4 Predictive Profile
- All Levels from 1 to 5.1 inclusive

High 10 Intra Profile
- All Levels from 1 to 5.1 inclusive

High 4:2:2 Intra Profile
- All Levels from 1 to 5.1 inclusive

High 4:4:4 Intra Profile
- All Levels from 1 to 5.1 inclusive

CAVLC 4:4:4 Intra profile
- All Levels from 1 to 5.1 inclusive

H.264/AVC tools. (For a description of these tools, see Reference [12] under Standards references)

All tools are supported, as permitted in the H.264/AVC standard, listed below.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Baseline</th>
<th>Extended</th>
<th>Main</th>
<th>High</th>
<th>High 10</th>
<th>High 4:2:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile and level indications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>88</td>
<td>77</td>
<td>100</td>
<td>110</td>
<td>122</td>
</tr>
<tr>
<td>profile_idc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constraint_set0_flag</td>
<td>1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set1_flag</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>1</td>
<td>0 or 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>constraint_set2_flag</td>
<td>0 or 1</td>
<td>1</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set3_flag</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>level_idc</td>
<td>10 - 51</td>
</tr>
</tbody>
</table>

Slice types:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>P</th>
<th>B</th>
<th>SP</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NAL unit types:

<table>
<thead>
<tr>
<th>1 - coded slice of a non-IDR picture</th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - coded slice data partition A</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3 - coded slice data partition B</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tool</td>
<td>Baseline</td>
<td>Extended</td>
<td>Main</td>
<td>High</td>
<td>High 10</td>
<td>High 4:2:2</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>4 - coded slice data partition C</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5 - coded slice of an IDR picture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6 - supplemental enhancement information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 - sequence parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8 - picture parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9 - access unit delimiter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10 - end of sequence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12 - end of stream</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13 - filler data</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Structural:
- data partitioning (NALU type 2-4) interface
 - No (Except L1-2 & L1-2 & 4.2 - 5.1)
 - Yes (Except L1-2 & L1-2 & 4.2 - 5.1)
- arbitrary slice order
 - Yes
- slice groups (num_slice_groups_minus1)
 - 1 - 8
- redundant coded pictures (redundant_pic_cnt_present_flag)
 - Yes

Weighted prediction:
- weighted_pred_flag
 - 0 => 0 => 0 => 0 => 0 => 0
- weighted_pred_idc
 - 0 => 0 => 0 => 0 => 0 => 0

Entropy coding (entropy_coding_mode_flag):
- CAVLC
 - Yes | Yes | Yes | Yes | Yes | Yes | Yes |
- CABAC
 - No | No | Yes | Yes | Yes | Yes | Yes |

B frames:
- direct_8x8_inference_flag
 - n/a | 1 | 0 (L1-2.2) | 1 (L3-5.1) | 1 (L3-5.1) | 1 (L3-5.1) |
- MinLumaBiPredSize
 - n/a | 8x8 | 8x8 | 8x8 | 8x8 | 8x8 |

Fidelity range:
- chroma format (chroma_format_idc)
 - 0 | 0 | 0 | 0 - 1 | 0 - 1 | 0 - 1 |
- bit depth (bit_depth_luma_minus8, bit_depth_chroma_minus8)
 - 0 | 0 | 0 | 0 | 0 | 0 | 0 - 2 | 0 - 2 |
- transform bypass (qprime_y_zero_transform_bypass_flag)
 - n/a | n/a | n/a | 0 | 0 | 0 |

1 No = not allowed; n/a = not applicable
Table 2: H.264/AVC tools (part 2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile and level indications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>profile_idc</td>
<td>244</td>
<td>110</td>
<td>122</td>
<td>244</td>
<td>44</td>
</tr>
<tr>
<td>constraint_set0_flag</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set1_flag</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>constraint_set2_flag</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set3_flag</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>level_idc</td>
<td>10 - 51</td>
</tr>
<tr>
<td>Slice types:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SI</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NAL unit types:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - coded slice of a non-IDR picture</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2 - coded slice data partition A</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3 - coded slice data partition B</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4 - coded slice data partition C</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5 - coded slice of an IDR picture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6 - supplemental enhancement information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 - sequence parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8 - picture parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9 - access unit delimiter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10 - end of sequence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12 - end of stream</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13 - filler data</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Structural:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data partitioning (NALU type 2-4)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>arbitrary slice order</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>slice groups (num_slice_groups_minus1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>redundant coded pictures</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(redundant_pic_cnt_present_flag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compression standards and file types

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted prediction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weighted_pred_flag</td>
<td>=> 0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>weighted_pred_idc</td>
<td>=> 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entropy coding (entropy_coding_mode_flag):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAVLC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CABAC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>B frames:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct_8x8_inference_flag</td>
<td>1 (L3–5.1)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MinLumaBiPredSize</td>
<td>8x8 (L3.1 - 5.1)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fidelity range:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chroma format (chroma_format_idc)</td>
<td>0 - 3</td>
<td>0 - 1</td>
<td>0 - 1</td>
<td>0 - 3</td>
<td>0 - 3</td>
</tr>
<tr>
<td>bit depth (bit_depth_luma_minus8, bit_depth_chroma_minus8)</td>
<td>0 - 4</td>
<td>0 - 2</td>
<td>0 - 2</td>
<td>0 - 4</td>
<td>0 - 4</td>
</tr>
<tr>
<td>transform bypass (qpprime_y_zero_transform_bypass_flag)</td>
<td>0 or 1</td>
<td>0</td>
<td>0</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

1 No = not allowed; n/a = not applicable
H.264/SVC This version of MTS4EA supports the following elements of the H.264/SVC standard (see Reference [26] under Standards references).

H.264/SVC Profiles, Levels. The following Profiles and Levels are supported:

- **Scalable Baseline Profile**
 - All Levels from 1 to 5.1 inclusive

- **Scalable High Profile**
 - All Levels from 1 to 5.1 inclusive

- **Scalable High Intra Profile**
 - All Levels from 1 to 5.1 inclusive

H.264/SVC tools. (For a description of these tools, see Reference [26] under Standards references)

Table 3: H.264/SVC tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Scalable Baseline</th>
<th>Scalable High</th>
<th>Scalable High Intra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile and level indications:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>profile_idc</td>
<td>83</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>constraint_set0_flag</td>
<td>1 for base layer, 0 or 1 for enhancement layers</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set1_flag</td>
<td>1 for base layer, 0 or 1 for enhancement layers</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set2_flag</td>
<td>1 for base layer, 0 or 1 for enhancement layers</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>constraint_set3_flag</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Slice types:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EB</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SP</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SI</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NAL unit types:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - coded slice of a non-IDR picture</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2 - coded slice data partition A</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3 - coded slice data partition B</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4 - coded slice data partition C</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5 - coded slice of an IDR picture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tool</td>
<td>Scalable Baseline</td>
<td>Scalable High</td>
<td>Scalable High Intra</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>6 - supplemental enhancement information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7 - sequence parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8 - picture parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9 - access unit delimiter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10 - end of sequence</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>11 - end of stream</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12 - filler data</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13 - sequence parameter extension</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>14 - prefix NAL unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>15 - subset sequence parameter set</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>19 - coded slice of an auxiliary coded picture without partitioning</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>20 - coded slice extension</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Structural:
- data partitioning (NALU type 2-4): No
- interface: No (Except L1-2 & 4.2 - 5.1)
- arbitrary slice order: Base layer - No
- slice groups: Base layer - 1
- redundant coded pictures: Base layer - No
- entropy coding (entropy_coding_mode_flag):
 - CAVLC: Yes
 - CABAC: Base layer - No
- B frames:
 - direct_8x8_inference_flag: Base layer - n/a
- MinLumaBiPredSize: n/a
- Fidelity range:
 - chroma format (chroma_format_idc): 0
 - bit depth (bit_depth_luma_minus8, bit_depth_chroma_minus8) + 8: 8
 - transform bypass (qpprime_y_zero_transform_bypass_flag): 0

1 No = not allowed; n/a = not applicable
This version of MTS4EA supports the following elements of the VC-1 standard. (see Reference [16] under Standards references).

VC-1 Profiles, Levels. The following Profiles and Levels are supported (this is all Profiles and all Levels):

- **Simple Profile:**
 - Low
 - Medium

- **Main Profile:**
 - Low
 - Medium
 - High

- **Advanced Profile:**
 - L0
 - L1
 - L2
 - L3
 - L4
MPEG-4

This version of MTS4EA supports the following elements of the MPEG-4 standard (see Reference [1] under Standards references).

NOTE. The MTS4EA support for MPEG-4 has been updated to the 2004 version of the MPEG-4 standard, which has several differences from the previous version.

MPEG-4 Profiles, Levels. The following Profiles and Levels are supported:

- **Simple Profile:**
 - Level 0 (see note below)
 - Level 1
 - Level 2
 - Level 3
 - Level 4a
 - Level 5

- **Advanced Simple Profile:**
 - Level 0
 - Level 1
 - Level 2
 - Level 3
 - Level 3b (see Reference [5], Standards references.)
 - Level 4
 - Level 5

- **Main Profile:**
 - Level 2

NOTE. Level 0, which is not in the MPEG-4 Standard Reference [1], is an addition to Simple Profile. Level 0 is targeted at mobile applications: for example, with a maximum picture size of QCIF and maximum frame rate of 15 frames per second. (See page 39, Standards references.)
MPEG-4 tools. (See the following standard for a description of the MPEG-4 tools: MPEG-4 Part 2 (Visual), Reference [1] Table 9-1.)

For MPEG-4 Simple Profile, Advanced Simple Profile and Main Profile, the following tools are supported:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Simple profile</th>
<th>Advanced simple profile</th>
<th>Main profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic:</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>■ I-VOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ P-VOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ AC/DC prediction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ 4 Motion Vectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Unrestricted Motion Vectors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th>Simple profile</th>
<th>Advanced simple profile</th>
<th>Main profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short header</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Error resilience:</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>■ Slice Resynchronization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Data Partitioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Reversible VLC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th>Simple profile</th>
<th>Advanced simple profile</th>
<th>Main profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-VOPs</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Method 1/Method 2 quantization</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Global Motion Compensation:</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>■ Mode 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Mode 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Mode 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Mode 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tool</th>
<th>Simple profile</th>
<th>Advanced simple profile</th>
<th>Main profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Sample Motion Compensation</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>(quarter pel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(L4, 5 only)</td>
</tr>
</tbody>
</table>

¹ N/A means that this tool is not allowed in the profile concerned.

NOTE. MPEG-4 Simple Profile Short Header is decoded by MTS4EA as H.263 Baseline, as defined by the MPEG-4.
The following additional tools are not supported for Main Profile:

- P-VOP based temporal scalability:
 - Rectangular
 - Arbitrary shape
- Binary shape
- Gray shape
- Sprite

MPEG-2
This version of MTS4EA supports the following elements of the MPEG-2 standard. (see Reference [13] under *Standards references*).

MPEG-2 Profiles, Levels. The following Profiles and Levels are supported, subject to the restrictions. (See page 38, *Permitted audio types/format*.)

- **Main Profile:**
 - Main Level
 - High Level
 - High Level 1440
- **4.2.2 Profile:**
 - Main Level
 - High Level
MPEG-2 tools. For MPEG-2 Main Profile at Main Level, at High Level and at High Level 1440, the following tools are supported:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Main level</th>
<th>High level</th>
<th>High level 1440</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-frames</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>P-frames</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>B-frames</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Field-coded pictures</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(Interlaced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame-coded pictures:</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>With field or frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>order MacroBlocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layers:</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>GOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacroBlock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Higher syntactic structures are also supported within MTS4EA - PES and VOB. (See page 33, MPEG-2 higher syntactic structures.)

H.263 The following H.263 standards are supported:

Supported audio compression standards

MTS4EA supports audio extraction and playout. MTS4EA also supports audio stream analysis functionality for all supported standards except Dolby Digital (AC-3). Supported standards are:

- MPEG-1 Part 3 audio
 (References [22] in Standards references.)
- MPEG-2 Part 3 audio
 (References [18] in Standards references.)
- MPEG-2 Part 7 AAC
 (Reference [19] in Standards references.)
- MPEG-4 Part 3 audio
 (Reference [20] in Standards references.)
- Dolby Digital (AC-3)
 (Reference [24] in Standards references.)

MTS4EA also supports audio files in the following container formats:

- MPEG-4 Part 3 ADTS files
 (Reference [21] in Standards references.)
- MPEG-4 Part 3 LATM files
 (Reference [21] in Standards references.)
- MPEG-4 Parts 1 and 14
 (References [10] and [23] in Standards references.)
- MPEG-2 Transport, Program, PES streams
 (Reference [14] in Standards references.)
- 3GPP
MPEG-1 Part 3 audio MTS4EA supports the MPEG-1 Part 3 audio standard, as defined in Reference [22] in *Standards references*. MTS4EA supports the following layers of this standard:
- Layer I
- Layer II

MTS4EA supports monophonic and stereophonic streams in this standard.

MPEG-2 Part 3 audio MTS4EA supports the MPEG-2 Part 3 audio standard, as defined in Reference [18], *Standards references*. MTS4EA supports the extension of MPEG-1 part 3 audio to LSF (Low Sampling Frequency) for the following layers:
- Layer I
- Layer II

MTS4EA supports monophonic and stereophonic streams in this standard.

MPEG-2 Part 7 AAC audio MTS4EA supports the MPEG-2 Part 7 AAC audio standard, as defined in Reference [19], *Standards references*. MTS4EA supports the following profiles of this standard:
- Main
- LC (Low Complexity)
- LTP (Long Term Prediction)

MTS4EA supports monophonic and stereophonic streams in this standard.

MPEG-4 Part 3 audio MTS4EA supports the MPEG-4 Part 3 audio standard, as defined in Reference [20], *Standards references*. MTS4EA supports the following profiles of this standard:
- Main
- LC (Low Complexity)
- LTP (Long Term Prediction)
- HE-AAC (High Efficiency, ‘AAC plus’), low complexity profile with SBR (Spectral Band Replication)

MTS4EA supports monophonic and stereophonic streams in this standard.

MPEG-4 Part 3 ADTS files MTS4EA supports the Audio Data Transport Stream (ADTS) for AAC audio, as defined in Reference [21], *Standards references*.
Supported closed caption standards

MTS4EA supports closed caption syntax and compliance analysis with ability to render captions over video, save captions to standard file format (SRT, SCC MCC), and debug capabilities. Supported standards are:

- CEA 608 (analog video), as defined in Reference [31], *Standards references*
- CEA 608 (carried in SCTE20 and SCTE21), as defined in Reference [33] and Reference [34], *Standards references*
- CEA 708 (digital video), as defined in Reference [32], *Standards references*
- KSC-5601-1987 (Wansung) Mapping, as defined in Reference [36], *Standards references*
Permitted video types/formats

MTS4EA analyzes and displays many file types, such as:

- Video files containing video Elementary Streams
- Container files, such as ASF files, RCV files, MP4/3GPP files, MPEG-2 Transport Streams, and MPEG-2 Program streams, which include video, audio and other data
- MTS4EA Trace files (which have a.vpt file extension)
- Uncompressed video files, such as YUV, RGB or grayscale color models, 8-16 bit sample depth, various chroma sub-sampling formats
- Any data file, using MTS4EA HexView (hexadecimal file viewer, on the Analysis menu)

The primary analysis functions of MTS4EA are performed on video Elementary Streams, and features are provided to extract these from within container files such as MP4 and 3GPP files.

Microsoft ASF files

ASF files typically contain video, audio and other data. An ASF file can contain more than one video stream. See Reference [17] in Standards references.

RCV files

RCV files contain video in the VC-1 format. See Reference [16] in Standards references.

MP4 files

MP4 files typically contain video, audio and other data. An MP4 file can contain more than one video stream; these streams can be located consecutively or split up in many areas of the MP4 file.

The MP4 files that the MTS4EA analyzes should conform to the relevant part of the MPEG-4 standard – Reference [10] in Standards references.

By default, the MTS4EA looks for MP4 files with an .mp4 file extension, although any file name can be used: MTS4EA will determine that it is an MP4 file by looking through the file contents.

The video streams can be extracted from the MP4 file and analyzed directly, or extracted and analyzed later. (See page 56, Open stream... Ctrl+O.)

The structure of the MP4 file can be examined, using the View file structure option in the Analysis menu. (See page 43, How to use the MTS4EA.)
3GPP files

3GPP files are a subset of MPEG-4 files, with an indicator in the file to denote that it is a 3GPP file.

By default, the MTS4EA looks for 3GPP files with a .3gp file extension, although any file name can be used: MTS4EA will determine that it is a 3GPP file by looking through the file contents.

The video streams are extracted from 3GPP files and analyzed directly or extracted and analyzed later in the same way as MP4 files. For information on opening 3GPP files and extracting and saving the video streams. (See page 56, Open stream... Ctrl+O.)

The structure of the 3GPP file can be examined, using the View file structure option in the Analysis menu. (See page 43, How to use the MTS4EA.)

MPEG-2 Transport Stream files

MPEG-2 Transport Streams typically contain video, audio, and other data. An MPEG-2 Transport Stream can contain more than one video stream - in fact hundreds or more; these streams can be located largely consecutively in the Transport Stream packets or split up in many areas of the Transport Stream.

Transport Streams with 188 bytes per packet, 196 bytes per packet, 204 bytes per packet and 208 bytes per packet can be analyzed.

MXF (SMPTE 377) files

MXF is a container format which supports a number of different coded streams (essence) encoded in any of the variety of video and audio compression formats together with metadata which describes the essence contained in it.

MXF provides:
- An extensible framework for interchanging metadata and essence
- Independence from compression formats
- A variety of operational patterns to fit different applications
- A means of encapsulating structural and descriptive metadata
- A means of relating the metadata with the essence
- Low level file structure for efficient storage and parsing
- A means of indexing content for random access
- A streamable file format for real time contribution

NOTE. MTS4EA supports operational pattern Op1a, Op1b, OpAtom1a and OpAtom1b.
MPEG-2 higher syntactic structures

MPEG-2 Program Stream and PES files. An MPEG-2 Program Stream contains one or more Packetized Elementary Streams (PES), with a common time base. (The Program Stream is designed for use in a relatively error-free environment.)

The format of the Program Stream is defined in Part 1 of the MPEG-2 standard, Reference [14] in *Standards references*.

A Program Stream can contain a complete Elementary Stream, or it can contain only part of an Elementary Stream.

MTS4EA will open MPEG-2 Program Stream files (typically with a file extension of .mpg) and display the structure of the Program Stream, such as the PES packets inside.

In accordance with the MPEG-2 standard (see Reference [14] in *Standards references*), the Program Stream file will start with a 32-bit start code: 0x000001ba, 0000 0000 0000 0000 0000 0001 1011 1010.

MPEG-2 VOB files (DVD). VOB files are used on a DVD to store the video and audio; a VOB contains a Program Stream.

A single video Elementary Stream (for example, a movie) is usually distributed among several VOB files.

NOTE. You can specify the different VOBs that contain a single Elementary Stream, so that the MTS4EA can extract the Elementary Stream from the different VOBs.

MTS4EA will open MPEG-2 VOB files (typically with a file extension of .vob) and display the structure of the Program Stream, such as the PES packets inside.

See Reference [15] in *Standards references*.

NOTE. When opening a VOB, there is no requirement that the VOB begins with an I-frame. In this situation, the video will not display correctly until an I-frame is reached.

Encrypted (scrambled) VOBs cannot be opened.
Uncompressed video file format

The general uncompressed video file format is as follows:

- No headers of any kind (no file or frame headers)
- Concatenated planar image data
- Row raster order (top picture row first)
- Unsigned samples

For 8-bit sample depth:

- One byte per sample

For 9-16 bit sample depth:

- Two bytes per sample
- Both little- and big-endian byte orders supported

For YUV format:

- Concatenated Y, U and V planes
- U and V planes sub-sampled as required
- Y plane samples are unsigned
- U and V plane samples are unsigned with a DC offset of 2^{-n}, where n is the chroma sample bit depth

For RGB format:

- Concatenated R, G and B planes

For grayscale format:

- Luma plane only

Compressed video file format

The formats of the raw compressed video data files (for example called Elementary Streams, typically with a file extension of .m4v or .cmp in MPEG-4) that MTS4EA analyzes are defined in the relevant standards. Proprietary file formats are not supported.

This means that the compressed video file to be analyzed should not be an AVI file (which puts a wrapper around the encoded video and audio).

The compressed video elementary stream file cannot contain audio, although the original container file (such as MP4 or 3GPP) may have contained audio.

Once the video is extracted, the MTS4EA will automatically determine the format of the compressed video in the file by searching through the video and looking for the appropriate start codes. Accordingly, the file name does require a particular file extension to be decoded correctly.
H.264/AVC and H.265/HEVC Byte Stream file format. In accordance with the H.264/AVC and H.265/HEVC standards (see Reference [12] and Reference [27] in Standards references), the video file must start as given in the following diagram.

The abbreviations mean:

AU: access_unit_delimiter_rbsp_nal_unit
SPS: sequence_parameter_set_nal_unit
PPS: picture_parameter_set_nal_unit

Start of Bitstream

For example, if the bitstream does not contain the optional items at the start then the first six bytes in an Extended profile byte stream file will be: 00 00 00 01 67 58 (all values in hexadecimal)

VC-1 Advanced Profile and Elementary Stream file format. Within the VC-1 standard (see Reference [17] in Standards references), only the Advanced Profile can exist as a separate Elementary Stream. (The Simple and Main Profiles are required to be part of a container file - such as RCV, ASF or MPEG-2 TS - so that the required header information is stored.)

MTS4EA fully supports the VC-1 implementations of the Simple, Main and Advanced Profiles in each standard.

(See the standards in Reference [16] in Standards references for details of the start codes and syntax permissible for each of these.)
MPEG-4 Elementary Stream file format. In accordance with the MPEG-4 standard (see Reference [1] in *Standards references*), the file will start with a valid header start code that contains configuration information such as:

- `visual_object_sequence_start_code` (0xB0)
- `visual_object_start_code` (0xB5)
- `video_object_layer_start_code` (0x20 - 0x2F)
- `video_object_start_code` (0x00 - 0x1F)

For MPEG-4 Short Header video there is no header code other than the 22-bit start code:

- `video_plane_with_short_header()` (see below)

The start codes actually used will vary from one stream to another.

These start codes (except Short Header) may be followed by further configuration data until the start code for the video data is reached, which must start with one of the following functions:

- `Group_of_VideoObjectPlane()` start code: 0xB3
- `VideoObjectPlane()` start code: 0xB6

See the MPEG-4 standard Reference [1] (in section 6.1.2) in *Standards references* for more information.

Note the entry points `MeshObject()` and `fba_object()` also given in section 6.1.2 of the MPEG-4 standard are not supported, but also these are nonallowable tools in the Profiles and Levels supported by MTS4EA.

This means that for

- `Group_of_VideoObjectPlane()`
- `VideoObjectPlane()`

the 24 bits in the video file before the start code must be the Start Code Prefix: 0000 0000 0000 0000 0000 0001. This is then followed by the 8-bit start code value.

MPEG-2 Elementary Stream file format. In accordance with the MPEG-2 standard (see Reference [14] in *Standards references*), the Elementary Stream file will start with a 32-bit start code: Hex: 0x000001b3; Bin: 0000 0000 0000 0000 0000 0001 1011 0011.

H.263 file format. The first bits in an H.263 compressed file should be the 22-bit PSC (Picture Start Code): 0000 0000 0000 0000 1000 00.
Source video format

The above means that when the video was encoded, the uncompressed source format of the video file to be encoded should have been YUV 4:2:0 - that is, with 4 bytes of Y data (luminance) for every 1 byte of U and 1 byte of V data (color differences). (The color difference data is sub-sampled by 2 in horizontal and vertical directions.)

For H.264/AVC High Profiles, the following alternative image formats are also supported:

- YUV, RGB or grayscale color models
- Alternative YUV chroma sub-sampling: 4:2:0, 4:2:2, or 4:4:4
- Alternative image sample bit depths: from 8 to 12 bits

It is up to the encoder to take the input data and order it correctly, so that in the compressed bitstream, the pixel data must appear with the top left pixel first, followed by the pixel to the right. If the video data stream input to the encoder does not follow this order then it is up to the encoder to rearrange the data order.

Video image size

The maximum size of the video images that can be analyzed within MTS4EA is effectively up to 16384x16384 pixels.

For each standard, there is a maximum size and within this limit, MTS4EA will analyze video to the maximum size allowed in the video standard concerned, for example:

- 4096 pixels wide x 2304 pixels high in H.264/AVC
- 1920 pixels wide x 1088 pixels high in MPEG-2 Main Profile @ High Level

There is no minimum size.

Video file size

The maximum video file size that can be analyzed is effectively limited only by the disk space on your computer (the limit to the size is actually 1 million Terabytes [2^60] or 1 billion Gigabytes).

MTS4EA will open the first part of the video file and start playing and analyzing this immediately if possible: in some cases, MTS4EA must search through a certain amount of the file before there is sufficient data for display.

In addition, the results from analysis of the input video file are cached in MTS4EA memory in the Step-back buffer. If the results for the section of video to be displayed/analyzed are not in the cache then this is indicated on-screen and MTS4EA will then pause while loading the relevant data in the cache.

PAL/NTSC

Both PAL and NTSC format video can be analyzed with MTS4EA.
Permitted audio types/format

Audio is supported under the following container formats, as described in the previous section:

- MPEG-4 Part 3 ADTS files
- MPEG-2 Transport Stream, Program Stream, Packetized Elementary Stream (PES)
- 3GPP
- MP4

MPEG-2 Transport Stream files

MPEG-2 Transport Streams typically contain video, audio and other data. An MPEG-2 Transport Stream can contain more than one media stream - in fact hundreds or more; these streams can be located largely consecutively in the Transport Stream packets or split up in many areas of the Transport Stream.

Transport Streams with 188 bytes per packet, 196 bytes per packet, 204 bytes per packet and 208 bytes per packet can be analyzed.

MPEG-2 Program Stream and PES files

An MPEG-2 Program Stream contains one or more Packetized Elementary Streams (PES), with a common time base. (The Program Stream is designed for use in a relatively error-free environment.)

The format of the Program Stream is defined in Part 1 of the MPEG-2 standard (see Reference [14] in Standards references).

A Program Stream can contain a complete Elementary Stream, or it can contain only part of an Elementary Stream.

The MTS4EA will open MPEG-2 Program Stream files (typically with a file extension of .mpg) and display the structure of the Program Stream, such as the PES packets inside.

In accordance with the MPEG-2 standard (see Reference [14] in Standards references), the Program Stream file will start with a 32-bit start code: 0x000001BA, for example, 0000 0000 0000 0000 0001 1011 1010
3GPP files

3GPP files are a subset of MPEG-4 files, with an indicator in each 3GPP file to denote that it is a 3GPP file.

By default, the MTS4EA looks for 3GPP files with a .3gp file extension, although any file name can be used; the MTS4EA will determine that it is a 3GPP file by looking through the file contents.

The audio streams are extracted from 3GPP files and analyzed directly or extracted and analyzed later in the same way as for MP4 files. For information on opening 3GPP files, extracting and saving the audio streams see the How to use the MTS4EA section.

The structure of the 3GPP file can be examined, using the View file structure option on the Analysis menu. (See page 43, How to use the MTS4EA.)

MP4 files

MP4 files typically contain video, audio and other data. An MP4 file can contain more than one video stream; these streams can be located consecutively or split up in many areas of the MP4 file.

The MP4 files that the MTS4EA analyzes should conform to the relevant part of the MPEG-4 standard (see Reference [10] in Standards references).

By default, the MTS4EA looks for MP4 files with an .mp4 file extension, although any file name can be used; the MTS4EA will determine that it is an MP4 file by looking through the file contents.

The audio streams can be extracted from the MP4 file and analyzed directly, or extracted and analyzed later. For information on opening MP4 files and extracting and saving the audio streams see the How to use the MTS4EA section.

The structure of an MP4 file can be examined, using the View file structure option on the Analysis menu. (See page 43, How to use the MTS4EA.)

Standards references

[16] SMPTE "Proposed SMPTE Standard for Television: VC-1 Compressed Video Bitstream Format and Decoding Process" committee draft 2, revision 1, reference number SMPTE CD xxxM (otherwise referred to as VC-1)

[17] Advanced Systems Format (ASF) Specification: revision 01.20.02; Microsoft Corporation, June 2004

[22] MPEG-1 audio: ISO/IEC 11172-3:1993 Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1.5Mbit/s – Part3: Audio

[29] EIA-608: Line 21 Data Services

[34] SCTE 21: Society of cable Telecommunications engineers, AMERICAN NATIONAL STANDARD, ANSI/SCTE 21 2001R2006, STANDARD FOR CARRIAGE OF NTSC VBI DATA IN CABLE DIGITAL TRANSPORT STREAMS

How to use the MTS4EA

This section:

- Describes the elements of MTS4EA display window.
 (See page 44, Window elements.)

- Tells how to start using MTS4EA display.
 (See page 45, Starting to use the MTS4EA.)

- Describes each of the menu items in detail and how to use them.
 (See page 55, Main menus.)

- Explains the icon toolbars, below the main menu.
 (See page 354, Icon toolbars.)

- Explains the context-sensitive toolbars, which appear depending upon the video standard used and/or the actions being performed.
 (See page 357, Context-sensitive toolbars/tooltips.)

- Explains the information provided on the status bar.
 (See page 347, Status bar.)

- Lists the shortcut keys, such as Ctrl+A to Pause/Frame Advance one frame.
 (See page 371, Ctrl shortcut keys.)

- Explains the use of the Alt key to select menu items.
 (See page 372, Alt menu keys.)

- Explains the use of the command line/batch mode.
 (See page 373, Command line/batch mode.)
Window elements

NOTE. In addition to the above toolbars/windows, there are multiple other toolbars that are visible when particular functions are enabled. Also, there are some toolbars, tooltips and menu items that are context-sensitive, depending on the video/audio standard being used and/or the explicit function being performed.
Starting to use the MTS4EA

When the MTS4EA starts, the display initially looks as below:

The gray background in the window indicates that no video or other files are loaded. The only icons on the toolbar that are currently enabled are the icons:

- For the Project (New Project, Open Project and Save Project)
- Open stream
- Help
NOTE. Some features on some menus may stay permanently grayed out (unavailable). There are two possible reasons for this: the function or feature is never enabled or is not relevant to the standard you are using; or the existing license you have for MTS4EA does not allow all the features to be used - see MTS4EA License Manager in chapter 4 for more information.

When menu items are grayed out, leaving the mouse at the location of the grayed out menu item for a few seconds will display some popup text explaining why the menu item is disabled and/or how it can be enabled. The following example is on the Overlay menu, for the Blank video menu selection:
Opening a file

To open a file, do one of the following:

- Click on **File > Open stream**
- Click the Open file icon 📁
- Press Ctrl+O

When a stream is loaded, the first frame is decoded and displayed by the MTS4EA. While the first frame of the stream is displayed, the stream itself is not in Play mode, therefore Analysis options can be selected and configured.

In the following screenshot, the example file Beijing Girl is loaded with its first frame displayed, but as indicated by the Stop icon and the empty frame counter in the bottom right corner of the screen, the stream is yet to be played. Where there is audio content, the audio waveform view is also displayed.
If the loaded stream is initially advanced by one frame, the first frame is again decoded/played before entering the Pause mode. In this mode, Analysis options are not available. When stopped, the first frame reappears on the display until the stream is advanced/played further.

As is normal with Windows applications, the window can be dragged around within the frame of the application, resized, maximized, and minimized.

If another file is opened, then this replaces the file last opened; another window is not opened.

NOTE. You can open several copies of the MTS4EA to allow direct, side-by-side comparisons of multiple streams.
Playing mode restrictions

There are two Play modes: these are indicated at the lower left corner of the status bar:

- **Stop**: stream is stopped
- **Play**: stream is paused (after Pause/Step forward) or playing at normal speed, Fast forward, Blind, or Silent fast forward.

Certain actions can be performed only when the open file is in the appropriate Play mode. A few such examples are:

- The Trace enable and Graph enable options on the Analysis menu are only available in Stop mode. (See page 196, Video trace enable... Ctrl+T.) and (See page 222, Video graph enable... Ctrl+G.)
- The real-time onscreen image overlays, such as MB types and motion vector overlay do not update the video window when in Stop mode

 (See page 139, MB types Ctrl+Y) and (See page 149, Motion vectors Ctrl+E.)

NOTE. See also Audio/Video Synchronization for further information and details on playing audio and audio-video synchronization. (See page 88.)

MTS4EA projects

When working with the MTS4EA, the projects feature allows all current setups to be saved at any point and reloaded, for example, to allow work to recommence at exactly the same point. The project file includes information on the name of the file being analyzed, the open views and the location of these, plus many other items. (See page 73, New project.)
When a video or audio stream is played, MTS4EA has many views of the video, audio and other data:

- Alert log
- Video view
- Audio/video hex, stream edit and navigator views
- Buffer analysis view
- Fidelity view (for example PSNR analysis)
- Bits per frame view
- Trace views
- Audio waveform, hex, alert, trace and stream edit views
- File structure view
- Excel graphs

Some of these views are linked. A right-click in one view will open a context menu with a Goto command that will take you to the corresponding location in another view (provided the file being played has both video and audio streams in order to bring up the Audio waveform view).

Example of Goto view menus:

![Goto view menu]

From Trace file

From video view

NOTE. When in the video or audio view, to make it easier to see which area of the window is providing the link to another view, there is always a small square or rectangle in the view that highlights the MacroBlock/CTU or frame for cross-referencing in the other view.
Example of moving between views. For example, when in the video view and using the MacroBlock/CTU tooltip, to see the hex/binary data for a specific MacroBlock/CTU, right-click at the MacroBlock/CTU location of interest and select Goto view from the context menu, and then select the HexView. The HexView window opens (if it is not already opened for this stream) and the first byte of the selected MacroBlock/CTU is highlighted.

Selecting a specific byte in the HexView, and then using the right-click context menu to select the Video view will take the video window to the MacroBlock/CTU that contains the selected byte, with the MacroBlock/CTU highlighted. (See page 51, Highlighting of selected areas in the video view.)

Highlighting of selected areas in the video view. If a data area is selected in a view other than the video view, and the context menu is used to go to the video view, the corresponding area of the video view is highlighted, as follows:

- If the area can be resolved to a single MacroBlock/CTU, then a yellow and black dotted box is displayed around the MacroBlock/CTU concerned:
If the area cannot be resolved to a single MacroBlock/CTU, then a yellow and black dotted rectangle is displayed surrounding the top row of MacroBlocks/CTUs in the video frame that contains the first selected area:

If the selected area is in a frame or file header, not within a specific MacroBlock/CTU, then a yellow and black dotted rectangle is displayed surrounding the top row of MacroBlocks/CTUs in the video frame that immediately follows the frame or file header (see the preceding illustration: the data selected in the HexView window is in the VOP header, so the highlight rectangle is displayed across the top row of MacroBlocks/CTUs of the corresponding VOP).

Highlighting of selected areas in the audio view. Highlighting selected areas in the audio waveform view works in a similar manner to highlighting areas in the video view. (See page 51, *Highlighting of selected areas in the video view.*)

NOTE. An audio frame consists of a fixed number (per channel) of audio samples representing a fixed time length of decoded audio. Typically each iteration through the decode loop will output one audio frame of decoded audio.
Synchronization of views/Synchronize views icon. When the Synchronize views icon is pushed in, all open windows automatically follow the selection that you made.

For example, if the Video Navigator and Hex views are both open at the same time as the Audio waveform view, and the Synchronize views icon is pushed in, and video is then played, all views display the same relative points in the stream at the same time.

NOTE. This can cause a delay when playing video for some views (such as the Trace views) or when the memory buffers used by the MTS4EA do not contain all the required data and therefore time is taken to decode and interpret the video and refill the buffers.

Opening multiple windows

Within the MTS4EA it is possible to open many windows at once. These can be:

- A video/audio window with another window, such as a HexView window with a video window (as shown in the following figure):

- Other combinations, such as the video/audio and HexView with the Trace file view and file structure view.
To open windows other than for video files (or files that contain video, such as MP4 or 3GPP files, or MPEG-2 Program/Transport Streams):

- For Trace views, do one of the following:
 - Select **File > Open other** (or click the icon) to open a Trace file previously stored or associated with another video stream
 - Select **Analysis > View trace** (or Ctrl+V) to open the current trace file, as named in the Analysis menu - Trace tab

- To view the statistical graphs (in Excel), click on **Analysis > View graphs**

- For HexView, click on **Analysis > View stream hex** (or click the icon or press Ctrl+H)

- For the stream structure view, click on **Analysis > View file structure** (or click the icon or press Ctrl+R)

- For the buffer analysis view, click on **Analysis > View buffer analysis** (or click the icon)

- For the fidelity analysis, click on **Analysis > View fidelity analysis** (or click the icon)

- For the Alert Log, click on **Alert > View alert log** (or click the icon)

- For the Audio waveform view, click on the icon. (If there is audio content, the toolbar and the view will be displayed automatically when the video view is opened.)

NOTE. The Audio waveform view is available only when an audio stream or file/project containing an audio stream or streams is open.

- For the multi-caption buffer view (closed caption analysis), click the tooltip icon
Main menus

The submenu options available under each main menu selection (for example, File, Play, Overlay) are described in detail in their respective sections. A summary of each main menu item is given here.

Several of the common functions can be accessed through:

- The icon toolbars. (See page 354, Icon toolbars.)
- Ctrl keys. (See page 371, Ctrl shortcut keys.)

NOTE. You can open more than one copy of MTS4EA to allow direct, side-by-side comparisons of multiple video streams.

<table>
<thead>
<tr>
<th>Menu name</th>
<th>Principal functions/suboptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Opening and saving files and projects, recent file list, example files, exit</td>
</tr>
<tr>
<td>Play</td>
<td>Play video and audio, stop, pause, fast forward, set decoder options</td>
</tr>
<tr>
<td>Overlay</td>
<td>Hide/show video/audio data and tooltips</td>
</tr>
<tr>
<td>Analysis</td>
<td>Set Trace and Graph options; view Trace, Graph files, Hex view, file structures, closed caption analysis, buffer analysis, fidelity analysis</td>
</tr>
<tr>
<td>Edit</td>
<td>Edit elementary video/audio stream, edit bitstream selection, save edited stream</td>
</tr>
<tr>
<td>Alert</td>
<td>Enable/disable/configure overall alert levels and individual alerts</td>
</tr>
<tr>
<td>Window</td>
<td>Arrange windows and toolbars, view settings, synchronize views, window list</td>
</tr>
<tr>
<td>Help</td>
<td>Help topics, PDF help and tutorials, license manager, version info</td>
</tr>
</tbody>
</table>
The following paragraphs describe the options available in the File menu.

Open stream... Ctrl+O

With this option, you can browse the file system to find a file to analyze. This file can be:

- A file containing only audio, for example, an MPG file
- A compressed video file that contains video data only, for example, an MPEG-4 video Elementary Stream. (See page 15, *Compression standards and file types*.)
- A container file that includes audio and transport information as well as video, for example MP4, 3GPP and MPEG-2. (See page 15, *Compression standards and file types*.)
- An uncompressed video file. (See page 67, *Opening an uncompressed video file (any file extension).*.)
Autodetect file type

When Autodetect is selected in the Open as type drop-down box, the file contents are automatically selected by the MTS4EA.

In this case, the Files of type drop-down is simply used to narrow the list of file extensions searched for:

The default file extensions that the MTS4EA looks for are:

- For video-only files: .v9e, .265, .264, .m4v, .m2v, .263, .261, .cmp, .bits, .bit, .bin
- For audio-only files: .adts, .mpg, .mp1, mp2, aac, ac3
- For container or media files including video: .mp4, .3gp, .mpg, .vob, .asf, .wmv, .rcv

With Autodetect selected, whichever of the file types/extensions is selected, the MTS4EA will automatically override the selection and determine the standard to which the file is compressed. By default, the application analyzes 1 MB of the selected file to detect the standard.

In cases where the MTS4EA fails to detect the standard appropriately, the user can increase the number of bytes the MTS4EA reads to auto-detect the standard by editing the \AppData\Roaming\Television\MTS4EA\spideringLimitInMB file to increase the byte limit.

NOTE. The exceptions to this autodetection are VOB files, where MTS4EA will take different actions due to the VOB extension. (See page 56, Open stream... Ctrl+O.)

The selected file extension is remembered by the MTS4EA for the next time a file is opened.
Force to open as a specific file type

Sometimes, particularly if there are errors in a file, the autodetect function of the MTS4EA does not correctly identify the type of data contained in the file.

In this case, the file type can be forced by selecting a file type from the drop-down Open as type list. In this case, the file extension is ignored.

NOTE. To open an uncompressed video file, select the appropriate item from the list and the MTS4EA will open the file in the appropriate format, regardless of the file extension or the data found in the file.
Opening a video/audio elementary stream

When a raw video/audio elementary stream file is opened, initial checks are done on the file for validity and to determine the compression standard.

When the file has been read in correctly, the appearance of the Play icon on the toolbar changes from grayed out to blue, to indicate that the file is ready to play.

If MTS4EA recognizes that the open file includes an audio stream, the toolbar is displayed.

- Opens the Audio waveform view. (See page 184, Show audio waveform.)

- Turns the sound off/on: the stream continues to play and decode even when sound is disabled. (See page 107, Mute audio.)

If the file contains only audio data, the video toolbar will not be displayed. The Synchronize audio icon is also unavailable, as there is no video with which to synchronize. (See page 88, Audio/video synchronization.)

The title of the elementary stream is displayed in the title bar of the video and audio window.
Opening a container file

When a container file is loaded, the MTS4EA automatically opens the Elementary stream select window (as shown above), in which are listed all streams, audio and video. The streams contained can be browsed, individually selected for analysis, with your choice of decoder, and either immediately played and analyzed within the MTS4EA or extracted and saved to a file before going on to play/analyze them.
Select. To select the stream, audio or video, for analysis, enter a check mark in this column beside the desired stream. Its description appears in the Video or Audio fields under the browsing area (as shown in the following screenshot). Only one video and one audio stream can be selected; if a stream is selected and a check mark is subsequently entered beside another stream of the same type, the description will change to show the updated selection.

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Description</th>
<th>Bytes</th>
<th>Scrambled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>Program 4167 -> stream:0x259 -> stream:0x00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio</td>
<td>Program 4167 -> stream:0x259 -> stream:0x00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clicking on Goto will move the view in the browser window to the location in the tree structure containing that stream, where it can be deselected or the Decoder can be chosen from the drop-down menu (see below).

Type. This is the media stream type as identified by the container signaling information. If insufficient signaling information is present, this may show a general type such as Video ES (Elementary Stream), Audio ES or, where the type is unknown, no text at all.

ID. This is the media-stream identifier as dictated by the container signaling information, using appropriate notation for the container standard.

Description. This is a description of the media stream as dictated by the container signaling information, incorporating text from the relevant standard.

Bytes. This is the number of bytes that will be extracted for the stream. If the value is suffixed by a + sign, the total stream size is not known; without the + sign, this value is the final total.

Scrambled. This column shows Yes if the stream is scrambled or encrypted in some way. Scrambled streams cannot be decoded.
Decoder. Once a stream is selected, the decoder must be chosen. The Decoder column shows the decoder(s) found for the selected stream. There can be multiple streams containing video or audio, each with different decoders. If the Decoder column is empty, then the MTS4EA has been unable to match one of its decoders with the data it found.

Clicking on the drop-down arrow shows a list of all the available decoders, with the decoder that has been autodetected shown by a green circle:

Selecting a different decoder forces the MTS4EA to use that decoder for this track/Elementary Stream.
Hide unknown streams. When selected, Hide unknown streams means that the streams are not shown for which the MTS4EA has been unable to match one of its decoders.

When Hide unknown streams is enabled, the empty streams are also hidden, because they will not contain valid data for which the MTS4EA can select a decoder.

Hide empty streams. By default, this is enabled. When enabled, this hides streams that appear to be 0 bytes in size (note that these can still be searched to see if they are in fact larger - see below, under Search).
Search (extended stream search). For some standards, the total size of the stream is indicated in the container file - for example, MPEG-4. In this case, the size of the elementary stream is shown.

For some container formats, the size of the elementary streams is not indicated in the container file, and the only way to know the total size is by searching the entire file. (An example of this is MPEG-2 VOBs.)

For these types of files, the MTS4EA reads the first part of the file only, until an MTS4EA decoder can be matched with the data found.

In this case, the MTS4EA will display the size in the Bytes column with a + sign to the right of the size, as shown in the following figure:

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Bytes</th>
<th>Scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>ISO/IEC 13818-1/11172-2...</td>
<td>199121+</td>
<td>No</td>
</tr>
</tbody>
</table>

The + sign indicates that the whole file has not been searched and that there may be additional data.

NOTE. This stream selection also means that other views, such as the HexView, may not show the data from the whole file (in which case, a warning is shown). *(See page 257, View video stream hex Ctrl+H.)*

In order to find the total size of the whole file, and to search other streams, use the Search button. All streams, including the highlighted, or selected, stream, are then searched.

When the search is complete, the display will be similar to the following figure:
During the search, the blue progress bar fills, until the search is complete.

During the search process, the MTS4EA will search through all the linked files, and therefore may find other streams. It will be able to determine the total size of the streams found. The result is that the additional streams (and their sizes) will be shown in the stream window.

Extract. This allows the highlighted track, audio or video, to be saved as a separate elementary stream (in the case below, .m4v is offered as the file type, as the container file was MP4):

![Image of file save dialog]

The video track ID from the MP4/3GPP file is appended to the name of the MP4/3CPP file name. A file extension is added automatically, depending on the video type (see below):

- H.265/HEVC video format files are given the extension: .265
- H.264/AVC video format files are given the extension: .264
- H.264/SVC video format files are given the extension: .264 or .svc
- VC-1 Advanced Profile video files are given the extension: .v9e
- MPEG-4 video format files are given the extension: .m4v (except for MPEG-4 Short Header, with extension .263)
- MPEG-2 video format files are given the extension: .m2v
- H.263, and MPEG-4 Short Header video format files are given the extension: .263

NOTE. If you decide to play and analyze the selected stream immediately, and then decide to save it later, this can be done by clicking the Save as option on the File menu. (See page 72, Save video stream as...)

The correct type is automatically added as a file extension, depending upon the data in the file:

- H.265/HEVC video format files are given the extension: .265
- H.264/AVC video format files are given the extension: .264
- H.264/SVC video format files are given the extension: .264 or .svc
- VC-1 Advanced Profile video files are given the extension: .v9e
- MPEG-4 video format files are given the extension: .m4v (except for MPEG-4 Short Header, with extension .263)
- MPEG-2 video format files are given the extension: .m2v
- H.263, and MPEG-4 Short Header video format files are given the extension: .263

NOTE. The suggested file name and extension do not have to be accepted - any file name and extension can be entered.
OK. OK opens the selected stream using the decoder shown; if the OK button is grayed out, then the selected stream cannot be opened.

A window is opened with the title of the container file with the track/stream number.

![Video stream window](image)

Because the MTS4EA has recognized that the open file contains both audio and video streams, the video and the audio views are opened. The audio toolbar is also displayed and the synchronize is enabled. (See page 107, *Synchronize audio.*)

NOTE. If you decide to play and analyze the selected stream immediately, and then decide to save it later, this can be done by clicking the Save as option on the File menu. (See page 72, *Save video stream as...*)

To examine the structure of the file, click the View file structure option on the Analysis menu. (See page 265, *View video stream structure Ctrl+R.*)
Opening a VOB/series of VOBs (.vob file extension)

If there are two or more VOBs with sequential numbers from the first VOB selected, then MTS4EA will display a popup box:

NOTE. This only applies to files with a VOB extension (the MTS4EA treats these files differently when compared to files with other file extensions).

Clicking Yes means that the MTS4EA will extract the video Elementary Stream from all the VOBs indicated; clicking No means that the MTS4EA will only select the Elementary Stream from the VOB selected in the File open dialog box.

Once this is done, the MTS4EA then uses the standard stream selection dialog box as used for all container files. (See page 60, Opening a container file.)

Opening an uncompressed video file (any file extension)

Uncompressed video files can be opened by selecting YUV, RGB or grayscale in the Open as type list.

In each case the MTS4EA ignores the extension and does not look for a compressed video standard within the data - it assumes that the data is in one of the following formats.

The YUV data is either:

- 8 bits per sample, 4:2:0
- More than 8 bits per sample, and/or 4:2:2 or 4:4:4 (as used by H.264/AVC High 10, High 4:2:2 and High 4:4:4 profiles and MPEG-2 4:2:2 profile)

YUV format of 8 bits per sample 4:2:0. (See page 237, *YUV format of 8 bits per sample 4:2:0.*) The YUV file output is raw YUV with no headers of any kind.

This is the same format used by the Microsoft MPEG-4 Part 2 reference encoder Reference and used commonly by other programs: (See page 15, *Compress standards and file types.*)

- No headers of any kind (no file or frame headers)
- One byte per sample
- Row raster order (top picture row first)
Planar YUV 4:2:0 subsampled (4 bytes of Y data for each byte of U data and each byte of V data)

Y plane values are 0 - 255 unsigned

U and V plane values are unsigned with a DC offset of 128

Other uncompressed formats. The general uncompressed video file format is as follows:

- No headers of any kind (no file or frame headers)
- Concatenated planar image data
- Row raster order (top picture row first)
- Unsigned samples

For 8-bit sample depth:

- One byte per sample

For 9-16 bit sample depth:

- Two bytes per sample
- Both little- and big-endian byte orders supported
- For YUV format:
 - Concatenated Y, U and V planes
 - U and V planes subsampled as required
 - Y plane samples are unsigned
 - U and V plane samples are unsigned with a DC offset of 2^{-1}, where n is the chroma sample bit depth

For RGB format:

- Concatenated R, G and B planes

For grayscale format:

- Luma plane only

When opening an uncompressed video file, by default MTS4EA shows the uncompressed video decoder options, to enter the required parameters.
Setting the uncompressed video frame size. Within an uncompressed video file, there is no place to indicate the frame size, frame rate, and so forth. So when the uncompressed video file is opened, the MTS4EA will display the following screen (this is a tab of the Decoder options, which can also be accessed from the Play menu):

![Screen Showing Video Decoder Options]

Presets (width and height). If there are numbers in the filename that could indicate the frame size, then the MTS4EA will attempt to read these and offer these in the Width and Height fields shown in the previous figure. The correct values can be entered or selected using the drop-down list:

![Drop-Down List for Presets]
Chroma format. This control specifies the color model and format for the uncompressed video data. The combo provides several common combinations, including 8-bit YUV 4:2:0, 8-bit YUV 4:2:2, 8-bit YUV 4:4:4, 8-bit RGB and 8-bit grayscale. Select an entry from the list to use one of these common formats. Other formats can be specified by choosing the Custom entry in the list - this will open the Image format dialog.

Advanced button. Click this button to specify a custom chroma format - this will open the Image Format dialog box. (See page 71, Image format dialog box.)

Encoding. This control specifies the encoding of image samples in the file format. The following options are available:

- One byte - this specifies that image samples are stored in one byte per sample. This format is appropriate if all image planes are 8-bits deep
- Two byte MSB first - this specifies that image samples are stored in a pair of bytes for each sample. The most significant byte occurs first in each pair (big-endian). This format is appropriate if one or more image planes are deeper than 8-bits
- Two byte LSB first - this specifies that image samples are stored in a pair of bytes for each sample. The least significant byte occurs first in each pair (little-endian). This format is appropriate if one or more image planes are deeper than 8-bits

Header skip. The number of bytes at the start of the file before the first frame; the MTS4EA will skip past these bytes (ignoring them).

Frame skip and Skip frames before each input frame. Frame skip is the number of frames (not bytes) to skip between each frame that is viewed in the video window. By default, these frames are skipped after each viewed frame; by selecting the Skip frames box before each input frame, the number of frames is skipped before each viewed frame.

Interlaced. The uncompressed video file has interlaced data in the format of complete frames, with both fields within one frame, top-field first, each field on alternate lines.

Enabling this check box switches on the Interlace toolbar in the MTS4EA, which allows the two fields to be viewed independently, either one above the other (top field above bottom field) or either field with the field lines repeated to full frame height.
Frame rate. The rate at which to display the uncompressed frames, in frames per second.

NOTE. The number entered in the Frame rate field can be an integer (for example, 30), or a fraction (for example, 30000/1001) or a decimal number (for example, 29.97).

Image format dialog box. The Advanced button opens the following window:

![Image format dialog box](image)

This dialog box allows you to specify a custom image format by choosing a color model, sample depths and sub-sampling ratios.

Color model. Use this control to choose the class of color model for the image format. Options are YUV, RGB, and grayscale.

Sample depth. The sample depth controls are used to specify the number of bits per sample for each image plane. For RGB and grayscale, only one sample depth is specified. For YUV, the luma and chroma depths can be specified separately.

Width divisor. This control specifies the horizontal sub-sampling factor for YUV chroma planes. This option is only available for YUV color models. The value is the factor by which the image width is divided to find the chroma plane width.

Height divisor. This control specifies the vertical sub-sampling factor for YUV chroma planes. This option is only available for YUV color models. The value is the factor by which the image height is divided to find the chroma plane height.
Close stream

This allows you to close the current stream but keeps the MTS4EA window open.

Save video stream as...

This allows the active file to be saved to a particular file name.

This is typically used to save a video elementary stream, when this has been extracted from an MP4, 3GPP, MPG (MPEG-2), ASF or other file type, but was not saved at the time it was extracted. (See page 56, Open stream... Ctrl+O.)

In this example, the video elementary stream from E-City.mp4 video track 1 is being saved to an .m4v file: the -001 (for track 1) and .m4v are automatically added by MTS4EA (because MTS4EA knows this is a 3GPP file), although any file name and extension can be entered.

The video can also be saved as an uncompressed video file, in a specific format. (See page 67, Opening an uncompressed video file (any file extension).)

NOTE. The Save stream as feature will only save uncompressed video if the input format was also uncompressed. For compressed input, use the Decoded file output feature.
New project

Some of the information saved in a project file includes the following:

- File name being analyzed (and track number, if relevant)
- List of open views and the screen location of these views
- Location of the tooltips and toolbars
- Errors that have been disabled
- Analysis options

Project files

The project file has a file extension of .vpp. Double-clicking on a VPP file in Windows explorer will open the MTS4EA with the project file concerned.

The project file is actually a human-readable file in XML format. It is strongly recommended that it be not manually edited, because doing so may prevent the MTS4EA from opening a project file correctly.

Project default file

MTS4EA has a default project file called default.vpp. This is used as the template when New project is selected - all the settings in default.vpp are copied into a new project.

Open project...

This allows you to open a previously saved project file.

(See page 73, New project.)

Save project...

This saves the current project to the current project file name.

(See page 73, New project.)

Save project as...

This allows you to save the current project to a new file name.

(See page 73, New project.)
Close project

This closes the current project file.

(See page 73, New project.)

Open other...

This allows you to browse the file system to find and open other file types, such as:

- The MTS4EA trace files, with the file extension .vpt or .rtf
- Any other file, to open in the HexView

NOTE. Opening of .rtf trace files is included for backward compatibility with older trace files generated by earlier versions of MTS4EA. From version 2.0 onwards, all trace files generated by the MTS4EA will be .vpt files. Currently, .vpt files contain only ASCII text, future versions are expected to contain additional data.

Preferences

The Preferences dialog box allows you to select the audio playback device. Your selection will depend on the your PC setup.
Example files

Below this option are various example files that can be played/analyzed in the MTS4EA:

<table>
<thead>
<tr>
<th>Example files</th>
<th>Closed Caption Streams</th>
<th>HEVC Byte Streams</th>
<th>H.264/AVC Byte Streams</th>
<th>H.264/SVC Byte Streams</th>
<th>VC-1 Advanced stream</th>
<th>MPEG-4 Elementary Streams</th>
<th>H.263 streams</th>
<th>H.261 stream</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are provided to give examples of various compressed files to experiment with and to compare with your own compressed files. Some of these are without error; others have known errors and generate appropriate Warning/Error messages (both as popup alerts and in the Trace files).

Closed Caption Streams

These are streams containing closed caption content. The following example files are provided:

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>525i Tek CC test</td>
<td>MPEG-2 Main profile/High Level 481 frames, 720×486 Has ATSC 608 and SCTE20 wrapped 608 Has XDS and AFD</td>
<td>Has error "Caption buffered memory is cleared without being displayed" This error appears in CC2 and CC4 for both ATSC608 and SCTE20</td>
</tr>
<tr>
<td>720p Tek CC test</td>
<td>MPEG-2 Main profile/High Level 901 frames, 1280×720 Has ATSC 608 and SCTE20 wrapped 608 and 708 Has XDS and AFD</td>
<td>Invalid Closed Caption Count XDS related errors: Number of columns exceeds 32 Caption buffered memory is cleared without being displayed Window not defined but made inactive</td>
</tr>
</tbody>
</table>
H.265/HEVC Byte Streams These are H.265/HEVC compressed video Byte Streams. The following example files are provided: (See page 15, Compression standards and file types.)

<table>
<thead>
<tr>
<th>Name</th>
<th>H.265 Profile/Level</th>
<th>Warnings/Errors</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbidden city</td>
<td>HEVC Main Profile / Main Tier / Level 6</td>
<td>None</td>
<td>CTU size: 64x64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resolution: 1920 ×1088</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total number of frames: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total number of slices/frame: 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total number of tiles/frame: 16</td>
</tr>
<tr>
<td>Red portico</td>
<td>HEVC Main Profile / Main Tier / Level 2.1</td>
<td>Alerts:</td>
<td>CTU size: 64x64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Picture Size in Samples exceeds Level Limit</td>
<td>Resolution: 1280×720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect number of Tile Rows</td>
<td>Total number of frames: 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect number of Tile Columns</td>
<td>Total number of slices/frame: 1</td>
</tr>
<tr>
<td>Grenadier guards</td>
<td>HEVC Main Profile / Main Tier / Level 6</td>
<td>None</td>
<td>Total number of tiles/frame: 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QP variation: Every frame has different QP value than the previous and next frames</td>
</tr>
</tbody>
</table>

H.264/AVC Byte Streams

These are H.264/AVC compressed video Byte Streams. Six example files are provided: (See page 15, Compression standards and file types.)

<table>
<thead>
<tr>
<th>Name</th>
<th>H.264 Profile/Level</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon Night</td>
<td>Baseline/2</td>
<td>- none -</td>
</tr>
<tr>
<td>Canary</td>
<td>Extended/3</td>
<td>Use of an invalid (uninitialized) Picture Parameter Set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect Direct_8x8_inference_flag</td>
</tr>
<tr>
<td>Wharf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Junction</td>
<td>Baseline/3</td>
<td>Fails HRD conformance error (timing violation)</td>
</tr>
<tr>
<td>Grenadier Guards</td>
<td>Main/3</td>
<td>HRD buffer overflow in many frames (starting from frame 8)</td>
</tr>
<tr>
<td>Stripey Shirts</td>
<td>High 10</td>
<td>Maximum number of motion vectors per two consecutive MacroBlocks exceeded</td>
</tr>
<tr>
<td>Times Square</td>
<td>High 4:4:4</td>
<td>Maximum number of motion vectors per two consecutive MacroBlocks exceeded</td>
</tr>
</tbody>
</table>

NOTE. A YUV reference file is provided for the first ten frames of the Grenadier Guards bitstream; this YUV reference file can be used for fidelity analysis and visual difference display.

The filename is automatically filled in for the YUV reference file, but the frame rate must be set to 25.

H.264/SVC Byte Stream

This is a H.264/SVC Scalable Baseline Profile Elementary stream. The stream supports the following:

- Spatial scalability (two layers)
- Coarse Grained SNR Scalability (two layers)
- Temporal Scalability (three layers)

One example file is provided: (See page 15, Compression standards and file types.)

<table>
<thead>
<tr>
<th>Name</th>
<th>SVC Profile/Level</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soccer</td>
<td>Scalable Baseline Profile/Level 3</td>
<td>- none -</td>
</tr>
</tbody>
</table>
This is a VC-1 format Advanced Profile compressed video Elementary Stream. (See page 15, *Compression standards and file types.*) Advanced Profile of VC-1 is the only profile that can be a standalone Elementary Stream; the Simple and Main Profiles can only exist in an ASF file or in an .rcv file. One example file is provided:

<table>
<thead>
<tr>
<th>Name</th>
<th>VC-1 Profile</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Park</td>
<td>Advanced</td>
<td>Invalid value (reserved) and invalid VLC</td>
</tr>
</tbody>
</table>

MPEG-4 Elementary Streams

These are MPEG-4 compressed video Elementary Streams. Six example files are provided: (See page 15, *Compression standards and file types.*)

<table>
<thead>
<tr>
<th>Name</th>
<th>MPEG-4 Profile</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woman Drinking</td>
<td>Main</td>
<td>- none -</td>
</tr>
<tr>
<td>Train in Station</td>
<td>Main</td>
<td>- none -</td>
</tr>
<tr>
<td>Space</td>
<td>Simple</td>
<td>modulo time base, Method 1 quant used</td>
</tr>
<tr>
<td>Man Walking</td>
<td>Advanced Simple/Level 0 (with B-VOPs, Method 1 quant)</td>
<td>VBV overflow</td>
</tr>
<tr>
<td>Synthetic</td>
<td>Advanced Simple/Level 2 (with B-VOPs, Method 1 quant, Quarter Sample)</td>
<td>VCV overflow</td>
</tr>
<tr>
<td>Window Car</td>
<td>Advanced Simple/Level 2 (with B-VOPs, Method 1 quant, GMC with 3 warping points, affine model)</td>
<td>VCV overflow, stuffing bits</td>
</tr>
</tbody>
</table>

NOTE. A YUV reference file is provided for the whole Man Walking bitstream; this YUV reference file can be used for fidelity analysis and visual difference display.

The filename is automatically filled in for the YUV reference file, but the frame rate must be set to 30.
H.263 Streams

These are H.263 compressed video files. Three example files are provided: (See page 15, Compression standards and file types.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard/Annex</th>
<th>Warnings/Errors</th>
</tr>
</thead>
</table>
| Rally (250k) | H.263 baseline | ■ PSUPP is sent when file is H.263 baseline (non-critical warning but PSUPP field values only used in Annex L)
 | | ■ invalid variable length code for MCBPC in the last frame (also causes Out of sync error and other consequential errors) | |
| Rally (2M) | H.263+ Annex T | PSUPP is sent but Annex L not used (non-critical warning but PSUPP field values only used in Annex L) |
| Person Track | H.263+ Annexes D, F, I, J, S, T | - none - |

H.261 Stream

This is a H.261 compressed video file. One example file is provided:

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard/Annex</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Room</td>
<td>H.261</td>
<td>The warning “Two Consecutive Temporal Refs are Zero” appears on each frame</td>
</tr>
</tbody>
</table>
MP4 Files These are MPEG-4 .mp4 container files, containing compressed video and other data. Six example files are provided: (See page 15, *Compression standards and file types.*)

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard/Annex</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Woman</td>
<td>MPEG-4 Simple Profile/Level 1</td>
<td>Level is set at 1; max. frame size in this Level is 176x144 pixels, but the video is 352x288. VCV overflow and VBV underflow</td>
</tr>
<tr>
<td>Piccadilly Circus</td>
<td>MPEG-4 Simple Profile/Level 2</td>
<td>VCV overflow and VBV underflow</td>
</tr>
<tr>
<td>Beijing</td>
<td>MPEG-4 Simple Profile/Level 5 (video); AAC LC (audio)</td>
<td>VBV overflow</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>H.264/AVC Baseline Profile/Level 1.2</td>
<td>HRD information missing: no pic_timing SEI message</td>
</tr>
<tr>
<td>Live Band</td>
<td>MPEG-4 Simple Profile/Level 1 (video); AAC HE (audio)</td>
<td>Error in section data causes the calculated number of scalefactor bands to exceed the maximum allowed value</td>
</tr>
<tr>
<td>Stage Interview</td>
<td>MPEG-4 Simple Profile/Level 1 (video); AAC Main (audio)</td>
<td>None</td>
</tr>
</tbody>
</table>

3GPP File This is a 3GPP .3gp container file, containing compressed video and other data. One example file is provided: (See page 15, *Compression standards and file types.*)

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard/Annex</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Hands</td>
<td>MPEG-4 Simple Profile/Level 1</td>
<td>Reserved value for Profile and level indication (set to 0)</td>
</tr>
</tbody>
</table>
MPEG-2 Program Streams

Three MPEG-2 .mpg Program Streams are provided, containing compressed video and other data (as described in *Compression Standards and File Types* section). (See page 15.) These examples contain audio streams, but they are all silent.

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Junction</td>
<td>MPEG-2 Main Profile/Main Level</td>
<td>- none -</td>
</tr>
</tbody>
</table>
| Person Track | MPEG-2 Main Profile/Main Level | Bad slice order
| | | Invalid VLC for dct_differential |
| Grenadier Guards | MPEG-2 Main Level | Numerator and denominator of frame_rate_extension are both set to 1 but, when equal, they must be set to 0: this also generates the errors of invalid values for frame_rate_extension_d and frame_rate_extension_n |

NOTE. A YUV reference file is provided for the first ten frames of the Grenadier Guards bitstream; this YUV reference file can be used for fidelity analysis and visual difference display.

MPEG-2 Transport Streams

Two MPEG-2 .m2t Program Streams are provided, containing compressed video and other data. Four example files are provided: (See page 15, *Compression standards and file types.*)

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Gate</td>
<td>H.264/AVC Main Profile</td>
<td>Use of undefined disable_deblocking_filter_idc = 3</td>
</tr>
<tr>
<td>Mangroves</td>
<td>MPEG-2 Main Profile/Main Level</td>
<td>- none -</td>
</tr>
</tbody>
</table>
| Captain Bob | MPEG-2 Main Profile/Main Level (video);
 | MPEG-1 Audio Layer II (audio) |
ASF files

Two Microsoft ASF files are provided, containing compressed video and other data. (See page 15, *Compression standards and file types.*)

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach Girl</td>
<td>VC-1 Simple Profile</td>
<td>- none -</td>
</tr>
<tr>
<td>Great Wall</td>
<td>VC-1 Simple Profile</td>
<td>- none -</td>
</tr>
</tbody>
</table>

ADTS streams

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dance Track</td>
<td>AAC LC</td>
<td>Error in ADTS header specifies an incorrect syncword</td>
</tr>
</tbody>
</table>

A/V Delay stream

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clapperboard</td>
<td>MPEG-2 Main Profile / Main Level (video) / Dolby AC-3 (audio)</td>
</tr>
</tbody>
</table>

1 The Clapperboard file uses parts of the file archiving utility "7-Zip". "7-Zip is licensed under the GNU LGPL (Lesser General Project License). Visit www.7-zip.org.
MXF streams

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Standard</th>
<th>Warnings/Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon Night</td>
<td>H.264/AVC Baseline Profile/Level 2MXF</td>
<td>- none -</td>
</tr>
<tr>
<td>Canary Wharf</td>
<td>H.264/AVC Extended Profile/Level 3</td>
<td>Use of an invalid (uninitialized) Picture Parameter Set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorrect Direct_8x8_inference_flag</td>
</tr>
<tr>
<td>Bus Junction</td>
<td>H.264/AVC Baseline Profile/Level 3</td>
<td>- none -</td>
</tr>
<tr>
<td>Grenadier Guards</td>
<td>HEVC Main Profile / Main Tier / Level 6</td>
<td>HRD information missing</td>
</tr>
<tr>
<td>Stripey Shirts</td>
<td>H.264/AVC High Profile/10</td>
<td>Slice area too large for level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum number of motion vectors per two consecutive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MacroBlocks exceeded</td>
</tr>
<tr>
<td>Times Square</td>
<td>H.264/AVC High Profile/4:4:4</td>
<td>Slice area too large for level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum number of motion vectors per two consecutive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MacroBlocks exceeded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unique alert limit reached</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MaxLumaBiPred Size constraint disobeyed</td>
</tr>
<tr>
<td>Caption Bob</td>
<td>MPEG-2 Main profile / Main level</td>
<td>- none -</td>
</tr>
<tr>
<td>720pTek cc</td>
<td>MPEG-2 Main profile / Main level</td>
<td>- none -</td>
</tr>
</tbody>
</table>

YUV source files for example fidelity analysis

YUV source files used for encoding have been provided for example fidelity analysis, with three of the example files provided:

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Standard</th>
<th>YUV filename*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenadier Guards</td>
<td>H.264/AVC (Main Profile/Level 3)</td>
<td>guards_yuv (frames 1-9 only; 25 frames/sec)</td>
</tr>
<tr>
<td>Grenadier Guards</td>
<td>MPEG-2 (Main Profile/Main Level)</td>
<td>guards_yuv (frames 1-9 only; 25 frames/sec)</td>
</tr>
<tr>
<td>Man Walking</td>
<td>MPEG-4 (Advanced Simple Profile/Level 0)</td>
<td>man_walking_yuv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(30 frames/sec)</td>
</tr>
</tbody>
</table>

NOTE. The YUV filename is automatically filled in by MTS4EA - there is no need to enter the filename.

For the Grenadier Guards examples, the YUV of only the first nine frames is provided, because the YUV files are so large.
Export A/V delay streams...

The A/V Delay measurement feature provides a complete solution for measuring audio/video synchronization delay in an encoding system. (See page 312, Audio/Video delay.) The Export A/V Delay Streams menu option allows the supplied test streams to be exported in a variety of formats for use with encoding systems.

You can use the standards Windows controls (Ctrl and Shift) to select multiple output formats for a selected stream.

NOTE. Some of the export formats can produce very large files. Ensure that you have enough disk space to accommodate the output.

NOTE. The Export A/V Delay Streams feature uses parts of the file archiving utility 7-Zip. 7-Zip is licensed under the GNU LPGL (Lesser General Project License). For more information, refer to the 7-Zip Web site (www.7-zip.org).

Both video and audio streams can be exported. You need to be careful to match the correct audio with each video file because the timings of the audio signal vary slightly depending upon the frame rate of the video that it is to be paired with.

The supplied video formats are:

- NTSC: 704x480 interlaced at 29.97… fps
- PAL: 720x576 interlaced at 25 fps
- 720p: 1280x720 progressive at 59.94… fps
- 1080i: 1920x1080 interlaced at 29.97… fps

Each video format is supplied encoded in four ways:

- H.264/AVC: High profile
- MPEG-2: Main profile
- VC-1: Advanced profile
- Uncompressed: 4:2:0 YUV, 8 bits per sample. (See page 67, YUV format of 8 bits per sample 4:2:0.)
The supplied audio formats are all 16-bit sampled at 48kHz:

- '25fps': to be used with video at 25 fps. This should be used with the PAL video streams.
- '29.97fps': To be used with video at 29.97… fps. This should be used with the NTSC and 1080i video streams.
- '59.94fps': To be used with video at 59.94… fps. This should be used with the 720p video streams.

Each audio format is supplied encoded in four ways:

- Dolby AC-3
- AAC
- MPEG-1 Audio Layer II
- Uncompressed: PCM 16 bits per sample at 48kHz.

Recent File

The program retains a list of the eight most recently used files, numbered 1 to 8. The recent files can be selected by highlighting them in turn.

Where a particular file could be opened in more than one view - for example, a video bitstream could be opened as a video file (in the video window) or opened in the HexView - the file is stored on the Recent File list with the last view type appended to the end:

- filename.m4v [hex] (this one is opened in the HexViewer)
- filename.m4v (this one is opened as a video file)
- filename.adts (this one is opened as an audio file)
- filename.yuv [yuv] (this one is opened as YUV video)

The MTS4EA then uses this information to determine in which window the file should be reopened.

Exit

This option exits from the MTS4EA.
Play menu

This menu controls the playing of the compressed file:

In addition to the menu selection, there is a right-click popup Play menu:

The functions of each of these Play menu items are explained on the following pages. (See page 50, *Synchronized views/navigating the views.*)
Audio sounds broken up

When a file containing both audio and video streams is played and the Audio synchronize function is engaged, if the PC is not sufficiently powerful, synchronization may not be possible and the resultant audio will be broken. The figures below describe, in simplified terms, how audio and video streams interrelate when decoded in the MTS4EA.

When the Synchronize audio icon is depressed, and the requested synchronization is successful, the green display appears in the Status bar and the streams run concurrently in real-time.

![Diagram](image)

The illustration above shows video being decoded at a display rate of one frame every 40/1000 seconds. Audio plays, unbroken, at the same rate as the video.

When synchronization is not requested, the Synchronize audio icon is not depressed, and audio and video will decode independently.

![Diagram](image)

The illustration above shows video playing more slowly, at a display rate of one frame every 120/1000 seconds. The audio plays at its own decode rate, outstripping the video.
When the Synchronize audio icon is depressed, and the requested synchronization is unsuccessful, the red display appears in the Status bar and the video decodes at a rate determined by available processor power, while the audio is broken.

The illustration above shows an unsuccessful attempt to synchronize audio and video: the cached data plays in sync, thereafter, limited processor power causes the audio to fragment (usually more unevenly than suggested in the above illustration) because it attempts to keep pace with the video by means of timestamps.

Audio/video synchronization

MTS4EA will decode and analyze audio and video streams, but the audio will only be played and audible when the stream is in forward play mode.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Function in video mode</th>
<th>Function in audio mode</th>
<th>Function in synchronous mode</th>
<th>Function in asynchronous mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plays to end or specified frame or until paused.</td>
<td>Plays to end.</td>
<td>Attempts to play video and audio in synchrony. Whenever play is resumed, audio picks up at current location.</td>
<td>Audio and video play independently; no common timing enforced.</td>
</tr>
<tr>
<td></td>
<td>Plays quickly in forward direction.</td>
<td></td>
<td>Video plays quickly in forward direction.</td>
<td>Video plays quickly in forward direction.</td>
</tr>
<tr>
<td></td>
<td>Decodes file as quickly as possible without display.</td>
<td>Decodes video file as quickly as possible without display.</td>
<td>Audio muted.</td>
<td>Audio muted.</td>
</tr>
</tbody>
</table>
Play menu

<table>
<thead>
<tr>
<th>Icon</th>
<th>Function in video mode</th>
<th>Function in audio mode</th>
<th>Function in synchronous mode</th>
<th>Function in asynchronous mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pressed once in Play mode, pauses. Pressed again, or at top of file, steps forward 1 frame.</td>
<td>Pause.</td>
<td>Pressed once in Play mode, pauses. Pressed again, or at top of file, steps forward 1 frame.</td>
<td>Audio muted. Pressed once in Play mode, pauses. Pressed again, or at top of file, steps forward 1 frame.</td>
</tr>
<tr>
<td></td>
<td>Plays file backwards, at normal speed.</td>
<td></td>
<td>Plays video file backwards, at normal speed.</td>
<td>Audio muted. Plays video file backwards, at normal speed.</td>
</tr>
<tr>
<td></td>
<td>Plays file quickly backwards.</td>
<td></td>
<td>Plays video file quickly backwards.</td>
<td>Audio muted. Plays video file quickly backwards.</td>
</tr>
<tr>
<td></td>
<td>Plays video file as quickly as possible backwards without display.</td>
<td></td>
<td>Plays video file as quickly as possible backwards without display.</td>
<td>Audio muted. Plays video file as quickly as possible backwards without display.</td>
</tr>
<tr>
<td></td>
<td>Skips on to specified frame/type/time/number of frames.</td>
<td></td>
<td>Skips on to specified frame/type/time/number of frames.</td>
<td>Audio and video play independently; no common timing enforced.</td>
</tr>
<tr>
<td></td>
<td>Skips back to specified frame/type/time/number of frames.</td>
<td></td>
<td>Skips back to specified frame/type/time/number of frames.</td>
<td>Audio and video play independently; no common timing enforced.</td>
</tr>
<tr>
<td></td>
<td>Pauses when specified video frame is reached.</td>
<td></td>
<td>Pauses when specified video frame is reached.</td>
<td>Audio muted. Pauses on specified frame.</td>
</tr>
</tbody>
</table>
When selected, this plays the compressed stream, video or audio, until it reaches the end of the data. If, when playing a compressed video stream, a frame number has been set in Pause on frame the video will pause at this frame number.

If a file containing both audio and video streams is being played, and the streams are not synchronized, the video and audio will begin to play and continue to play independently. So, if a compressed video file is playing slowly due to the available processing power of the PC, it is likely that the video will lag behind the accompanying audio stream. If audio synchronization is selected, the rate at which the audio data is decoded adjusts and the audio stream keeps pace with the video, by means of timestamps. (See page 107, Synchronize audio.)

NOTE. Depending upon the speed of your PC, when playing compressed video, the standard in use and the size of the video frames being viewed, there can be a significant delay after pressing the Play or Pause/Step forward button, during which the message Buffering <nnn> (nnn is a number) is displayed near the top of the video window. This indicates that the video decoder is loading the required number of video frames into its internal buffer. This message disappears when the video is ready to display. (This is most likely to be seen with the H.264/AVC, H.264/SVC, and H.265/HEVC video standards, where up to 16 frames are loaded into the decoder buffer before displaying the first frame.)

At the end of the data, the gray background screen is displayed unless:

- Hold last frame is selected, in which case the last frame stays visible
- Hold first frame is selected, in which case the first frame is re-displayed
Fast forward Ctrl+F

When this option is selected, the compressed file will be played in Fast forward mode, played more quickly than normal. The speed at which this is replayed depends on the speed of the computer you are using.

This command is unavailable when playing audio files.

If a file containing both audio and video streams is being played, regardless of synchronization, the video plays fast forward and the audio is muted.

NOTE. When playing video forwards or backwards, the MTS4EA buffers the video and associated data. By default, the MTS4EA allocates a buffer size of 500 MB for video and 100 MB for audio. The amount of buffer required per frame of video and associated data varies considerably with the video size and the video standard. Typically, 100 MB is sufficient to buffer the video and data for 10-500 frames. However, the actual number of frames and frame data stored depend on the resolution of the video being analyzed. For example, 500 MB is required to buffer the video and data for around 10-500 H.265/HEVC frames.

To change the buffer size, use the Play menu, Decoder options, General tab. (See page 98, Video decoder options....)

The video frame count is given in a box at the top of the image, to indicate how far through the video sequence the currently displayed frame is (the frame count is also displayed at the bottom right of MTS4EA window in the status bar).

The frame count is displayed in white text if the option in the Overlay menu is currently set to White, or in black text if this is set to Black (toolbar icon or Ctrl+W).

The fast forward may be stopped at any time by clicking the Pause/Step forward icon - (or pressing Ctrl+A).

If a frame number has been set in Pause on frame, the video will pause at this frame number.
Blind fast forward Ctrl+B

When this is selected, the compressed file is decoded as quickly as possible without displaying it.

If a file containing both audio and video streams is being played, regardless of synchronization, the video blind fast forwards and the audio is muted.

NOTE. It can be useful to use Blind fast forward to quickly decode the file to see if there are any alerts generated, or to move to a selected Pause on frame... as quickly as possible.

See the note regarding a possible buffering delay immediately after this is selected. (See page 91, Fast forward Ctrl+F.)

If a frame number has been set with the Pause on frame then the video is displayed until the designated frame number is reached.

The Blind fast forward is stopped in the same way as Fast forward.

Stop Ctrl+S

When this option is selected, it will stop the playing of the compressed file.

The gray background screen is displayed in the video window unless:

- Hold last frame is selected, in which case the last displayed frame stays visible.
- Hold first frame is selected, in which case the first frame is redisplayed.
Pause/step forward Ctrl+A

This option can be selected from the Play menu, by pressing Ctrl+A, or by clicking the tool bar icon Pause/Step forward.

This command is available when playing audio files, but audio will only be heard when the stream is in forward play mode.

NOTE. Repeated selection of this option will advance the displayed video one frame at a time.

This has two functions:

- If the file is playing, selecting this option will pause the decoding of the stream and, in the case of a video file, display the most recently decoded frame.
- If the file has stopped or is already paused, selecting this option causes the file to advance by one displayed frame.

NOTE. See the Note regarding a possible buffering delay immediately after this is selected. (See page 91, Fast forward Ctrl+F.)

In H.264/AVC where SI-frames and/or SP-frames are used, when using Pause/Step forward (Ctrl+A), at the point of the switch, both the frames used for the switch are displayed, one after the other. These are not fully displayed in the video when it is viewed normally, and so are not displayed when using Play or Fast forward selections.

Reverse play Ctrl+Shift+P

Play the file backwards, at normal speed.

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.

This option can be selected from the Play menu or by pressing Ctrl+Shift+P, or by clicking the tool bar icon Reverse play.

Fast backward Ctrl+Shift+F

Play the file backwards, as fast as possible, while still displaying it.

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.

This option can be selected from the Play menu or by pressing Ctrl+Shift+F, or by clicking the tool bar icon Fast backward.
Blind fast backward Ctrl+Shift+B

Play the file backwards, as fast as possible, without displaying it.

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.

This option can be selected from the Play menu or by pressing Ctrl+Shift+B, or by clicking the tool bar icon Blind fast backward -.[/]

Pause/step backward Ctrl+Shift+A

Step backwards through the video file one displayed frame at a time.

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.

(See page 93, Pause/step forward Ctrl+A.)

This option can be selected from the Play menu or by pressing Ctrl+Shift+A, or by clicking the tool bar icon Pause/Step backward -.[/]

Skip forward Ctrl+K

This will skip the video to the next frame type/time/number of frames indicated in the drop-down box on the icon toolbar.

For example, if the box next to the skip forward icon has I-VOP in it (for example, ![I-VOP](image)) then clicking the Skip forward icon will skip to the next I-VOP.

This option can be selected from the Play menu or by pressing Ctrl+K, or by clicking the toolbar icon Pause/Step forward.

If going to the selected frame type/time/number of frames is beyond the length of the video stream, then the stream is advanced to the end.

See also Audio/Video Synchronization (See page 88.) and Video Decoder Options (See page 98.) regarding the buffer used to hold the video and associated data. When skipping forward or backward beyond the end of the buffer, the MTS4EA must reload the buffer, so some delay may be experienced.

The possible selections vary with the selected video standard; the example below is for MPEG-4 Advanced Simple Profile.

![Drop-down box](image)

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.

Skip backward Ctrl+Shift+K

(Ctrl+Shift+K) This is the same as Skip forward but in the reverse direction. (See page 95.)

This option can be selected from the Play menu, by pressing Shift+Ctrl+K, or by clicking the toolbar icon Pause/Step backward.

This command is unavailable when playing audio files. Audio will only be heard when the stream is in forward play mode.
Video start position...

NOTE. This option is not available for H.265/HEVC streams.

In the Start Position dialog box, you can set either a byte offset, decode frame number, or decode time (in HH:MM:SS:Frames format) as a starting position for decoding.

The byte offset is relative to the start of the file.

NOTE. Audio playback and buffer analysis are not available when seeking is enabled. After seeking, display time and display frame numbers are relative to the start position. Decode frame numbers are absolute with respect to the start of the input file.

Continuous play

This command is unavailable when playing audio files.

When this option is selected and Play/Fast forward/Blind fast forward/ Reverse play/Fast backward/Blind fast backward is clicked, then the file will be continually played in a loop. That is, the file is decoded until its end, at which point decoding will start again at the beginning of the file, until Stop or Pause is used.

Audio will only be heard when the stream is in forward play mode.
Hold last frame

When this option is selected and the video/audio file is played to the end, the last decoded frame will be displayed. If Hold Last Frame is not selected, the gray background video screen will be displayed when the video is not playing.

Hold Last Frame is selected as on by default when MTS4EA starts.

This command is not relevant for audio files.

Pause on frame...

This command is only applicable to the playing of video files.

This option allows you to select a frame number to pause on when the video is played. Having selected a frame to pause on, and clicking Play or Fast forward, or Blind fast forward, the video will play until the selected frame number and then pause.

The last frame can be selected by using the Last Frame box. When this is done, the video pauses on the last frame. The previously entered frame number (if there is one) is still stored, and can be enabled again by clearing the Last Frame check box:
Video decoder options...

The Video Decoder dialog box has various tabs that set the video decoder options for each standard. When there are no configurable options for a particular video standard, there is no tab on the dialog.
Step-back buffer. This buffer is used to hold the video and associated data, to make video play (forwards and backwards) occur without delay.

Once the Buffer Size limit is modified and set, the value is retained until changed again by the user. Even if the application is closed and restarted, or if another stream is opened, the setting is persistent. To reset the Buffer Size limit back to the default value, click the Reset to Default button.

NOTE. The size of the step-back buffer is shown, with an estimation of how many frames of data can be held within this buffer size. When playing video forwards or backwards, the MTS4EA buffers the video and associated data. By default, MTS4EA allocates a buffer size of 500 MB for video and 100 MB for audio.

The amount of buffer required per frame of video and associated data varies considerably with the video size and the video standard. Typically, 100 MB is sufficient to buffer the video and data for 10 to 500 frames. However, the actual number of frames and frame data stored depend on the resolution of the video being analyzed. For example, 500 MB is required to buffer the video and data for around 10-500 H.265/HEVC frames.

The popup alerts (Warnings, Errors, and so forth) that occur when video is decoded by the MTS4EA, are not displayed if the video and associated data is in the Step-back buffer. (See page 324, Popup alerts in the step-back buffer.)

![HEVC Video decoder options](image)

This has no effect and is grayed out for standards other than H.265/HEVC.

Stream Analysis. By default, decoded HEVC stream data is shown in the order that it is displayed. When certain errors exist in the HEVC stream, the video cannot be viewed. In this situation, you can select to view the stream data in the order that it is decoded. The video will play despite the existing stream errors, allowing the user to analyze the video to locate the errors.
This has no effect and is grayed out for standards other than H.263.

NTSC/PAL option. Within the H.263 standard the NTSC standard is assumed (frame rate of 29.97 frames per second) and video is played back at this frame rate by default. The NTSC option is selected as standard.

Sometimes H.263 video in PAL format (frame rate of 25 frames per second) does not set these options. In this situation PAL video would play back at 29.97 frames per second and it would play too quickly. Selecting the PAL option on this tab will play the decoded video at 25 frames per second.

This has no effect and is grayed out for standards other than MPEG-2.

This dialog box relates to the use of parameters for VBV buffer analysis in MPEG-2.

(See page 276, *Buffer analysis controls: MPEG-4 and MPEG-2.*) and (See page 277, *Use custom buffer parameters: MPEG-4 and MPEG-2.*)
This has no effect and is grayed out for standards other than MPEG-4.

This relates to the use of parameters for buffer analysis (VBV, VCV, VMV) in MPEG-4.

(See page 276, Buffer analysis controls: MPEG-4 and MPEG-2.) and (See page 277, Use custom buffer parameters: MPEG-4 and MPEG-2.)
H.264/AVC Many H.264/AVC byte streams do not provide the SEI (Supplemental enhancement information) data for specifying a frame rate, as this is optional in the byte stream (and where this happens, the frame play data is typically provided at the systems level for the video decoder).

Therefore the setting is provided on this option tab, so that the stream will play at the correct frame rate when the appropriate SEI data is not present.

Uncompressed video The data is either:

- 8 bits per sample, 4:2:0, or
- More than 8 bits per sample, and/or 4:2:2 or 4:4:4 (as used by H.264/AVC High Profile/FRExt, High/10, High/4:2:2, High/4:4:4)

YUV format of 8 bits per sample 4:2:0. The YUV file output is raw YUV with no headers of any kind: this is the same format as used by the Microsoft MPEG-4 Part 2 reference encoder and as used commonly by other programs:

- No headers of any kind (no file or frame headers)
- One byte per sample
- Row raster order (top picture row first)
- Planar YUV 4:2:0 sub-sampled (4 bytes of Y data for each byte of U data and each byte of Y data)
- Y plane values are 0-255 unsigned
- U and V plane values are unsigned with a DC offset of 128

(See page 15, Compression standards and file types.)
Other uncompressed formats. The general uncompressed video file format is as follows:

- No headers of any kind (no file or frame headers)
- Concatenated planar image data
- Row raster order (top picture row first)
- Unsigned samples

For 8-bit sample depth:
- One byte per sample

For 9-16 bit sample depth:
- Two bytes per sample
- Both little- and big-endian byte orders supported

For YUV format:
- Concatenated Y, U and V planes
- U and V planes sub-sampled as required
- Y plane samples are unsigned
- U and V plane samples are unsigned with a DC offset of 2^{-n}, where n is the chroma sample bit depth

For RGB format:
- Concatenated R, G and B planes.

For grayscale format:
- Luma plane only

When opening an uncompressed video file, by default the MTS4EA shows the uncompressed video decoder options, to enter the required parameters.

NOTE. If you try to open an .m4v or .264 or other compressed video file by using Open as uncompressed video, the MTS4EA will not decode the compressed video but will assume it is in uncompressed format.
Setting the frame size. Within an uncompressed video file, there is no place to indicate the frame size, frame rate, and so forth. When the file is opened, the MTS4EA will display the following screen (this is a tab of the Decoder options, which can also be accessed from the Play menu, Decoder options):

Presets (width and height). If there are numbers in the filename that could indicate the frame size, then the MTS4EA will attempt to read these and offer these in the Width and Height fields shown in the previous screenshot. The correct values can be entered or selected using the drop-down list:
Chroma format. This control specifies the color model and format for the uncompressed video data. The combo provides several common combinations, including 8-bit YUV 4:2:0, 8-bit YUV 4:2:2, 8-bit YUV 4:4:4, 8-bit RGB and 8-bit grayscale. Select an entry from the list to use one of these common formats. Other formats can be specified by choosing the Custom entry in the list - this will open the Image format dialog.

Advanced button. Click this button to specify a custom chroma format - this will open the Image Format dialog. (See page 71, *Image format dialog box.*)

Encoding. This control specifies the encoding of image samples in the file format. The following options are available:

- One byte - this specifies that image samples are stored in one byte per sample. This format is appropriate if all image planes are 8-bits deep
- Two byte MSB first - this specifies that image samples are stored in a pair of bytes for each sample. The most significant byte occurs first in each pair (big-endian). This format is appropriate if one or more image planes are deeper than 8-bits
- Two byte LSB first - this specifies that image samples are stored in a pair of bytes for each sample. The least significant byte occurs first in each pair (little-endian). This format is appropriate if one or more image planes are deeper than 8-bits

Header skip. The number of bytes at the start of the file before the first frame; MTS4EA will skip past these bytes (ignoring them).

Frame skip and Skip frames before each input frame: Frame skip is the number of frames (not bytes) to skip between each frame that is viewed in the video window.

By default, these frames are skipped after each viewed frame; by selecting the Skip frames box before each input frame, the number of frames are skipped before each viewed frame.

Interlaced: The uncompressed video file has interlaced data in the format of complete frames, with both fields within one frame, top-field first, each field on alternate lines.

Enabling this check box switches on the Interlace toolbar in the MTS4EA which allows the two fields to be viewed independently, either one above the other (top field above bottom field) or either field with the field lines repeated to full frame height.
Frame rate. The rate at which to display the uncompressed frames, in frames per second.

NOTE. The number entered in the Frame rate field can be an integer (for example, 30), or a fraction (for example, 30000/1001) or a decimal number (for example, 29.97).

Audio decoder options...

The Audio Decoder option is enabled only when audio is present in a stream.

General Audio. Where a decoder has inherent latency, the MTS4EA can compensate automatically.

With Compensate for decoder latency selected, a reference delay appropriate for the decoder in use is automatically available. If you want to specify a different delay, enter the value in the Specified delay field and select the option.
Dolby AC-3. The Audio Decoder Dolby AC-3 tab allows you to set up output options and dynamic range compression values.

![Audio decoder options](image)

The fields correspond to those used in the Dolby AC-3 development kit. Changes will take effect the next time the stream is played (that is, decoded).

Mute audio

Clicking on this button turns the sound on/off. The audio stream will continue to decode, even with sound disabled.

Synchronize audio

Without synchronization enabled, audio and video streams will play independently, at rates determined by the available processing power of your PC, with audio usually playing more quickly than video. When the Synchronize audio icon is depressed, audio data will be played as the video frame to which it pertains is played. (See page 88, *Audio/video synchronization*.)

To show whether audio and video streams are successfully synchronized or not, the following displays appear in the Status bar:

![In sync, No sync](image)

This menu item and icon are only available when a file containing both audio and video is loaded.
Overlay menu

This menu controls the display of overlaid real-time information and statistical information that has been captured over a period of time.

This menu returns information on video streams only. The audio options for this menu are described. (See page 180.)

NOTE. In Closed Caption analysis mode, only the audio streams of AVC and MPEG2 formats are analyzed.
Summary and MacroBlock tooltips manipulation

The Summary tooltip and the MacroBlock tooltip windows move and dock in the same way.

NOTE. When the tooltips are dragged near the edge of the window, they automatically dock. To force undocking, press and hold the Ctrl key while dragging with the mouse.

The tooltips bring up independent windows that can be:

- Moved around within the main window and put next to a video window:

![Tooltip example](image1)

- Docked to one of the edges of the main window:

![Tooltip example](image2)
When the Summary/MacroBlock tooltip is docked (as in the preceding figure):

- And the window is maximized, the Summary/MacroBlock tooltip remains visible and the other window is only maximized into the space available.
- The title bar of the Summary/MacroBlock tooltip changes to a pale color to indicate it is docked (and the title text is no longer bold).

Docking/undocking

- To dock the Summary/MacroBlock tooltip: drag it to one of the edges of the main window (top, left, right, bottom).
- To undock, hold the keyboard control (Ctrl) key and click on the title bar.

Scrolling/scroll bars

When the available area is too small for the whole tooltip to be seen, scroll bars are automatically displayed:

Video-frame summary tooltip Ctrl+U

![Video-frame summary tooltip](image-url)
When this is switched on, a window is displayed that provides summary information about the frame being displayed or the sequence as a whole. The window can be dragged to any position within the MTS4EA main window.

NOTE. The titles in the Summary tooltip and the displayed information vary with the selected video standard and the options that have been used in the specific video file.

If the sequence has not been decoded to the end, then the summary up to that point is provided. The information given is described in detail below.

Tref [H.263 only]
Tref is the time to the current frame from the start of the sequence, measured in increments of the base frame time for NTSC or PAL video (~33 milliseconds or 40 milliseconds respectively). Tref has a maximum value of 255; when it reaches this value it wraps back to zero.

Skip [H.263 only]
Skip is the difference in Tref for this frame, compared to Tref for the previous frame.

NOTE. Skip and Tref are only displayed for H.263.

For NTSC video at roughly 30 frames per second (actually at 30,000/1,001 Hz), frames are displayed every 0.033 seconds (approximately). However, many compressed video sequences do not have 30 frames per second of data (although they must of course be displayed at the correct rate, as if they did have 30 frames per second).

For example, if a compressed video sequence had 15 frames per second, the decoder would skip every other frame; Skip would equal two in this case. (And, for example, if NTSC video were displayed at 10 frames per second then Skip would equal three.)

For a compressed video sequence at 15 frames per second, it would mean that the displayed frame number would increase by 15 each second.

So, continuing the example of video at 15 frames per second, assuming that there are two Skips before the first frame, the values for the first few frames would be as follows:
<table>
<thead>
<tr>
<th>Time approx. (secs)</th>
<th>Tref (Temporal reference)</th>
<th>Skip (increment)</th>
<th>Frame number (count of frames decoded and displayed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.067</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.133</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.200</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.267</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

There are many variations to this; often more than one frame is skipped.

NOTE. Also, within MTS4EA, for H.263 video, Tref is limited to 8 bits, a maximum value of 255, as this is how Tref is defined within the H.263 standards (actually TR).

Some of the Trace outputs of the MTS4EA keep track of the total number of frames skipped - this is called Cumul. skip (short for Cumulative skip). In the last row of the table in the preceding example Cumul. skip would be eight.
Summary tooltip varies by video standard

The information provided by the Summary tooltip varies depending upon the video standard that is being analyzed, and the specific options in the selected video file. Examples for different streams are shown below:

NOTE. The information displayed at the end of video sequence is different. (See page 120, Summary tooltip at the end of a video sequence.)
Image size [all standards]. Picture size in pixels, Width x Height (pixel Columns x Rows).

For H.264/AVC where the cropping rectangle feature has been used, the full image size is given and displayed in the video window, but the cropped image size is also given in this field of the tooltip in the form:

| Image size | 352x288 (cropped: 200x100) |

Image format [all standards]. Format of selected video file.

Stream size (kBytes) [all standards]. Size of the video file in KB.

NOTE. For container files such as MP4, 3GPP and MPG (MPEG-2), the file size given is the size of the video track that has been selected, not the size of the whole MP4/3GPP/MPG file.

Structure [H.264/AVC, VC-1 Adv. Profile and MPEG-4 ASP]. For H.264/AVC byte streams and MPEG-4 Advanced Simple Profile, where interlace could be used, the structure of the displayed frame is one of the following:

- Progressive
- Interlaced

Address or Address (frame/top-field) and Address (bottom-field) [interlace]. The start address of the current video frame/VOP within the video file.

The H.264/AVC byte streams, two address fields are given to display the address of both fields in interlaced streams. If a stream is not interlaced, then the Address (bottom field) has no data.

NOTE. The first byte in the video file is byte 0; the first bit is bit 7 of byte 0.

The byte address is displayed in hexadecimal first, for example, 0x002681, then in decimal in brackets, for example, (dec. 9857) and finally the bit location within the byte, where bit 7 is the most significant bit (occurs first in the stream).
Time (secs) [all standards]. The time in seconds from the start to that point in the sequence, calculated as if the sequence was playing normally (MTS4EA keeps track of the playing time, regardless of whether the sequence is paused at some point or played in fast forward mode).

This information is calculated from:

- [H.264/AVC]: the SEI parameters if they are present in the bitstream.

NOTE. Many H.264/AVC bitstreams do not have the relevant SEI values (these are optional) and in this case, MTS4EA will play the video at the frame rate indicated in the H.264/AVC tab of the Decoder options (on the Play menu).

- [VC-1]: the parameters either in the ASF file, if the video is within this, or within the VC-1 stream

- [MPEG-4]: the parameters such as `modulo_time_base`, `vop_time_increment`

- [MPEG-2]: the parameters `frame_rate_value`, `frame_rate_extension_n` and `frame_rate_extension_d`

- [H.263]: the time-stamps in the picture header. If the Temporal references [Tref] are not set or are not correctly set, this time may not be the actual playing time from the start of the sequence.
VOP type [MPEG-4] or Frame type [H.264/AVC, MPEG-2, H.263, VC-1].

NOTE. For interlaced bitstreams, the frame/VOP type reported is that relating to the second field in a frame. This means that if the top field is first in frame/VOP 1 (and this will always be Intra-coded) and the bottom field is Inter [P] coded, then the frame will be reported as P.

- [MPEG-4] the VOP type, I-VOP or P-VOP or B-VOP or S-GMC VOP (see the following):
 - I-VOP: indicates that this frame is Intra coded (completely coded within itself) without any interpolation from earlier or later frames. The first frame in an MPEG-4 sequence is always an I-VOP
 - P-VOP: P or Predicted VOP: this frame is Inter coded (partly coded based upon earlier frames)
 - B-VOP: *(MPEG-4 Advanced Simple Profile only)* B or Bidirectional Interpolated: this frame is calculated based upon both earlier and later frames. B-VOPs may only be interpolated based upon I-VOPs/P-VOPs (not on other B-VOPs)
 - S-GMC: *(MPEG-4 Advanced Simple Profile only)* the VOP is an S-GMC VOP which uses Global Motion Compensation (GMC)

- [H.264/AVC, VC-1] the Frame type, I-frame or P-frame or B-frame or SI-frame or SP-frame (see below):
 - I-frame: I indicates that this frame is Intra coded (completely coded within itself) without any interpolation from earlier or later frames. The first frame in an H.264/AVC sequence is always an I frame
 - P-frame: P indicates Predicted: this frame is Inter coded (partly coded based upon earlier frames)
 - B-frame: *(Extended Profile only)* B or Bidirectional Interpolated: this frame is calculated based upon both earlier and later frames
 - SI-frame: SI indicates that this frame is a Switching-Intra coded frame - there is a switch between two different streams at this point
 - SP-frame: SP indicates that this frame is a Switching-Inter coded frame - there is a switch between two different streams at this point

NOTE. For H.264/AVC, the frame type is derived from the most complex slice type present. For example, if any of the slices in the frame are B-slices, the whole frame is reported as a B-frame. If any of the slices in the frame are P-slices, the whole frame is reported as a P-frame. *(This is as suggested in the standard.)*
[MPEG-2] the Frame type, I-frame or P-frame or B-frame (see the following):

- I-frame: I indicates that this frame is Intra coded (completely coded within itself) without any interpolation from earlier or later frames. The first frame in an MPEG-2 Elementary Stream sequence is always an I frame.
- P-frame: P indicates Predicted: this frame is Inter coded (partly coded based upon earlier frames).
- B-frame: B or Bidirectional Interpolated: this frame is calculated based upon both earlier and later frames.

[H.263] Frame type: the frame type, I-frame or P-frame or B-frame (see the following):

- I-frame: I indicates that this frame is Intra coded (completely coded within itself) without any interpolation from earlier or later frames. The first frame in an H.263 sequence is always an I frame.
- P-frame: P indicates Predicted: this frame is Inter coded (partly coded based upon earlier frames).

VOP no. [MPEG-4] or Frame no. [H.264/AVC, MPEG-2, H.263, VC-1]. The number of the displayed VOP [MPEG-4]/frame [H.264/AVC, MPEG-2, H.263] in the sequence.

NOTE. For sequences with B-VOPs/B-frames and in some other cases, the displayed frame number may be different from the decode for the VOPs/frames - see the following.

Tref and Skip [H.263 only]: (See page 111, *Tref [H.263 only]*.)

Decode VOP no. [MPEG-4] or Decode Frame no. [H.264/AVC, MPEG-2, H.263, VC-1]. The data that appears in this field differs from the video standard.

For H.264/AVC, one number is displayed (the current display frame number) as each MacroBlock can be bi-directionally predicted from different frames; to find out which frames are used for prediction, the MacroBlock tooltip is used.

For MPEG-4 Advanced Simple Profile and MPEG-2, when B-VOPs/B-frames are used, the data in these VOPs/frames is calculated from data in preceding and following VOPs/frames stored in the video file.

That is, for sequences with B-VOPs the order in which the VOPs/frames are stored in the video file is different from the order in which the VOPs/frames are displayed.

In this circumstance, this field of the Summary tooltip shows the source VOPs/frames in the video file from which the displayed VOPs/frames are generated.
The three numbers, xxx, bbb, fff, are:
- xxx is the frame number of the decoded VOP
- bbb is the frame number of the backward reference
- fff is the frame number of the forward reference

NOTE. When B-VOPs are used, it means that the display is different from the decode order in every VOP after the first B-VOP occurs in the bitstream (in the display order).

VOP bits [MPEG-4] or Bits (frame/top-field) and Bits (bottom-field) [H.264/AVC, VC-1] or Frame bits [H.264/AVC, MPEG-2, H.263, VC-1]. The number of bits used in that:
- [MPEG-4] VOP
- [H.264/AVC, VC-1] frame if progressive coded or top-field if interlaced; data only appears in the Bits (bottom-field) if the frame is interlaced.
- [MPEG-2, H.263, VC-1] frame

NOTE. For H.264/AVC, if any of the slices in the frame are interlaced, the whole frame is reported as interlaced.

Reference Layer(s) Frame Bits [H.264/SVC only]. Represents the cumulative number of bits in the reference layer(s), used for decoding the target frame in a given access unit.

Header bits [all standards] or Header bits (frame/top-field) and Header bits (bottom-field) [interlace]. The sum of non-MacroBlock data bits within the frame minus the header bits at the start of a frame that are before the bits specific to the first MacroBlock in the frame.

MacroBlock bits [all standards] or MacroBlock bits (frame/top-field) and MacroBlock bits (bottom-field) [interlace]. The sum of MacroBlock data bits within the frame minus those bits specifically used to encode the MacroBlocks (excluding the header bits at the start of the frame).

PSNR (Y, U, V) [all standards] or PSNR (Y, U, V) (frame/top-field) and PSNR (Y, U, V) (bottom field) [interlace]. When fidelity analysis is enabled, the selected fidelity analysis values are displayed for the VOP/frame currently being displayed. The Y, U, V values given are the average of the values for each MacroBlock.

Mean quant [all standards]. The mean average of all coded MacroBlock quant values for this frame.
Reference frames [H.264/AVC only]. This shows the List 0 and List 1 reference frames to which the current display frame refers.

NOTE. The images of the reference frames can easily be seen using the Video navigator view.

AVC MB Percentage [H.264/SVC only]. The percentage of “pure” AVC Macroblocks in the current frame.

NOTE. The “Pure” AVC MB type does not employ any of the SVC specified inter-layer prediction tools.

SVC MB Percentage [H.264/SVC only]. The percentage of SVC Macroblocks in the current frame.

Reference frames (Reference Index) [H.265/HEVC only]. This shows the List 0 and List 1 reference frames (indicated by their decode frame number) along with their reference index in the DPB, to which the current display frame refers.

Encoded POC [H.265/HEVC only]. This shows the picture order count of the current displayed frame, as inferred from the slice header(s) belonging to the current frame.

Video standard [all standards]. The video standard used, with various additional information as appropriate, such as:

- [MPEG-4]:
 - Profile and Level, if this information is given in the file
 - Data partitioning, Resync, RVLC, as appropriate
 - [MPEG-4 Advanced Simple Profile] Interlace, QS, Method 1 quant, as appropriate

- [MPEG-2, VC-1]:
 - Profile and Level

- [H.264/AVC]:
 - Profile and Level
 - Entropy coding mode, CAVLC

NOTE. For H.264/AVC, many of the other elements (for example, data partitioning) can vary by frame/slice (and in some cases MacroBlock by MacroBlock), so these other elements are reported in the MacroBlock tooltip.
- [H.264/SVC]:
 - Profile and Level
- [H.263] Annexes, as appropriate.

Summary tooltip at the end of a video sequence

When the file is completely decoded, the tooltip title changes to Final Video Summary and the tooltip displays as follows:

The meanings of Image size, File size (KB) and Standard are the same. (See page 110, Video-frame summary tooltip Ctrl+U.)

The other items displayed are:

Total frames. The total decoded frames in the sequence.

Total time (secs). The total time in seconds from the start to the end of the sequence, calculated as if the sequence were playing normally (MTS4EA keeps track of the playing time, regardless of whether the sequence is paused at some point or played in fast forward mode).

Total bits. The size of the video file in bits.

NOTE. For container files such as MP4 and 3GPP, the size given is the number of bits in the video track that has been selected (not the container file).
Ave. bit rate (kbits/s). This is Total bits divided by Total time, in k bits per second.

Ave. frame rate (Hz). This is Total frames divided by Total time, in frames/second (Hz).

Ave. PSNR (Y, U, V) [all standards] or Ave. PSNR (Y, U, V) (frame/top-field) and Ave. PSNR (Y, U, V) (bottom field) [interlace]. When fidelity analysis is enabled, the average of the selected fidelity analysis values across all the VOPs/frames is displayed.

NOTE: The following fields define the GOP size parameters.

Min. Non-I between two I-Frames. Minimum count of consecutive non-I frames (P or B), present between any two I frames (i.e. excluding the I frames) throughout the stream.

Max. Non-I between two I-Frames. Maximum count of consecutive non-I frames (P or B), present between any two I frames (i.e. excluding the I frames) throughout the stream.

Ave. Non-I between two I-Frames. Average count of consecutive non-I frames (P or B), present between any two I frames (i.e. excluding the I frames) throughout the stream.

Max. B-Frames between two I/P. Maximum count of consecutive B frames, present between any two anchor frames (I or P) throughout the stream.

Percentage of P-Frames. Percentage of Predictive coded frames in the stream from the valid decode point.

Percentage of B-Frames. Percentage of Bidirectionally Predictive coded frames in the stream from the valid decode point.
MB tooltip Ctrl+M

This displays information about a selected MacroBlock:

![MacroBlock Table]

NOTE. The information displayed by the MB tooltip varies with the video standard and the options used within the particular video sequence. (See page 123, Viewing the MacroBlock data in other views.)

The MB level information is not available when Closed Caption analysis is enabled.

The example above is for an MPEG-4 sequence, and is examining an Inter MacroBlock.
The MacroBlock selected is signified by a red delineation box around the 16x16 MacroBlock border:

To see the MacroBlock data in other views - for example, the HexView - right click at the MacroBlock location of interest and select Goto view from the context menu, then select one of the views. For example, if Hex View is selected, the first byte of the selected MacroBlock is displayed in the HexView. (See page 50, Synchronized views/navigating the views.)
The information provided by the Macroblock tooltip varies depending upon the video standard that is being analyzed, and the options used in the video file. Examples of different streams are shown below:

H.264/AVC

H.264/SVC

MPEG-4 Intra MB (in a Data partitioned VOP)
Picture type. [Interlace only]. Shows whether the MacroBlock belongs to a top- or bottom-field.

VOP no. [MPEG-4] or Frame no. [H.264/AVC, VC-1, MPEG-2, H.263]. The number of the displayed VOP [MPEG-4]/frame [H.264/AVC, MPEG-2, H.263] in the sequence.

In MPEG-4 Advanced Simple Profile, H.264/AVC and MPEG-2 for sequences with B-VOPs/B-frames, the displayed VOP/frame number is different from the currently decoded VOP/frame number for every VOP/frame after the first B-VOP/B-frame occurs in the bitstream (in the display order) - see Video Summary Tooltip Ctrl+U for more information on decoded versus displayed VOP/frame numbers. (See page 110.)

Pixel location [all standards]. The location of the top-left corner pixel of the MacroBlock, where:

- 0, 0 is the top-left corner of the displayed image
- The first digit is horizontal (X) location and the second digit is the vertical (Y) location.

MB location [all standards]. The location of the MacroBlock where:

- 0, 0 is the top-left MacroBlock of the displayed image
- The first digit is horizontal (X) count and the second digit is the vertical (Y) count of MacroBlocks. For example, for a CIF-size image this will go from 0,0 (top left MacroBlock) to 21,17 (bottom right MacroBlock).

Address [all standards]. The start address of the MacroBlock within the video file.

NOTE. The first byte in the video file is byte 0; the first bit is bit 7 of byte 0.

For container files such as MP4, 3GPP and MPG (MPEG-2), the address given is the offset from the start of video track that has been selected, not the address within the container file (which will be different).

The byte address is displayed in hexadecimal first, for example, 0x002b8a then in decimal in brackets, for example, (dec. 11146) and finally the bit location within the byte, where bit 7 is the most significant bit (occurs first in the stream).

Frame/Field coding [H.264/AVC, VC-1, MPEG-4 Advanced Simple Profile and MPEG-2]. This displays the MacroBlock coding as either frame (progressive) or field (interlaced).
2nd DP part, 3rd DP part [optional, MPEG-4 only]. Within the MPEG-4 standard, the video data within a VOP can be divided into sections for error resilience purposes, by using the Data Partitioned flag. In this situation, the data for each MacroBlock is located at three different areas in the bitstream.

The Address field displays the address of the first part of the MacroBlock data. The 2nd DP part and 3rd DP part display the addresses of the second and third parts of the Data Partitioned MacroBlock data respectively.

Mode [all standards]. The MacroBlock type/coding mode as given in MacroBlock Types. (See page 139, MB types Ctrl+Y.)

Sub-MB modes [H.264/AVC and VC-1 Advanced Profile only]. The type/coding mode of the blocks within the MacroBlock as given in H.264/AVC. (See page 139, MB types Ctrl+Y.)

Quant [all standards]. The Quantizer used by the Luminance.

Bits [all standards]. The total number of bits used to encode the MacroBlock (including motion vector data). For Data partitioned MacroBlocks, this is the number of bits used in all three parts of the Data partitioned data for the MacroBlock.

GMC [optional, MPEG-4 Advanced Simple Profile only]. This denotes whether the MacroBlock uses Global Motion Compensation (GMC) in the calculation of motion vectors. This is either:

- ON - GMC is on
- OFF - GMC is off

Segment [H.263 only]. The segment number, representing the GOB number or slice (starting at zero from the top of the frame).

Slice [MPEG-2 only]. The number of the slice (starting at zero from the top of the frame).

Slice ID [H.264/AVC and MPEG-4 VC-1 Advanced Profile only]. The number of the slice (starting at zero from the top of the frame).

Slice type [H.264/AVC and MPEG-4 VC-1 Advanced Profile only]. The slice type, I or P or [Extended Profile only] B or SI or SP.

Entropy coding [H.264/AVC and MPEG-4 VC-1 Advanced Profile only]. The entropy coding mode of the slice, CAVLC.

Transform [MPEG-4 Advanced Simple Profile and VC-1 Advanced Profile]. Shows the DCT type: field or frame, as determined by the value of dct_type in MPEG-4 ASP interlaced_information().
AC prediction [MPEG-4, H.264/AVC, and H.263]. This is used differently for MPEG-4 and for H.263:

- MPEG-4:
 - ON - AC prediction is on
 - OFF - AC prediction is off

- H.263, Advanced Intra Coding mode as specified in Annex I, the values used are:
 - 0 - DC prediction only
 - 1 - Vertical DC & AC prediction
 - 2 - Horizontal DC & AC prediction

CBP [all standards]. Coded Block Pattern: this is a number from 0-63, signifying which of the six 8x8 blocks that make up a MacroBlock have been coded - the bit pattern is reproduced for the block in brackets, where reading left to right shows which of the six blocks were coded (1 = coded, 0 = not coded). The blocks are ordered as Y0, Y1, Y2, Y3, U, V.

Forward MV [MPEG-4, MPEG-2, and H.263 only] and Forward MV (frame/top-field), Forward MV (bottom field) [interlace]. The Motion Vectors for the MacroBlock. The numbers in <> brackets indicate the relative position of the area from where the data for this MacroBlock has come. The numbers are for X and Y respectively (positive numbers are down/to the right; negative numbers are up/to the left).

For example, <-7.5, -5.0> means that the data in this MacroBlock came from the area of the preceding VOP/frame, which is 7.5 pixels up and 5.0 pixels to the left of the current MacroBlock.

(The term Forward in this field is used to specify that these Motion Vectors are forward predicted – they have been predicted forward from a preceding VOP/frame.)

[MPEG-4 Advanced Simple Profile] For interlaced MacroBlocks, this shows which fields the forward Motion Vectors predict from, as determined by the value of forward_top_field_reference and forward_bottom_field_reference in MPEG-4 Adv. Simple Profile interlaced_information(). This is displayed as follows:

<table>
<thead>
<tr>
<th>Display</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward motion vector (frame/top-field)</td>
<td>In frame coded MacroBlocks, shows the forward motion vectors.</td>
</tr>
<tr>
<td></td>
<td>In field coded MacroBlocks, shows the forward top-field motion vectors.</td>
</tr>
<tr>
<td>Forward motion vector (bottom-field)</td>
<td>In field coded MacroBlocks, shows the forward bottom-field motion vectors.</td>
</tr>
</tbody>
</table>
Backward MV [MPEG-4 Advanced Simple Profile (B-VOPs), MPEG-2 and VC-1 Advanced Profile] and Backward MV (frame/top-field), Backward MV (bottom field) [interlace]. These only appear for B-VOPs in MPEG-4 Advanced Simple Profile, MPEG-2 B-frames and VC-1 Advanced Profile; these are the Backward predicted Motion Vectors. The numbering follows the convention given above for Forward motion vectors.

(The term Backward in this field is used to specify that these Motion Vectors are backward predicted, they have been predicted backward from a following VOP/frame.)

[MPEG-4 Advanced Simple Profile] For interlaced MacroBlocks, this shows which fields the forward Backward Vectors predict from, as determined by the value of backward_top_field_reference and backward_bottom_field_reference in MPEG-4 Adv. Simple Profile interlaced_information(). This is displayed as follows:

<table>
<thead>
<tr>
<th>Display</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward motion vector (frame/top-field)</td>
<td>In frame coded MacroBlocks, shows the backward motion vectors.</td>
</tr>
<tr>
<td></td>
<td>In field coded MacroBlocks, shows the backward top-field motion vector.</td>
</tr>
<tr>
<td>Backward motion vector (bottom-field)</td>
<td>In field coded MacroBlocks, shows the backward bottom-field motion vector.</td>
</tr>
</tbody>
</table>

Pred L0 MV, Pred L1 MV [H.264/AVC, MPEG-4 and VC-1 Advanced Profile]. The Motion Vectors for the MacroBlock. Data only appears in this field if there is no subdivision of the MacroBlock:

- L0 refers to List 0 reference frames (forward reference, from past frames; as an example, P type MacroBlocks can only be List 0)
- L1 refers to List 1 reference frames (is forward and backward reference, from past and future frames; as an example, B type MacroBlocks can be List 1 or List 0).

For H.264/AVC only, the number of the referenced frame is also included in front of the Motion Vector, for example, 38:<9.00,6.25> means that these motion vectors reference frame 38.

NOTE. The images of the reference frames can easily be seen using the Video navigator view.
Sub-MB 0/1/2/3 Pred L0/L1 MV [H.264/AVC, VC-1 Advanced Profile and MPEG-4]. The Motion Vectors for the blocks within the MacroBlock, when the MacroBlock has been subdivided (when not subdivided, there is no data in these fields).

The data provided here follows the standard and is shown in the layout as given in the Sub-MB modes field of the MacroBlock tooltip and MB types overlay.

As an example, for a MacroBlock which has been divided as follows:

![Sub-MB modes diagram](image)

where the red blocks are Inter_List_0 (P) and the blue blocks are Inter_List_1 (B) and the numbers denote the sub-MacroBlock areas 0, 1, 2, 3.

Then the Sub-MB modes field would look like this:

![Sub-MB modes table](image)

where:
- The top-left reported sub-MB mode is for area 0
- The top-right is for area 1, and so forth.

The MV fields would look like this:
PSNR (Y, U, V) or PSNR (Y, U, V) (frame/top-field) and PSNR (Y, U, V) (bottom field) [interlace]. When fidelity analysis is enabled, the selected fidelity analysis value for the selected MacroBlock is displayed.

CTU tooltip Ctrl+N

⚠️ This tooltip is available only for H.265/HEVC stream analysis. The icon selection for the CTU tooltip is available in the HEVC toolbar.

When you select a CTU, the CTU is highlighted as shown below. The white delineation box shows the selected CTU. The red box shows the locked CU, whose details will be updated in the CU tooltip. The teal color grids show the Prediction unit partitions in the selected CTU.
The CTU tooltip displays information about the selected CTU as described below:

Frame no. The number of the frame in the sequence.

Pixel location. The location of the top-left corner pixel of the CTU, where:
- 0, 0 is the top-left corner of the displayed image
- The first digit is horizontal (X) location and the second digit is the vertical (Y) location

CTU location. The location of the CTU where:
- 0, 0 is the top-left CTU of the displayed image
- The first digit is horizontal (X) count and the second digit is the vertical (Y) count of CTUs. For example, for a CIF-size image this will go from 0,0 (top left CTU) to 21,17 (bottom right CTU).

CTU number. The absolute CTU number in the video frame, in “raster scan order.”

Address. The start address of the CTU within the video file.

NOTE. The first byte in the video file is byte 0; the first bit is bit 7 of byte 0.

For container files, the address given is the offset from the start of video track that has been selected, not the address within the container file (which will be different).

The byte address is displayed in hexadecimal first, for example, 0x002b8a then in decimal in brackets, for example, (dec. 11146) and finally the bit location within the byte, where bit 7 is the most significant bit (occurs first in the stream).

Number of CUs. The total number of CUs in the CTU.

Bits. The total number of bits in the CTU (including the header bits in the CTU).

Slice ID. The number of the slice (starting at zero from the top of the frame).

Tile ID. The number of the tile (starting at zero from the top of the frame).
CU tooltip Ctrl+D

This tooltip is available only for H.265/HEVC stream analysis. The icon selection for the CU tooltip is available in the HEVC toolbar.

Figure 1: CU tooltip – Intra Prediction Mode

Figure 2: CU tooltip – Inter Prediction Mode
The CU tooltip displays information about the selected CU as described below:

Frame no. The number of the frame in the sequence.

Pixel location. The location of the top-left corner pixel of the CU, where:
- 0, 0 is the top-left corner of the displayed image
- The first digit is horizontal (X) location and the second digit is the vertical (Y) location

Address. The start address of the CU within the video file.

NOTE. The first byte in the video file is byte 0; the first bit is bit 7 of byte 0.

For container files, the address given is the offset from the start of video track that has been selected, not the address within the container file (which will be different).

The byte address is displayed in hexadecimal first, for example, 0x002b8a then in decimal in brackets, for example, (dec. 11146) and finally the bit location within the byte, where bit 7 is the most significant bit (occurs first in the stream).

Size. The size of the Coding Unit (CU).

Depth. Indicates the level of CU split (ranging from 0 = No Split, to 3 = Maximum possible CU division).

Prediction mode. The Prediction Mode used while encoding the CU. The possible values are Intra and Inter.

Quant. The Quantizer used by the Luminance.

Bits. The total number of bits used to encode the CU (including motion vector data). For Data partitioned CUs, this is the number of bits used in all three parts of the Data partitioned data for the CU.

Slice ID. The number of the slice (starting at zero from the top of the frame).

Tile ID. The number of the tile (starting at zero from the top of the frame).

Slice type. The slice type, I or P or (Extended Profile only) B or SI or SP.
Luma prediction mode(s). This field appears only for Intra CUs. Specifies the prediction direction to be used to predict the luma (Y) signal from the neighboring CU blocks of the same frame (Range 0 to 34, inclusive).

Chroma prediction modes(s). This field appears only for Intra CUs. Specifies the prediction direction to be used to predict the chroma (U and V) signal from the neighboring CU blocks of the same frame. The allowed values are 0, 1, 10, 26, 34, or 36.

Skip flag and Merge flag. These fields appear only for Inter CUs.

Merge idx. This field appears only for Inter CUs. This is one of the parameters used to decide how to predict the MV for the current PU (Range 0 to 6, inclusive).

Pred L0 MV and Pred L1 MV. These fields appear only for Inter CUs. These are similar to the AVC standard. They specify the MV values in List 0 and List 1 used for inter-prediction. The possible values depend on the profile, tier, and level of the stream.

RQT Root CBF. This field appears only for Inter CUs. The Residual Quad Tree Root Coded Block Flag indicates the presence of TU for the current CU.
The Image inspector provides a magnifying glass on the decoded (or predicted, or residual video frame, in the case of H.265/HEVC streams) based on the Video View type. It also provides the ability to view pixel data for the individual Macroblocks (for H.264 and earlier video standards) or Coding Units (for H.265/HEVC video).

The pixel matrix size depends on both the selected CU/Macroblock size and bit depth. In the case of H.265/HEVC streams, the CU size can be 8x8, 16x16, 32x32 and 64x64.

The subsampling ratio of these component channels can vary. As can be seen in the preceding screenshot, when this is the case, the matrices containing the pixel data are sized accordingly. The preceding screenshot shows an example of 8 bits per sample, 4:2:0 YUV video, the following screenshot shows an example of 12 bits per sample, 4:4:4 video.
The colors of the image blocks change, depending on the data type:

<table>
<thead>
<tr>
<th></th>
<th>Top image block</th>
<th>Middle image block</th>
<th>Bottom image block</th>
</tr>
</thead>
<tbody>
<tr>
<td>YUV</td>
<td>Gray (Y)</td>
<td>Blue (Cb)</td>
<td>Red (Cr)</td>
</tr>
<tr>
<td>RGB</td>
<td>Red</td>
<td>Green</td>
<td>Blue</td>
</tr>
</tbody>
</table>
Closed Caption

Show or hide the CEA608 tooltip. This closed caption toolbar item shows or hides the CEA608 tooltip.

When the video is playing, the tooltip shows various parameters of the CEA608 captions in the stream:

- **Caption Type.** Use the drop-down list to select the type of CEA608 caption you want to view: ATSC 608, SCTE 20 or SCTE 21. The drop-down list contains only the type of captions available in the stream.

- **Caption Services.** Displays attribute values for each of the CEA608 caption services in the stream.

- **XDS.** Displays attribute values for Extended Data Services in the stream such as V-chip content ratings.

- **Text Services.** Displays attribute values for CEA608 text services in the stream.
Show or hide the CEA708 tooltip. This closed caption toolbar item shows or hides the CEA708 tooltip.

When the video is playing, the tooltip shows various parameters of the CEA708 captions in the stream:

- Service Type. Lists the type of CEA708 caption service in the stream.
- Caption Service. Use the drop-down list to select which CEA708 caption service to view.
- Window ID. Use the drop-down list to select which CEA708 window ID to view.
- Attribute. Displays attribute values for CEA708 captions in the stream. Click the +/- box next to an attribute type to view the related attribute values.
This example is a B-VOP of an MPEG-4 Advanced Simple Profile stream.

This overlay allows you to easily view the MacroBlock types used in the encoding. The types are identified by changing the color of the individual MacroBlocks, by modifying the chrominance while leaving the luminance unchanged, so that the data is still partially visible.

The colors used are dependent on the video compression standard in use. The colors are shown in the following tables and are also displayed on-screen in the MacroBlock types color key tooltip. (See page 364, MacroBlock Types color key tooltip.)

The lines denote the edges of the MacroBlock, and if the MacroBlock has four motion vectors, the lines also divide the MacroBlock into four quadrants. The color of the lines can be changed from white to black by clicking the icon (or clicking the Black menu item on the Overlay menu).
H.264/AVC

H.264/AVC has the following possible coded MacroBlock types (see Reference [12] in Compression Standards and File Types section) (See page 15.), shown in the following colors:

<table>
<thead>
<tr>
<th>MB type</th>
<th>Prediction mode</th>
<th>Table index</th>
<th>Sub-MB types</th>
<th>Color</th>
<th>Slice type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Intra 16x16 (incl. Intra inferred)</td>
<td>1 - 25</td>
<td>-</td>
<td>Green</td>
<td>I, P, B, SI, SP</td>
</tr>
<tr>
<td>I</td>
<td>Intra 4x4</td>
<td>0</td>
<td>-</td>
<td>Yellow</td>
<td>I, P, B, SI, SP</td>
</tr>
<tr>
<td>I</td>
<td>Intra 8x8</td>
<td>0</td>
<td>-</td>
<td>Orange</td>
<td>I, P, B, SI, SP</td>
</tr>
<tr>
<td>P</td>
<td>Inter list 0</td>
<td>0 - 2</td>
<td>0 - 3</td>
<td>Red</td>
<td>P, SP</td>
</tr>
<tr>
<td>B</td>
<td>Inter list 0</td>
<td>1, 4, 5</td>
<td>1, 4, 5, 10</td>
<td>Red</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Inter list 1</td>
<td>2, 6, 7</td>
<td>2, 6, 7, 11</td>
<td>Blue</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Inter list 0 + 1</td>
<td>3, 20, 21</td>
<td>3, 8, 9, 12</td>
<td>Pink</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Inter mixed</td>
<td>8 - 19</td>
<td>-</td>
<td>Light blue</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Inter direct</td>
<td>0</td>
<td>-</td>
<td>Gray</td>
<td>B</td>
</tr>
<tr>
<td>SI</td>
<td>Intra 4X4 and 16x16</td>
<td>0</td>
<td>-</td>
<td>Green</td>
<td>SI</td>
</tr>
<tr>
<td>SP</td>
<td>Inter list 0</td>
<td>0 - 2</td>
<td>0 - 3</td>
<td>Red</td>
<td>SP</td>
</tr>
</tbody>
</table>

NOTE. The Intra inferred MacroBlock type was shown in yellow in previous versions of MTS4EA; but, because it occurs infrequently and it is a 16x16 type, it is now grouped in the Intra 16x16 MacroBlock type, and the Intra 4x4 MacroBlock type is now shown in yellow.
H.264/SVC

H.264/SVC has the following possible coded MacroBlock types (see Reference [26] in Compression Standards and File Types section) (See page 15.), shown in the following colors:

<table>
<thead>
<tr>
<th>MB type</th>
<th>Prediction mode</th>
<th>Table index</th>
<th>Sub-MB types</th>
<th>Color</th>
<th>Slice type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Intra 16x16</td>
<td>1 - 25</td>
<td>-</td>
<td>Green</td>
<td>I, P, B, EI, EP, EB</td>
</tr>
<tr>
<td></td>
<td>(incl. Intra inferred)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Intra 4x4</td>
<td>0</td>
<td>-</td>
<td>Yellow</td>
<td>I, P, B, EI, EP, EB</td>
</tr>
<tr>
<td>I</td>
<td>Intra 8x8</td>
<td>0</td>
<td>-</td>
<td>Orange</td>
<td>I, P, B, EI, EP, EB</td>
</tr>
<tr>
<td>P</td>
<td>Inter list 0</td>
<td>0 - 2</td>
<td>0 - 3</td>
<td>Red</td>
<td>P, EP</td>
</tr>
<tr>
<td>B</td>
<td>Inter list 0</td>
<td>1, 4, 5</td>
<td>1, 4, 5, 10</td>
<td>Red</td>
<td>B, EB</td>
</tr>
<tr>
<td>B</td>
<td>Inter list 1</td>
<td>2, 6, 7</td>
<td>2, 6, 7, 11</td>
<td>Blue</td>
<td>B, EB</td>
</tr>
<tr>
<td>B</td>
<td>Inter mixed</td>
<td>8 - 19</td>
<td>-</td>
<td>Light blue</td>
<td>B, EB</td>
</tr>
<tr>
<td>B</td>
<td>Inter direct</td>
<td>0</td>
<td>-</td>
<td>Gray</td>
<td>B, EB</td>
</tr>
<tr>
<td>Intra_BL</td>
<td>base_mode _flag = 1</td>
<td>-</td>
<td>-</td>
<td>Teal</td>
<td>I, P, B, EI, EP, EB</td>
</tr>
<tr>
<td>Inter_BL</td>
<td>base_mode _flag = 1</td>
<td>-</td>
<td>-</td>
<td>Bright green</td>
<td>P, B, EP, EB</td>
</tr>
<tr>
<td>Residual prediction</td>
<td>residual _prediction_flag = 1</td>
<td>-</td>
<td>-</td>
<td>Brown</td>
<td>P, B, EP, EB</td>
</tr>
<tr>
<td>Motion prediction</td>
<td>motion _prediction_flag = 1</td>
<td>-</td>
<td>-</td>
<td>Black</td>
<td>P, B, EP, EB</td>
</tr>
</tbody>
</table>

VC-1

VC-1 has the following possible coded MacroBlock types (see Reference [16] in Compression Standards and File Types section) (See page 15.), shown in the following colors:

<table>
<thead>
<tr>
<th>Type</th>
<th>Motion vector</th>
<th>Color</th>
<th>Frame type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra</td>
<td>0</td>
<td>Green</td>
<td>I, P, B, BI</td>
</tr>
<tr>
<td>Forward</td>
<td>0, 1, 2, or 4</td>
<td>Red</td>
<td>P, B</td>
</tr>
<tr>
<td>Backward</td>
<td>0, 1, 2, or 4</td>
<td>Blue</td>
<td>B</td>
</tr>
<tr>
<td>Bi-directional</td>
<td>0, 2, or 4</td>
<td>Pink</td>
<td>B</td>
</tr>
</tbody>
</table>
MPEG-4

MPEG-4 has the following possible coded MacroBlock types (see Reference [1] - Table B-1 in *Compression Standards and File Types* (See page 15.) section), shown in the following colors:

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Dquant/Dbquant</th>
<th>Motion vector</th>
<th>Color</th>
<th>VOP type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Inter</td>
<td>1</td>
<td>Red</td>
<td></td>
<td>P, S-GMC</td>
</tr>
<tr>
<td>1</td>
<td>Inter+Q</td>
<td>1</td>
<td>Blue</td>
<td></td>
<td>P, S-GMC</td>
</tr>
<tr>
<td>2</td>
<td>Inter4V</td>
<td>4</td>
<td>Pink</td>
<td></td>
<td>P, S-GMC</td>
</tr>
<tr>
<td>3</td>
<td>Intra</td>
<td></td>
<td>Green</td>
<td></td>
<td>I, P, S-GMC</td>
</tr>
<tr>
<td>4</td>
<td>Intra+Q</td>
<td></td>
<td>Yellow</td>
<td></td>
<td>I, P, S-GMC</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>8</td>
<td>Gray</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Interpolate</td>
<td>2</td>
<td>Green</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>1</td>
<td>Red</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Backward</td>
<td>1</td>
<td>Blue</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

MPEG-2

MPEG-2 has the following possible coded MacroBlock types (see Reference [13] in *Compression Standards and File Types* (See page 15.) section), shown in the following colors:

<table>
<thead>
<tr>
<th>Type</th>
<th>Dquant</th>
<th>Motion vector</th>
<th>Color</th>
<th>Frame type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra</td>
<td>1</td>
<td>Green</td>
<td></td>
<td>I, P, B</td>
</tr>
<tr>
<td>Forward</td>
<td>2</td>
<td>Red</td>
<td></td>
<td>P, B</td>
</tr>
<tr>
<td>Backward</td>
<td>2</td>
<td>Blue</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Bi-directional</td>
<td>4</td>
<td>Pink</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

H.263

H.263 has six possible coded MacroBlock types (see Reference [2] - Table 9/H.263 - in *Compression Standards and File Types* section) (See page 15.), shown in the following colors:

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Dquant</th>
<th>Motion vector</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Inter</td>
<td>1</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Inter+Q</td>
<td>1</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inter4V</td>
<td>4</td>
<td>Pink</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Intra</td>
<td></td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Intra+Q</td>
<td></td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inter4V+Q</td>
<td>4</td>
<td>Gray</td>
<td></td>
</tr>
</tbody>
</table>
This overlay is available only for H.265/HEVC stream analysis. The icon selection for the CU overlay is available in the HEVC toolbar.

This overlay allows you to visually see the Coding Unit (CU) types used while encoding the frame. The data in each of the CUs is partially visible and the chroma component is modified to indicate the CU Type.

The colors used are displayed in the CU types key tooltip. The CUs that are displayed grey implies that they are skipped (Skip flag=true; this can be checked in the Coding Unit tooltip).

The gridlines shown above are displayed only when the video is either in pause or stop mode. In all other modes, only the CU overlay colors are displayed.

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.
Partition types Ctrl+L

This overlay is available only for H.265/HEVC stream analysis. The icon selection for the Prediction Unit (PU) overlay is available in the HEVC toolbar.

This overlay allows you to visually see the partition types (PU types) used while encoding the frame. The data in each of the PUs is partially visible and the chroma component is modified to indicate the PU Type.

The colors used are displayed in the PU key tooltip. The PUs that are displayed grey implies that they are skipped (Skip flag=true; this can be checked in the Coding Unit tooltip).

The gridlines shown above are displayed only when the video is either in pause or stop mode. In all other modes, only the PU overlay colors are displayed.

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.
Luma TU Ctrl+Q

This overlay is available only for H.265/HEVC stream analysis. The icon selection for the Luma Transform Unit (TU) overlay is available in the HEVC toolbar.

Unlike the other overlays, where the types are primarily based on the type of encoding (inter/intra etc), the Luma TU overlay provides a picture of TU types based on their sizes (4x4, 8x8, etc).

The colors used are displayed onscreen in the TU types color key tooltip. TUs that are displayed grey imply that they are skipped (Skip flag-true; this can be checked in the Coding Unit tooltip).

The gridlines shown above are displayed only when the video is either in pause or stop mode. In all other modes, only the TU overlay colors are displayed.

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.
Chroma TU Ctrl+Shift+Q

This overlay is available only for H.265/HEVC stream analysis. The icon selection for the Chroma Transform Unit (TU) overlay is available in the HEVC toolbar.

Unlike the other overlays, where the types are primarily based on the type of encoding (inter/intra etc), the Chroma TU overlay gives a picture of TU types based on their sizes (4x4, 8x8, etc).

The colors used are displayed onscreen in the TU types color key tooltip. TUs that are displayed grey imply that they are skipped (Skip flag-true; this can be checked in the Coding Unit tooltip).

The gridlines shown above are displayed only when the video is either in pause or stop mode. In all other modes, only the TU overlay colors are displayed.

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.

In case of the Chroma TU, a 8x8 CU can be colored yellow completely marking 4x4 (according to color key tooltip). This implies that only a 4x4 region of the 8x8 CU has been transform coded (4:2:0 subsampling).
Slice Ctrl+Shift+S

This overlay is available only for H.265/HEVC stream analysis. The icon selection for the Slice overlay is available in the HEVC toolbar.

The Slice overlay allows you to visually see the slice partitions in the frame.

In cases where the frame has a single slice, the Slice overlay does not overlay any slice boundaries. The number of slices in the frame can be found from the “Number of slices” field in the Video-frame summary tooltip.

Slice overlay grids are available even while the video is being played (unlike the CU, PU, and TU overlays).

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.

Locking of a particular CU is available in the Slice overlay. However, when you hover the mouse over a selected CTU, the CU cursor is not updated when the Slice overlay is enabled. Given that the frame does not contain more than one slice, the selected CTU is drawn both on mouse-hover and lock of the CU.
Tile Alt+T

This overlay is available only for H.265/HEVC stream analysis. The icon selection for the Tile overlay is available in the HEVC toolbar.

The Tile overlay allows you to visually see the tile partitions in the frame.

In cases where the frame has just a single tile, the selection of the Tile overlay does not put up any tile boundary. The number of tiles in the frame can be found from the “Number of tiles” field in the Video-frame summary tooltip.

Tile overlay grids are available even while the video is being played (unlike the CU, PU, and TU overlays).

The color of the gridlines can be set to white or black by toggling the icon or by configuring the Overlay color setting in the Overlay menu.

Locking of a particular CU is available in the Tile overlay. However, when you hover the mouse over a selected CTU, the CU cursor is not updated when the Tile overlay is enabled. Given that the frame does not contain more than one tile, the selected CTU is drawn both on mouse-hover and lock of the CU.
Motion vectors Ctrl+E

The motion vectors used in relevant video frames can be displayed on the frame currently being viewed. They are switched on and off by doing one of the following:

- From the Overlay menu, select the Motion vectors option
- Click the toolbar icon
- Press Ctrl+E

The motion vectors are drawn in the image in either white or black (the color can be selected using the Black/White Digits button on the Toolbar - see Overlay Color for all frames except B-VOPs/B-frames - see Motion Vectors in B-VOPs/B-frames for information on this.

(See page 174, Overlay Color Ctrl+W.) (See page 151, Motion vectors in B-VOPs/B-frames.)
This is an example of the above video frame with the motion vectors plotted in black:

The motion vectors are plotted to the length of that actually used by the decoder.

The vector has an arrowhead at its end and is pointing to the center of the region of pixels in the previous frame that was used for the prediction of the current MacroBlock or sub-MacroBlock.

Some video standards allow motion vectors for an 8x8 region; other video standards (such as H.264/AVC) allow motion vectors for smaller regions as well. In these situations, all the motion vectors are plotted.
Motion vectors in B-VOPs/B-frames

For frames that are bidirectionally predicted (B-VOPs or B-frames) there can be two motion vectors for each MacroBlock or sub-MacroBlock region, or four MacroBlocks in the case of interlaced video sequences:

In Interlaced video sequences the motion vectors are displayed in the following colors:

<table>
<thead>
<tr>
<th>MV type</th>
<th>Field</th>
<th>MV color - out</th>
<th>MV color - out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Top</td>
<td>White</td>
<td>Black</td>
</tr>
<tr>
<td>Backward</td>
<td>Top</td>
<td>Light blue</td>
<td>Dark blue</td>
</tr>
<tr>
<td>Forward</td>
<td>Bottom</td>
<td>Yellow</td>
<td>Green</td>
</tr>
<tr>
<td>Backward</td>
<td>Bottom</td>
<td>Magenta</td>
<td>Red</td>
</tr>
</tbody>
</table>

For H.264/AVC, the white (or black) arrows denote the List 0 motion vectors and the light blue (or dark blue) arrows denote the List 1 motion vectors.

For more information on the motion vector displays in the H.264/AVC standard. (See page 15, Compression standards and file types.)
For MacroBlocks with four (or more) motion vectors, the MacroBlock tooltip is expanded with extra information to display all the motion vectors. The example below is for a MacroBlock in a B-VOP (in MPEG-4 Advanced Simple Profile) where there are four Forward and four Backward motion vectors:

![Macroblock Tooltip Example](image)

- **VOP no.**: 58
- **Pixel location**: (224, 272)
- **MB location**: (14, 17)
- **Address**: 0x01cdce (dec. 118222) bit 7
- **Mode**: DIRECT
- **Quant**: 16
- **Bits**: 7
- **GMC**: OFF
- **AC prediction**
 - **CBP**: 0 (000000)
 - **Forward MV**: < -0.5, 0.0> - < -0.5, 0.0>
 - **< -0.5, 0.0> - < -0.5, 0.0>
 - **Backward MV**: < -0.5, 0.0> - < -0.5, 0.0>
 - **< -0.5, 0.0> - < -0.5, 0.0>
MB statistics

The MB statistics option appears only for non-HEVC streams. For H.265/HEVC streams, this option is replaced by the CTU statistics option. (See page 163, CTU statistics.)

This option displays statistics on a MacroBlock-by-MacroBlock basis, either for the current frame only or averaged over a range of frames.

The options described in this section are also available from the MB Statistics toolbar.

The top of this submenu allows selection of:

- Numerals (numbers)
- Colors

Numerals

When this is selected, numbers are displayed for the MacroBlock statistics, overlaid onto each MacroBlock.

(In the preceding example, Numerals is selected, but None is also selected, so no statistics will be displayed.)

The displayed number is selected from this submenu; the following example shows bits per MacroBlock in frame 49 of the MPEG-4 example file Space (no bits = not coded):
When statistics have been selected to be displayed, the MB Statistics toolbar is also displayed:

See the next section for a description of the MB Statistics toolbar.

NOTE. In the MB Statistics toolbar, selecting the Colors displays the colors and the numerals.

Colors

When this is selected, colors are displayed for the MacroBlock statistics, overlaid onto each MacroBlock.

The colors give a quick visual indication of the values in the video; the smaller the number, the more towards blue, the larger the number, the more towards red:

NOTE. If it is hard to see the colors, the video can be blanked (set to mid gray) by selecting Blank video in the Overlay menu. You can also blank the video by pressing the B key when the video is selected.

If exact numbers are required, turn on the numerals, instead of, or in addition to, the colors, or use the MacroBlock tooltip.

If it is not displayed, the MB Statistics toolbar can also be displayed from Windows > Toolbars. Or you can right-click on the menu area to display the context menu and turn MB statistics on or off.

The example below shows bits per MacroBlock in frame 50 of the MPEG-4 example file Space (no color = no bits):

![Example Image](image-url)
Linear/logarithmic scales

Some number ranges are best represented in linear scales (such as quants and slices); others are best in logarithmic scales.

MTS4EA automatically chooses an appropriate scale and displays the values at the bottom, middle, and top of the color range.

The choice of linear/logarithmic scale made by the MTS4EA is indicated by the middle value on the color key. If the value is not numerically the average of the top and bottom values, a logarithmic scale has been chosen by the MTS4EA.

Linear scale (for example, quants, slices):

Logarithmic scale (for example, bits, average bits):

Menu variation with standard

The menu below the selection of numerals/colors varies (slightly) depending on the video standard:

<table>
<thead>
<tr>
<th>MPEG-4</th>
<th>H.263</th>
<th>H.264/AVC, MPEG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Numerals</td>
<td>✓ Numerals</td>
<td>✓ Numerals</td>
</tr>
<tr>
<td>✓ Colours</td>
<td>✓ Colours</td>
<td>✓ Colours</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Quants</td>
<td>Quants</td>
<td>Quants</td>
</tr>
<tr>
<td>Bits</td>
<td>Bits</td>
<td>Bits</td>
</tr>
<tr>
<td>Video packets</td>
<td>Segments</td>
<td>Slices</td>
</tr>
<tr>
<td>Fidelity</td>
<td>Fidelity</td>
<td>Fidelity</td>
</tr>
<tr>
<td>Frame range...</td>
<td>Frame range...</td>
<td>Frame range...</td>
</tr>
<tr>
<td>Average bits</td>
<td>Average bits</td>
<td>Average bits</td>
</tr>
<tr>
<td>Average bits/coded MB</td>
<td>Average quantiser</td>
<td>Average quantiser</td>
</tr>
<tr>
<td>Average quantiser</td>
<td>Freq of coding</td>
<td>Freq of coding</td>
</tr>
<tr>
<td>Freq of intra coding</td>
<td>Freq of intra coding</td>
<td>Freq of intra coding</td>
</tr>
<tr>
<td>Average fidelity</td>
<td>Average fidelity</td>
<td>Average fidelity</td>
</tr>
</tbody>
</table>

NOTE. It can also useful to use this option with the Hold last frame option in the Play Menu, which allows the total sequence statistics to be viewed in relation to the picture content. For interlaced video streams, some of the MB statistics overlays are not visible if the video is displayed in combined view (frame view). To see the statistics in this situation, switch to the separated fields view using the interlance toolbar. (See page 358, Separated fields view.)
The first four of the MB statistics overlays apply only to the current frame:

- Quants
- Bits
- Segments or Slices
- Fidelity

The remaining selections apply to the range of frames selected by Frame range.

- Average bits
- Average bits/coded MB
- Average quantizer
- Freq of coding
- Freq of intra coding
- Average fidelity

NOTE. The frame range over which statistics are to be accumulated cannot be changed during pause mode; otherwise MTS4EA could not ensure that the Trace and Graph data were collected over the correct range of frames. For example, if the video was paused at frame 23 and Trace was enabled for a range of frames from 20 to 25, the Trace data would be incorrect.

When a range of frames has been set, the Frame range item on the MB statistics menu changes, with a check mark to indicate that a range of frames has been set. (See page 160, Frame range.)

The status bar indicates whether the video frame being displayed is in or out of the selected range of frames (See page 162, Frame range in/out indicator on status bar.)

- **None.** This option switches off any displayed overlaid MacroBlock statistics on the current frame.

NOTE. The *None* option does not turn off the motion vector plot or MacroBlock type display.

- **Quants.** This option shows the quantizer used for the luminance for each decoded MacroBlock.

If the MacroBlock was not coded, then no number/color is displayed.

This option can be used with Motion Vectors and/or MacroBlock types, but not with any other digit overlay option.
Bits. This option overlays the number of bits used to encode each MacroBlock in the current frame.

If the MacroBlock was not coded, no bits are shown/no color is shown, even though in MPEG-4 and H.263 a single bit is sent to signify an uncoded MacroBlock.

A>Note. Because there is only enough space to display three digits, if the MacroBlock used more than 999 bits, then +++ is displayed to signify an overflow (a number greater than 999).

This option can be used with Motion Vectors and/or MacroBlock types, but not with any other digit overlay option.

Video packets [MPEG-4]. This option shows the grouping of the MacroBlocks into video packets. The start of a new video packet is distinguished by a resynchronization marker in the stream.

A>Note. Video packets are only used in displays of information relating to MPEG-4.

Segments [H.263]. This option shows the segment numbering in use for the current frame. Segments are defined as being Groups of Blocks. If a segment number is zero, then it is not displayed - hence if no GOB headers or Slices are sent, then this option will not overlay anything.

A>Note. Segments are used only in displays of information relating to H.263.

This option can be used with Motion Vectors and/or MacroBlock types, but not with any other digit overlay option.
Slices [H.264/AVC, MPEG-2]. This option shows the slice numbering in use for the current frame; an example is given below:

![Slice numbering example](image)

NOTE. *Slices are used only in displays relating to H.264/AVC and MPEG-2.*

(In order to see the slice ID numbers more clearly, the video has been blanked, using the Overlay > Blank video menu selection.)

This shows the same frame, with the slices displayed using the color overlays:

![Slice ID overlays](image)

The slice ID overlay option can be used with Motion Vectors and/or MacroBlock types, but not with any other digit overlay option.)
Fidelity. This option shows the fidelity analysis values for each MacroBlock, for example, PSNR in dB (decibels):

![Fidelity Analysis Values](image)

NOTE. Fidelity is grayed out until fidelity analysis is enabled. (See page 236, Video fidelity enable.)

The type of fidelity analysis done is shown in the Fidelity tab of the Analysis options. (See page 236, *Video fidelity enable. ...*)
Frame range

This option allows the start and end frames to be set for the calculation of the MacroBlock statistics (the range is inclusive):

- Average bits
- Average bits/coded MB
- Average quantizer
- Freq of coding
- Freq of intra coding
- Average fidelity

NOTE. The frame range set on this tab is the same frame range used for the Trace and Graph analysis (See page 292, Frame range tab.)

When the frame range has been set, the statistics are calculated from the first to the last frame within the range (inclusive frame numbers) and the last values they reach are held on the displayed frame when outside the range.

The frame range over which statistics are to be accumulated cannot be changed during pause mode; otherwise the MTS4EA could not ensure that the Trace and Graph data were collected over the correct range of frames. For example, if the video was paused at frame 23 and Trace was enabled for a range of frames from 20-25, the Trace data would be incorrect.

Clicking on Frame range opens the frame range tab:
All frames. This option is the default and calculates the sequence statistics from the start of the sequence to the current frame.

To set a range of frames. If the All frames check box is cleared, then a range of frames can be entered (in this case, frames 1 to 17 inclusive):

![Frame range](image)

When a range of frames has been set, the Frame range item on the MB statistics menu changes, with a check mark to indicate that a range of frames has been set:
Frame range in/out indicator on status bar. The frame number indicator at the bottom right of the status bar changes when in/out of the frame range as follows:

The frame counter text is in black with a gray background:

![Frame counter example](image)

When a frame range has been set and the displayed frame is within the specified range, the frame counter background changes to green, as shown:

![Frame counter example](image)

When a frame range has been set but the displayed frame is outside of the range set, the frame counter changes to white text on a red background.

![Frame counter example](image)

Average bits. This option displays the average number of bits used to code each MacroBlock, by dividing the total accumulated bits for each MacroBlock by the total number of frames in the frame range.

Both coded and not coded MacroBlocks are included in the average bits statistics.

NOTE. Because there is only enough space to display three digits, if the MacroBlock used more than 999 bits, then +++ is displayed to signify an overflow (a number greater than 999).

The color range displayed with the color overlays is a logarithmic scale:

![Color range example](image)

Average bits/coded MB. This option displays the average number of bits used to code each MacroBlock, but allowing for the number of times it has been coded, the total accumulated bits used to code the MacroBlock over the frame range specified divided by the number of times that particular MacroBlock has been coded.

The color range displayed with the color overlays is a logarithmic scale: see preceding screenshot.

Average quantizer. This option displays the average quantizer used to code each MacroBlock over the specified frame range. It is displayed to one decimal place.

The color range displayed with the color overlays is a linear scale:
Freq of coding. This option displays the frequency of coding (number of times each MacroBlock has been coded over the frame range specified).

NOTE. Because there is only enough space to display three digits, if the MacroBlock used more than 999 bits, then +++ is displayed to signify an overflow (a number greater than 999).

Freq of intra coding. This option displays the number of times each MacroBlock has been coded in Intra Mode over the frame range specified.

Average fidelity. This option shows the average fidelity analysis values for each MacroBlock over the selected frame range.

The type of fidelity analysis done is shown in the Fidelity tab of the Analysis options. (See page 236, Video fidelity enable. ..)

CTU statistics

The CTU statistics option appears only for H.265/HEVC streams. For non-HEVC streams, this option is replaced by the MB statistics option. (See page 153, MB statistics.)

This option displays statistics on a CTU level for HEVC streams.

The options described in this section are also available from the CTU Statistics toolbar.

The top of this submenu allows selection of:

- Numerals (numbers)
- Colors
- Bits (Luma Residual, Chroma Residual, and Total)

Numerals
When this is selected, numbers are displayed for the CTU statistics, overlaid onto each CTU.

(In the preceding example, Numerals is selected, but None is also selected, so no statistics will be displayed.)
The numbers displayed are based on the statistic type selected from this submenu; the following example shows bits per CTU in the H.265 example file Forbidden city (no bits = not coded):

When statistics have been selected to be displayed, the CTU Statistics toolbar is also displayed as shown below. Use the drop-down box to select the desired CTU statistic to display.

See the next section for a description of the CTU Statistics toolbar.

NOTE. In the CTU Statistics toolbar, selecting Colors displays the only the colors and selecting Numerals displays only the numerals. You need to select both Colors and Numerals to see both overlays.
Colors

When this is selected, colors are displayed for the CTU statistics, overlaid onto each CTU.

The colors give a quick visual indication of the values in the video; the smaller the number, the more towards blue, the larger the number, the more towards red:

![Color Scale]

NOTE. If it is hard to see the colors, the video can be blanked (set to mid gray) by selecting Blank video in the Overlay menu. You can also blank the video by pressing the B key when the video is selected.

If exact numbers are required, turn on the numerals, instead of, or in addition to, the colors, or use the CTU tooltip. Note that the CTU tooltip does not display all of the parameters present in the CTU statistics.

If it is not displayed, the CTU Statistics toolbar can also be displayed from Windows > Toolbars, or you can right-click on the menu area to display the context menu and turn CTU statistics on or off.

The example below shows bits per CTU in the H.265 example file Forbidden city (no color = no bits):

![Example Image]
Bits

Bit related fields in the CTU statistics, for example the bits, average bits, and the average bits/coded CTU fields, are provided with the option to select which bit values are displayed: luma, chroma, or total bits. The bits type selection filter is available only for H.265/HEVC streams.

- **Luma residual**: Overlays the luma bit values used to encode the CTU on the video frame.
- **Chroma residual**: Overlays the chroma bit values used to encode the CTU on the video frame.
- **Total bits**: Overlays the sum of the luma, chroma, and header bits used to encode the CTU on the video frame.

Linear/logarithmic scales

Some number ranges are best represented in linear scales (such as quants and slices); others are best in logarithmic scales.

MTS4EA automatically chooses an appropriate scale and displays the values at the bottom, middle, and top of the color range.

The choice of linear/logarithmic scale made by the MTS4EA is indicated by the middle value on the color key. If the value is not numerically the average of the top and bottom values, a logarithmic scale has been chosen by the MTS4EA.

Linear scale (for example, quants, slices):

![Linear scale](image)

Logarithmic scale (for example, bits, average bits):

![Logarithmic scale](image)
CTU statistics menu The menu below the selection of numerals/colors varies (slightly) depending on the video standard. The following illustration shows the menu for H.265/HEVC streams.

The first five of the CTU statistics overlays apply only to the current frame:

- Quants
- Bits
- Segments or Slices
- Tiles
- Fidelity

The remaining selections apply to the range of frames selected by Frame range.

- Average bits
- Average bits/coded CTU
- Average quantizer
- Freq of coding
- Freq of intra coding
- Average fidelity

NOTE. The frame range over which statistics are to be accumulated cannot be changed during pause mode; otherwise the MTS4EA could not ensure that the Trace and Graph data were collected over the correct range of frames. For example, if the video was paused at frame 23 and Trace was enabled for a range of frames from 20 to 25, the Trace data would be incorrect.
When a range of frames has been set, the Frame range item on the CTU statistics menu changes, with a check mark to indicate that a range of frames has been set. (See page 171, Frame range.)

The status bar indicates whether the video frame being displayed is in or out of the selected range of frames (See page 173, Frame range in/out indicator on status bar.)

None. This option switches off any displayed overlaid CTU statistics on the current frame.

NOTE. The None option does not turn off the motion vector plot or CTU type display.

Quants. This option shows the quantizer used for the luminance of each decoded CTU (Quants value is available at the CU level; averaging the CU quants to get the CTU level quantizer value).

If the CTU was not coded, then no number/color is displayed. A CTU is considered not coded only if all of the CUs in the CTU are not coded.

This option can be used with Motion Vectors and/or CTU types, but not with any other digit overlay option.

Bits. This option overlays the number of bits used to encode each Coding Tree Unit (CTU) in the current frame.

If the CTU was not coded, no bits are shown/no color is shown, even though in H.265 a single bit is sent to signify an uncoded CTU.

NOTE. For a 16×16 CTU, because of space limitations, the value is limited to 3 digits. In the case of 32×32 and 64×64 CTUs, the number of digits displayed is increased to 5.

This option can be used with Motion Vectors and/or CTU types, but not with any other digit overlay option.
Slices [H.265/HEVC]. This option shows the slice numbering in use for the current frame; an example is given below with the slices displayed using the color overlays:

![Slices overlay example](image)

The slice ID overlay option can be used with Motion Vectors and/or CTU types, but not with any other digit overlay option.

Tiles [H.265/HEVC]. This option shows the tile numbering in use for the current frame.
Fidelity. This option shows the fidelity analysis values for each CTU, for example, PSNR in dB (decibels):

![Fidelity Analysis Values](image)

NOTE. Fidelity is grayed out until fidelity analysis is enabled. (See page 236, Video fidelity enable.)

The type of fidelity analysis done is shown in the Fidelity tab of the Analysis options. (See page 236, Video fidelity enable....)
Frame range

This option allows the start and end frames to be set for the calculation of the CTU statistics (the range is inclusive):

- Average bits
- Average bits/coded CTU
- Average quantizer
- Freq of coding
- Freq of intra coding
- Average fidelity

NOTE. The frame range set on this tab is the same frame range used for the Trace and Graph analysis (See page 292, Frame range tab.)

When the frame range has been set, the statistics are calculated from the first to the last frame within the range (inclusive frame numbers) and the last values they reach are held on the displayed frame when outside the range.

The frame range over which statistics are to be accumulated cannot be changed during pause mode; otherwise the MTS4EA could not ensure that the Trace and Graph data were collected over the correct range of frames. For example, if the video was paused at frame 23 and Trace was enabled for a range of frames from 20-25, the Trace data would be incorrect.

Clicking on Frame range opens the frame range tab:
Overlay menu

All frames. This option is the default and calculates the sequence statistics from the start of the sequence to the current frame.

To set a range of frames. If the All frames check box is cleared, then a range of frames can be entered (in this case, frames 1 to 17 inclusive):

![Frame range](image)

When a range of frames has been set, the Frame range item on the CTU statistics menu changes, with a check mark to indicate that a range of frames has been set:
Frame range in/out indicator on status bar. The frame number indicator at the bottom right of the status bar changes when in/out of the frame range as follows:

The frame counter text is in black with a gray background:

![Frame range in/out indicator](image)

When a frame range has been set and the displayed frame is within the specified range, the frame counter background changes to green, as shown:

![Frame range in/out indicator](image)

When a frame range has been set but the displayed frame is outside of the range set, the frame counter changes to white text on a red background.

![Frame range in/out indicator](image)

Average bits. This option displays the average number of bits used to code each CTU, by dividing the total accumulated bits for each CTU by the total number of frames in the frame range.

Both coded and not coded CTUs are included in the average bits statistics.

NOTE. For a 16×16 CTU, because of space limitations, the value is limited to 3 digits. In the case of 32×32 and 64×64 CTUs, the number of digits displayed is increased to 5.

The color range displayed with the color overlays is a logarithmic scale:

![Color range](image)

Average bits/coded CTU. This option displays the average number of bits used to code each CTU, but allowing for the number of times it has been coded, the total accumulated bits used to code the MacroBlock over the frame range specified divided by the number of times that particular MacroBlock has been coded.

The color range displayed with the color overlays is a logarithmic scale: see preceding screenshot.

Average quantizer. This option displays the average quantizer used to code each CTU over the specified frame range. It is displayed to one decimal place.

The color range displayed with the color overlays is a linear scale:
Freq of coding. This option displays the frequency of coding (number of times each CTU has been coded over the frame range specified).

Freq of intra coding. This option displays the number of times each CTU has been coded in Intra Mode over the frame range specified.

Average fidelity. This option shows the average fidelity analysis values for each CTU over the selected frame range.

The type of fidelity analysis done is shown in the Fidelity tab of the Analysis options. (See page 236, *Video fidelity enable....*)

Overlay color Ctrl+W

This item allows the selection of the color of the overlays. You can see the values even if the decoded image is very dark (choose white) or very light (choose black). It affects all the number overlays and the motion vector overlay.

In the motion vector overlay, two colors may be used for some video standards - in this case:

- Black selects black and dark blue colors for overlays
- White selects white and light blue colors for overlays

(See page 149, *Motion vectors Ctrl+E.*)

Black. This selects a black/dark blue color for the overlays.

White. This selects a white/light blue color for the overlays.
Visual difference

This menu option enables the visual difference video display; this uses an uncompressed video reference file to show a video view of any of the following:

- The encoded (compressed) bitstream
- The uncompressed video reference bitstream
- The visual difference between the encoded bitstream and the uncompressed video reference file

NOTE. The visual difference display can be done on a range of frames only, if this range is at the start of a file. For example, only the first ten frames of the YUV reference file are provided for the H.264/AVC and MPEG-2 bitstreams Grenadier Guards.

When displaying the compressed bitstream or the uncompressed video reference file or the difference between the two, all the standard MTS4EA video playing controls can be used to play the video forward/backward (although some of the unrelated seek functions be grayed out).
Visual difference icon toolbar

This toolbar is displayed when the visual difference view is enabled:

![Visual difference toolbar](image)

The functions of the icons are as follows:

Show encoded (compressed). Selecting this menu option (or clicking on the icon) displays the standard video window (shows the compressed bitstream that was decoded by the MTS4EA):

![Encoded compressed video frame](image)

Show uncompressed video reference. Selecting this menu option (or clicking on the icon) displays the frame in the YUV reference file that corresponds most closely in time to the corresponding frame in the compressed bitstream:

![Uncompressed video reference frame](image)
Show difference. Selecting this menu option (or clicking on the icon) subtracts the uncompressed video reference video from the compressed video, frame-by-frame:

The MTS4EA uses the timing given in the:

- Compressed bitstream itself for the displayed frame times of the compressed bitstream
- Uncompressed video reference set-up tab of the MTS4EA (the frame rate) for the uncompressed video reference file

When doing the subtraction, the MTS4EA uses the uncompressed video reference file and the corresponding frames from the compressed bitstream that are closest to each other in time.

NOTE. The visual difference view can be used to display the difference between two uncompressed video files; to do this, open the first uncompressed video file using the standard File-open (selecting Open as type) and then select the second uncompressed video as the reference file.

If the frame rate of the uncompressed video reference file is set incorrectly, the visual differences will invariably appear to be much greater than they should be.
Magnify visual difference by X. This menu selection or drop-down menu can be used to magnify the visual differences on-screen, so that they are easier to see:

![Image of magnified visual differences]

The magnification (multiplication factor) can be any of the factors shown:

<table>
<thead>
<tr>
<th>Diff scale</th>
<th>0.5</th>
<th>x1</th>
<th>x2</th>
<th>x4</th>
<th>x8</th>
<th>x16</th>
<th>x32</th>
<th>x64</th>
<th>x128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diff scale</td>
<td>x0.5</td>
<td>x1</td>
<td>x2</td>
<td>x4</td>
<td>x8</td>
<td>x16</td>
<td>x32</td>
<td>x64</td>
<td>x128</td>
</tr>
</tbody>
</table>
Luma only

This displays the luma (luminance) only of the compressed bitstream, or uncompressed video reference, or difference.

When this option is selected (), only the luminance of the image in the video window is shown:

Blank video

This option will blank the video output to a gray color. It is included so that the motion vectors and other data can be viewed more clearly without the visual interference of the decoded image.

In this example, the motion vector overlay is on and the video is blanked. You can also blank the video by pressing the B key when the video is selected.

NOTE. The Blank video option is available only when one of the overlays on the Overlay menu is in use; otherwise it is grayed out.
Audio options

These options are only available when an audio waveform is being viewed.

NOTE. Full audio analysis is not currently supported for the Dolby Digital (AC-3) standard. For this standard, only audio extraction and playback will be available.

The audio summary and frame tooltips can be manipulated in the same way as the video tooltips. (See page 109, *Summary and MacroBlock tooltips manipulation.*)

Audio summary tooltip

When this option is selected, a window is displayed that provides summary information about the audio frame being displayed or the sequence as a whole. The information displayed differs depending on whether the stream is playing/paused or is in stop mode. The selection of information provided by the audio summary tooltip is as follows:

![Audio Summary Window]

- **Number of channels**
 - If the audio stream is mono, this number will be one (1); if the stream is stereo, this number will be two or more.

- **Sample rate (Hz)**
 - Sample rate of the decoded audio in samples per second (Hz).

- **Frame length (samples)**
 - Number of audio samples in each decoded audio frame.

- **Output format**
 - The output audio sample format bit depth in bits per sample.

- **Num frames decoded**
 - The running total of decoded frames.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total frames</td>
<td>The total number of decoded audio frames in the stream.</td>
</tr>
<tr>
<td>Time decoded (secs)</td>
<td>The time in seconds from the start to the current point in the sequence, calculated as if the sequence were playing normally (the MTS4EA keeps track of the playing time, irrespective of whether the sequence is paused at some point or played in fast forward mode).</td>
</tr>
<tr>
<td>Total time (secs)</td>
<td>The duration of the stream in seconds.</td>
</tr>
<tr>
<td>Ave. bitrate (kbits/s)</td>
<td>This is total bits (kbits) divided by total time (secs).</td>
</tr>
<tr>
<td>Ave. framerate (Hz)</td>
<td>This is total frames divided by total time (secs).</td>
</tr>
<tr>
<td>Stream size (kBytes)</td>
<td>The size of the stream in KB.</td>
</tr>
<tr>
<td>Audio standard</td>
<td>The audio standard used.</td>
</tr>
</tbody>
</table>
Audio frame tooltip

This tooltip displays information about a selected audio frame. The information provided by the frame tooltip varies according to the audio standard being analyzed and the options available for that standard.

<table>
<thead>
<tr>
<th>Frame number</th>
<th>The number of the currently selected audio frame.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (secs)</td>
<td>The time in seconds from the start of the audio sequence to the start of the selected audio frame, calculated as if the sequence were playing normally (MTS4EA keeps track of the playing time, irrespective of whether the sequence is paused at some point or played in fast forward mode).</td>
</tr>
<tr>
<td>Address (in audio ES)</td>
<td>The address of the beginning of the selected audio frame within the audio elementary stream.</td>
</tr>
<tr>
<td>Frame bits</td>
<td>The number of bits within the selected audio frame.</td>
</tr>
<tr>
<td>Plot mouse over</td>
<td>When the mouse pointer is over an audio plot, this field shows the name of the audio plot and its value for the selected audio frame.</td>
</tr>
<tr>
<td>Histogram mouse over</td>
<td>When the mouse pointer is over an audio histogram, this field shows the name of the part of the audio histogram the mouse is over and its value for the selected audio frame.</td>
</tr>
<tr>
<td>Total audio data size [MPEG-1]</td>
<td>The total number of bits used for the audio data part of the selected frame. This consists of all the data that decodes to produce the audio frame, and does not include other data such as the header, error check, or ancillary data.</td>
</tr>
<tr>
<td>Ancillary data size [MPEG-1]</td>
<td>The total number of bits used for the ancillary data part of the selected audio frame.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Total SBR data size [AAC]</td>
<td>The total number of bits used for the SBR data part of the selected audio frame.</td>
</tr>
<tr>
<td>Total config data size [AAC]</td>
<td>The total number of bits used for the configuration data part of the selected audio frame. This includes all data used to configure the AAC decoder (for example, ADTS headers and AudioSpecificConfig data.)</td>
</tr>
<tr>
<td>Total data size [AAC]</td>
<td>The total number of bits used to represent the main and subsidiary payload structures of the selected audio frame.</td>
</tr>
<tr>
<td>Max scalefactor blocks [AAC]</td>
<td>The maximum number of scalefactor bands per group for the selected audio frame.</td>
</tr>
<tr>
<td>Global gain [AAC]</td>
<td>Global gain, equal to the value of the first scalefactor, for the selected audio frame.</td>
</tr>
<tr>
<td>LTP data present [AAC]</td>
<td>Flag to specify whether LTP data is present in the selected audio frame.</td>
</tr>
<tr>
<td>Predictor data present [AAC]</td>
<td>Flag to specify whether predictor data is present in the selected audio frame.</td>
</tr>
<tr>
<td>MS mask present [AAC]</td>
<td>Flag to specify whether MS mask is present in the selected audio frame.</td>
</tr>
<tr>
<td>Pulse data present [AAC]</td>
<td>Flag to specify whether pulse data is present in the selected audio frame.</td>
</tr>
<tr>
<td>TNS data present [AAC]</td>
<td>Flag to specify whether TNS data is present in the selected audio frame.</td>
</tr>
<tr>
<td>Gain control data present [AAC]</td>
<td>Flag to specify whether gain control data is present in the selected audio frame.</td>
</tr>
<tr>
<td>Window sequence [AAC]</td>
<td>Shows the type of window sequence used in the selected audio frame.</td>
</tr>
<tr>
<td>Window shape [AAC]</td>
<td>Shows the type of window shape used in the selected audio frame.</td>
</tr>
<tr>
<td>Show audio features…</td>
<td>A range of options showing audio related data.</td>
</tr>
</tbody>
</table>
Show audio waveform

MTS4EAV7 offers the ability to view an audio stream waveform: the y-axis is normalized amplitude, and the x-axis is time (seconds).

The audio stream waveform can be viewed while the stream is playing, showing the frames being marked off on vertical bars as the stream is decoded:
It can also be viewed when the stream has been played through to its end:

The gray background is due to the density of marked-off frames; when the zoom out icon is used, these will become more spaced and the shape of the waveform more easily discernible (see the following figure). At each frame marker, the frame type and number is shown.

Additional information can be found in the Audio waveform views status bar:
It is possible to zoom in and out on this graph view using the first two icons on the waveform view toolbar, as shown in the following screenshot.

![Graph View Screenshot]

The illustrations below show that it is possible to zoom in so far as to see the individual data points plotted in the audio waveform.

![Zoomed Illustrations]

The functions of the other icons are described under *Audio Waveform Toolbar icons*. (See page 188.)
The following screenshot shows the waveform of a stream with multiple channels:
<table>
<thead>
<tr>
<th>Icon</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoom in (+) and zoom out (-) centered on the window (affects scale of x-axis only).</td>
</tr>
<tr>
<td></td>
<td>Fit all data into window.</td>
</tr>
<tr>
<td></td>
<td>Locate origin (zero), for example, start of sequence.</td>
</tr>
<tr>
<td></td>
<td>Autoscroll, for example, fill the analysis data in real-time as the audio is decoded, and scroll the window to the right.</td>
</tr>
<tr>
<td></td>
<td>Increase channel height (affects scale of y-axis only).</td>
</tr>
<tr>
<td></td>
<td>Decrease channel height (affects scale of y-axis only).</td>
</tr>
<tr>
<td></td>
<td>Measure the data at the cursor. Values are reported in status bar. Hold and drag to measure offsets and angles/slopes of lines.</td>
</tr>
<tr>
<td></td>
<td>Scroll/pan (the cursor changes to show the scroll/pan direction).</td>
</tr>
<tr>
<td><img src="image" alt="Zoom in/out centered on the cursor. Press <Shift> to zoomout." /></td>
<td>Zoom in/out centered on the cursor. Press <Shift> to zoomout.</td>
</tr>
<tr>
<td></td>
<td>Show or hide audio frame markers.</td>
</tr>
<tr>
<td></td>
<td>Show or hide the plots and plot key. A full account of analysis with the plot tool is given later in this section. (See page 193, Show plot.) Show or hide the selected histogram and associated key. A full account of histographical analysis options is given later in this section. (See page 189, Show histogram.)</td>
</tr>
<tr>
<td></td>
<td>Show or hide audio waveform.</td>
</tr>
<tr>
<td></td>
<td>Show or hide the audio/video synchronisation markers.</td>
</tr>
</tbody>
</table>
Show audio frame markers

(III) Shows/hides the audio frame markers.

Show sync markers

([I][I]) Shows/hides the audio synchronization markers.

Show histogram

Shows/hides the distribution of different types of coded data within each audio frame. The available histograms depend on the audio standard in use. Only one type of histogram can be overlaid onto the audio waveform at any one time. The following histograms are available:

Audio data bit usage histogram
[MPEG-1/2]

Shows the distribution of bits used for the following audio data syntax elements within each frame:

- allocation
- sample
- samplecode
- scalefactor
- scfsi

(See page 15, Compression standards and file types.)
Frame data bit usage histogram
[MPEG-1/2]

Shows the distribution of bits used for the following syntactic structures within each frame:

- AncillaryData
- AudioData
- AudioSequence
- ErrorCheck
- Frame
- Header
- HuffmanCodeBits
- MainData

(See page 15, *Compression standards and file types*.)

Frame bit usage histogram
[AAC]

Shows the distribution of bits used for the following top-level categories of data within each frame:

- Config
- Main payload
- SBR (Spectral Band Replication)
- Subsidiary payload

(See page 15, *Compression standards and file types*.)
Main payload bit usage histogram [AAC]

Shows the distribution of bits used for the following syntax elements within the main payload data of each frame:

- channel_pair_element
- coupling_channel_element
- data_stream_element
- fill_element
- gain_control_data
- ics_info
- lfe_channel_element
- program_config_element
- pulse_data
- raw_data_block
- single_channel_element

(See page 15, Compression standards and file types.)

SBR bit usage histogram [AAC]

Shows the distribution of bits used for the following syntax elements within the SBR data of each frame:

- sbr_channel_pair_base_element
- sbr_channel_pair_element
- sbr_channel_pair_enhance_element
- sbr_data
- sbr_dtdf
- sbr_envelope
- sbr_extension
- sbr_grid
- sbr_header
- sbr_invf
- sbr_noise
- sbr_single_channel_element
- sbr_sinusoidal_coding
- Unused SBR data when no header has been found

(See page 15, Compression standards and file types.)
Subsidiary payload bit usage histogram [AAC]

Shows the distribution of bits used for the following syntax elements within the subsidiary payload data of each frame:

- **dynamic_range_info**
- **extension_payload**
- **individual_channel_stream**
- **ltp_data**
- **reordered_spectral_data**
- **scale_factor_data**
- **section_data**
- **spectral_data**
- **tns_data**

(See page 15, *Compression standards and file types.*)

Show histogram key

Shows/hides the currently selected histogram and the associated key; the first available histogram is displayed if there is no current selection. The fields listed in the key will vary according to which histogram is displayed.

If a key is open when the histogram overlay is changed, the key will be automatically updated.
Show plot

This menu presents you with a choice of different line chart overlays. The available line plots will depend on the specific audio standard in use. Any combination of the available plots can be plotted at any one time. The plots available for each standard are as follows:

Total frame size [All standards]: The total number of bits used for all data of each audio frame.

Total audio data size [MPEG-1/2]: The total number of bits used for the audio data part of each frame. This consists of all the data that decodes to produce the audio frame, and does not include other data such as the header, error check and ancillary data.

Ancillary data size [MPEG-1/2]: The total number of bits used for the ancillary data part of each audio frame.

Total SBR data size [AAC]: The total number of bits used for the SBR data part of each audio frame.

Total config data size [AAC]: The total number of bits used for the configuration data part of each audio frame. This includes all data used to configure the AAC decoder (for example, ADTS headers, AudioSpecificConfig data).

Total data size [AAC]: The total number of bits used to represent the main and subsidiary payload structures of each audio frame.

Max scalefactor blocks [AAC]: The maximum number of scalefactor bands per group for each audio frame.

Global gain [AAC]: Global gain, equal to the value of the first scalefactor, for each audio frame.
The submenu items available under the Analysis menu item depend on the license available on the software. (See page 194, *ES Analysis enable*.)

When a valid elementary stream license is available, this menu provides access to the Elementary Stream Analysis features. When a valid closed caption analysis license is available, this menu provides access to the Closed Caption Analysis features. (See page 241, *Closed caption enable*.)

This menu controls the collection and display of:

- ES analysis
- Trace information, such as Trace/Parse bitstream and Trace/Interpret
- Graph information
- Fidelity analysis
- The selected layer for SVC streams
- Closed caption analysis

and the display of:

- Hex (hexadecimal) view of stream data
- The structure of the file being analyzed
- Analysis of the video buffer usage

The Analysis options menu item provides access to all the Trace, Graph and Fidelity options as well as setting of the range of frames over which to collect the Trace, Graph and Fidelity information.

NOTE. Trace enable, Graph enable, Fidelity enable, Decoded file output enable, Scalability Level Selection, and Analysis options cannot be set in pause mode - the video must be stopped. Otherwise, MTS4EA cannot ensure that the Trace, Graph, and Fidelity data is collected over the correct range of frames.

ES Analysis enable

When both the Elementary Stream Analysis and Closed Caption Analysis licenses are available, this submenu item allows you to change between the detailed Elementary Stream Analysis and the quick Closed Caption Analysis.

NOTE. You can change between ES and CC analysis modes only when no stream is selected for analysis.
When ES Analysis enable is selected, the available menu options are shown below.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Edit</th>
<th>Alert</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES Analysis enable...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video trace enable...</td>
<td>Ctrl+T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video graph enable...</td>
<td>Ctrl+G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video fidelity enable...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed caption enable...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output decoded video file...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video analysis options...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When Closed caption enable is selected, the available menu options are shown below. (See page 241, Closed caption enable...)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Alert</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES Analysis enable...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video trace enable...</td>
<td>Ctrl + T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed caption enable...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video analysis options...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View video
View video trace Ctrl + Shift + T
View video graphs
View video stream hex Ctrl + H
View video stream structure Ctrl + R
View video buffer analysis
View video fidelity analysis
View bits per video frame analysis
View A/V to SVC MB Percentage View
View CU Size Distribution
View QP Variation
View extracted Closed Caption

Audio trace enable...
Audio analysis options...

View audio
View audio trace
View audio stream hex
View audio stream structure

A/V delay test enable...
View A/V delay analysis

Enforce extra restrictions
Scalability Level Selection...
Video trace enable... Ctrl+T

Analysis mode

The Trace options provide text outputs that describe the contents of an encoded video stream, to various levels of detail. The available Trace options depend on which analysis mode is selected (ES or CC) and which video standard is used. (See page 197, Video standard.)

Figure 3: Video trace enable in ES Analysis mode

Figure 4: Video trace enable in CC Analysis mode
Video standard

The available Trace options vary with each video standard; the screenshot above is for MPEG-4; the screenshots below for H.264/AVC and H.263 respectively.

Figure 5: Video trace enable for H.265/HEVC

Figure 6: Video trace enable for H.264/AVC
NOTE. Using these options can generate a lot of data – files hundreds of MB or more in size, so it is often advisable to collect the data on a range of frames, not all (this is a selectable option).

Alternatively, you can set a maximum file size, after which no more data is output to the trace file. A message is displayed if the specified file size is exceeded. (See page 202, File size limit (available disk space).)

NOTE. The video can be stopped and the Trace file opened immediately after going past the last frame number in the frame range – there is no need to wait until the end of the video sequence.

To set the range of frames over which to collect the Trace data, click on the Frame range tab.
Frame range tab

This option allows you to specify the start and end frames between which to gather the Trace and Graphs information.

NOTE. The frame range set on this tab is the same frame range used for the collection of MacroBlock statistics, where these are collected over a range of frames. (See page 160, Frame range.)

The frame range over which statistics are to be accumulated cannot be changed during pause mode; otherwise the MTS4EA could not ensure that the Trace and Graph data were collected over the correct range of frames. For example, if the video was paused at frame 23 and Trace was enabled for a range of frames from 20-25, the Trace data would be incorrect.

Clicking on Frame range takes you to the frame range tab:
All frames. This option is the default and calculates the sequence statistics from the start of the sequence until the current frame.

To set a range of frames. If the All frames check box is cleared, then a range of frames can be entered (in this case, frames 1 to 17 inclusive):

When a range of frames has been set, the Frame range item on the MB statistics menu changes, with a check mark to indicate a range of frames has been set:
Trace tab The available options on the Trace tab depend on which analysis mode is selected (ES or CC) and which video standard is used. (See page 196, Analysis mode.) (See page 197, Video standard.)

Enable. This option Enables/Disables the Trace output. If the output is disabled, the remaining selections on the Trace tab are unavailable (grayed out) although the values are stored during the current use of the MTS4EA. (They are reset to their default values the next time the MTS4EA is started.)

Filename. By default, the suggested filename is the same as the base name of the input video file (the video filename without the extension).

Any other filename can be entered; the MTS4EA will append a .vpt extension to this filename if it does not already end in this. (.vpt = MTS4EA trace).

To browse to a specific folder and enter the filename there, click on the [...] button:
File size limit (available disk space). Trace files can generate a lot of data: for example, 2–3 MB per frame for the Parse bitstream and Interpret outputs. This means that collecting data over many frames can easily generate a Trace file hundreds of MB in size.

This entry allows you to limit the amount of disk space taken by the Trace file. Once the Trace file reaches this size, it stops writing more data.

Parse Bitstream. If this option is selected, then the bitstream is parsed to a file. This gives the individual bit patterns for the bitstream fields as well as the mnemonic used within the standard to identify the field.

NOTE. The data from the output of Parse Bitstream is one of the best ways that the MTS4EA provides of doing bitstream syntax debugging.

See General codes used in Trace files and Alerts in the Bitstream Syntax Debugging section for detailed information on the meaning of these. (See page 385.)

![Figure 8: MPEG-4 trace parse example](image-url)
Figure 9: H.265/HEVC example, at start of byte stream (full MTS4EA Trace view window)

Figure 10: H.264/AVC example, at start of byte stream (full MTS4EA Trace view window)
Figure 11: H.264/SVC example, at start of byte stream (full MTS4EA Trace view window)

0000 0000 0000 0000 :0000 00-- ---- ---- (0x00000000,7) : PICTURE START CODE
0000 0000 0000 0000 :0000 00-- ---- ---- (0x00000002,4) : START_CODE
0000 0000 00-- ---- ---- ---- ---- (0x00000002,1) : TRIF
1000 0111 0000 0000 --0000 00-- ---- ---- (0x00000003,1) : PTYPE: 1-0-sei-dci-fpfr-sf
0110 1111 0010 0111 0010 0000 0000 --0000 00-- ---- ---- (0x00000004,1) : UEFS
0110 0000 0000 0000 0110 0010 0010 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000005,4) : OPPTYPE
1110 1111 0000 0000 0000 0000 0000 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000007,4) : MPTYPE
0000 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000008,2) : CPR
0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000008,2) : VUI
0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000009,3) : PQNSNT
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000009,3) : MCSEI
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000009,3) : MCBF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000009,3) : CBPF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000010,3) : COEFF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000010,3) : COEFF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000010,3) : COEFF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000010,3) : COEFF
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ---- ---- ---- ---- (0x00000010,3) : COEFF

Figure 12: H.263 example, at start of bitstream
Figure 13: MPEG-2 example with closed caption content, at start of bitstream

NOTE. Interpret also provides an excellent tool to do bitstream syntax debugging. (See page 206, Interpret.)

To quickly find if there are any errors in the Trace file, use the Find Prev/Next buttons on the trace view toolbar to navigate to the next/previous error or warning.
Go to other views/right click menu. A context-sensitive menu (Interpret & Parse Bitstream only) allows you to go to the area in another view which corresponds to the area that has been selected in the Trace file. The CU size distribution and QP variation options are enabled for H.265/HEVC streams only.

NOTE. This right-click context-sensitive menu is only active in the Trace/Interpret and Trace/Parse Bitstream trace files.

Interpret. This provides interpretation of the decoded data in the bitstream. Example outputs are shown in the following diagrams:

NOTE. It is important to also see General codes used in Trace files and Alerts in the Bitstream Syntax Debugging section for an explanation of some of these items. (See page 385.)
MPEG-4 standard names for these parts of the bitstream

For an explanation of the three letter codes, refer to the Bitstream Syntax Debugging section

Figure 14: MPEG-4 trace interpret example

Figure 15: H.264/AVC example, at start of byte stream (full MTS4EA Trace view window)
Figure 16: H.264/SVC example, at start of byte stream (full MTS4EA Trace view window)

Figure 17: H.263 example, at start of bitstream
A context-sensitive menu (Interpret & Parse Bitstream only) allows you to go to the area in another view which corresponds to the area that has been selected in the Trace file. The CU size distribution and QP variation options are enabled for H.265/HEVC streams only.

NOTE. This right-click context-sensitive menu is only active in the Trace/Interpret and Trace/Parse Bitstream trace files.
Alerts [all standards]. When selected, this option filters alerts and provides the alert level, hex address, title, identity, and description.

User Data. When selected, this option shows user data.
Frame summary
[H.265/HEVC, H.264/AVC, MPEG-2, and H.263] or VOP summary
[MPEG-4]

If this level of Trace is selected, then the Frame summary is output to the file, specifying the number of bits generated, the index of the decoded frame, the frame type, the temporal reference (if appropriate) and other data.

This example is for H.263, where Tref is used.

Figure 19: MPEG-2 example (interlaced example with top and bottom fields)

MB row summary [H.264/AVC, MPEG-4, MPEG-2] or GOB summary [H.263] or CTU row summary [H.265/HEVC]. This Trace outputs summary data for each horizontal row of MacroBlocks/CTUs, starting from the top of the frame and working downwards.

Figure 19: MPEG-2 example (interlaced example with top and bottom fields)
Figure 20: H.263 example

(See page 126, Segment [H.263 only].)

Figure 21: H.265 example
MB/CTU summary. For each MacroBlock/CTU, this option provides the location of the MacroBlock/CTU (column and row, frame), the type of coding used, the quantizer used, and the number of bits used. MB/CTU col=0, MB/CTU row=0 is the top left MacroBlock/CTU in the frame.

![Figure 22: H.264/AVC example](image)

Figure 22: H.264/AVC example

<table>
<thead>
<tr>
<th>MB col</th>
<th>MB row</th>
<th>Frame</th>
<th>Type</th>
<th>Coding</th>
<th>Quantizer</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
</tbody>
</table>

Figure 23: MPEG-4 example

<table>
<thead>
<tr>
<th>MB col</th>
<th>MB row</th>
<th>Frame</th>
<th>Type</th>
<th>Coding</th>
<th>Quantizer</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>Frame</td>
<td>1</td>
<td>Intra</td>
<td>Q16</td>
<td>47</td>
</tr>
</tbody>
</table>

MTS4EAV7 User Manual 213
Figure 24: H.265 example
Transform level [H.264/AVC] or DCT level [MPEG-4, MPEG-2, and H.263].

NOTE. In H.264/AVC the report is of transform coefficients that are not DCTs.

For MPEG-4, and H263 this gives three sets of information:

- Before dequantization = the values of the DCT coefficients in the bitstream
- After dequantization = the before values after they have been multiplied by the quantizer matrix

- recon dct = the inverse DCT residual values, before summing with any prediction. The data is written into the file in two separate places – the second part is below:

```
191 191 191 191 191 191 191 191
191 191 191 191 191 191 191 191
197 197 197 197 197 197 197 197

recon_dct = [ 191 191 191 191 191 191 191 191
              191 191 191 191 191 191 191 191
              197 197 197 197 197 197 197 197
              147 147 147 147 147 147 147 147
              145 145 145 145 145 145 145 145
              141 141 141 141 141 141 141 141
              113 113 113 113 113 113 113 113
              97 97 97 97 97 97 97 97
              93 93 93 93 93 93 93 93]
```

In H.264/AVC the report is of transform levels:
In MPEG-2 the data is reported in the following format:

NOTE. This can generate a lot of data.
Pixel level. This lowest level of Trace provides the output pixel values in 8x8 blocks for the video decoding process.

```
{inf] recon_ab Y0 (MB=0; GOB=0; Frame=1)
39 41 43 46 48 50 53 55
35 37 38 41 43 45 47 49
42 44 46 48 49 51 53 55
50 53 54 55 57 59 61 63
53 56 57 59 61 63 65 67
59 61 63 65 67 69 71 73
67 69 71 73 75 77 79 81
93 94 96 98 100 102 104 106

{inf] recon_ab Y1 (MB=0; GOB=0; Frame=1)
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48
40 48 48 48 48 48 48 48

{inf] recon_ab Y2 (MB=0; GOB=0; Frame=1)
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123
123 123 123 123 123 123 123 123

{inf] recon_ab Y3 (MB=0; GOB=0; Frame=1)
100 99 96 93 90 86 84 83
135 134 131 129 126 123 121 120
136 135 134 131 130 128 127 126
119 119 118 118 117 116 116 116
123 123 122 124 125 126 127 127
121 122 123 124 125 126 127 127
111 112 114 117 120 122 125 126
116 117 120 123 126 129 132 133

{inf] recon_ab u (MB=0; GOB=0; Frame=1)
127 127 127 127 127 127 127 127
127 127 127 127 127 127 127 127
118 118 118 118 118 118 118 118
129 129 129 129 129 129 129 129
162 163 162 163 162 163 162 162
191 191 191 191 191 191 191 191
191 191 191 191 191 191 191 191
197 197 197 197 197 197 197 197

{inf] recon_ab v (MB=0; GOB=0; Frame=1)
144 144 144 144 144 144 144 144
147 147 147 147 147 147 147 147
```

NOTE. This can generate a lot of data.
Frame fidelity [H.265/HEVC, H.264/AVC, MPEG-2, and H.263] or VOP fidelity [MPEG-4]. This provides a Trace output of the fidelity analysis frame-by-frame. (See page 236, Video fidelity enable.)

NOTE. The lines in the preceding screenshot for frames 10 and above are empty because the corresponding YUV file stops at this point (there are no more frames in the YUV file). The -1 in the trace file indicates that the YUV file is missing.

Some of the example files provided have the necessary corresponding YUV files for fidelity analysis. (See page 83, YUV source files for example fidelity analysis.)
Figure 25: Frame fidelity – H.265/HEVC example

MacroBlock fidelity. This provides a Trace output of the fidelity analysis for each MacroBlock in the frame range. (See page 236, *Video fidelity enable*....)

NOTE. Some of the example files provided have the necessary corresponding YUV files for fidelity analysis. (See page 83, *YUV source files for example fidelity analysis.*)
Buffer analysis [MPEG-4 Part 2, MPEG-2, H.264/AVC, and H.265/HEVC]. When selected, this option traces the buffer analysis.

The data output for the H.264/AVC standard can include multiple picture buffers. The buffer limit and picture bit rate are supplied at the start of the trace data. The remainder of the trace data indicates the time and the bits present in the buffer. Other information recorded includes when bits are removed, and buffer underflows and overflows. The H.264/AVC trace will only be available if the stream contains sufficient information to perform the buffer analysis.

The data output for the MPEG-2 standard is the same as for H.264/AVC, but only one buffer is ever traced.

The data output for the MPEG-4 Part 2 includes a video buffer verifier (VBV), a video memory verifier (VMV) and a video complexity verifier (VCV). The video buffer outputs the same data as H.264/AVC, that is, buffer limit and picture bit rate. The memory and complexity verifiers output their data in macroblock units.
For H.265/HEVC streams, in the case that the subpicture HRD parameters are available in the stream, the buffer details at the subpicture level are also displayed as part of the buffer trace feature.

Stream summary [all standards]. A summary of the stream properties is appended to the end of all traces, unless it is actively disabled.
Graph enable turns on the collection of statistics for display using Microsoft Excel. It does this by saving the statistics of the decoding process in an .xls file. Microsoft Excel is then run and a macro converts the statistics data into graphs, which are then available in various tabs of Excel.

The collection of statistics varies depending on the standard concerned - for example, there is no DCT as such in H.264/AVC or H.265/HEVC, so this is not available:

Figure 26: H.264 graph
Figure 27: H.265 graph

Many of these graphs are equivalent to the statistical summaries that can be overlaid on the final frame, but are presented in a more visual format.

NOTE. The MTS4EA assumes that the Microsoft Excel program is used for analysis of the provided statistics, and the macro given as part of MTS4EA is designed to operate with Excel versions 97, XP, and 2000 to 2010.

For H.265/HEVC, when the number of CTUs in a frame is more than 10,000, the Excel macros are unable to convert the statistics data into graphs.
Frame range tab

You can set the range of frames over which the statistics are collected can be set. (See page 292, Frame range tab.)

Enable. This option enables/disables the collection of the statistics for the Graph data. When disabled, the Graph tab appears as follows:

![Frame range tab](image)

Filename. By default, the suggested filename is the same as the base name of the input video file given the extension .xls.

A different filename can be entered (but not a different file extension), and the folder where the file is to be stored can be changed by clicking the browse box.

NOTE. An Excel spreadsheet can only be 256 columns wide - if the motion vectors are outside the range ±127, the values are put into bins to scale the values within the 256 columns.
Graphs tab **Spatial bits/MB.** This option creates a graph that shows the average bits per MacroBlock as a contour plot, over a two-dimensional plane that represents the picture. The contours are plotted in different colors, and the meanings of the colors are represented in a key positioned at the side of the graph.
Spatial bits/CTU. This H.265/HEVC option creates a graph that shows the average bits per CTU as a contour plot, over a two-dimensional plane that represents the picture. The contours are plotted in different colors, and the meanings of the colors are represented in a key positioned at the side of the graph.

NOTE. When the number of CTUs in a frame exceeds 10,000, the Excel macros are unable to convert the statistics data into graphs.
Spatial bits/MB coded. This option creates a three-dimensional pyramidal graph, where the height of the pyramid represents the average number of bits each MacroBlock used for each time it was coded.
Spatial bits/CTU coded. This H.265/HEVC option creates a three-dimensional pyramidal graph, where the height of the pyramid represents the average number of bits each CTU used for each time it was coded.

NOTE. When the number of CTUs in a frame exceeds 10,000, the Excel macros are unable to convert the statistics data into graphs.
MV histogram. The motion vector histogram creates a graphical representation of the frequency of use of different motion vectors. This can be used to identify the range of search of the motion estimator in the encoder. The heights of the blocks represent the frequency with which the motion vectors were chosen.
Spatial average quant. This option creates a graph of the quantizer choice at each part of the picture. This can be useful for determining poor quantizer control in certain encoders (often too low quantizers are chosen at the top of pictures, which then overshoots the bit-budget and then higher quantizers must be used progressively as the frame is encoded - meaning that the top of the picture is always coded more accurately than the bottom).
DCT frequency [MPEG-4, MPEG-2, and H.263 only]. This option creates a graph of the frequency with which the different components of the Discrete Transform Cosine are used. The positions of the transmitted coefficients are recorded and shown here for each of the six 8x8 blocks that make up the MacroBlock. This feature can be useful for identifying high frequency noise being transmitted in the picture because of poor front-end filtering.
MB coded frequency. This option creates a graph of the frequency of coding of each MacroBlock. It can help to identify the perpetual encoding of particular regions of the image due to issues in the digitization process, the rate control process, or the sensor.
CTU coded frequency. This H.265/HEVC option creates a graph of the frequency of coding of each CTU. It can help to identify the perpetual encoding of particular regions of the image due to issues in the digitization process, the rate control process, or the sensor.

NOTE. When the number of CTUs in a frame exceeds 10,000, the Excel macros are unable to convert the statistics data into graphs.
Intra coded frequency. This option creates a graph of the frequency of intra coding of each MacroBlock. Over time, each MacroBlock can be updated in Intra mode every so often (as required in the Standards) in case there is a line error or a mismatch between encoder and decoder. Encoders that do this more often are more likely to have better error robustness, although at the expense of more bits being used (as intra coding takes more bits than inter coding).
Intra CTU coded frequency. This H.265/HEVC option creates a graph of the frequency of intra coding of each CTU. Over time, each CTU can be updated in Intra mode every so often (as required in the Standards) in case there is a line error or a mismatch between encoder and decoder. Encoders that do this more often are more likely to have better error robustness, although at the expense of more bits being used (as intra coding takes more bits than inter coding).

NOTE. When the number of CTUs in a frame exceeds 10,000, the Excel macros are unable to convert the statistics data into graphs.
Video fidelity enable...

NOTE. Some options on this tab are different when H.264/AVC High Profile is used.

This opens the Fidelity analysis tab of the Analysis options:

The results of the fidelity analysis are displayed:

- In the Trace files, when the appropriate Trace option is selected (See page 196, Video trace enable... Ctrl+T.) (See page 218, Frame fidelity [H.265/HEVC, H.264/AVC, MPEG-2, and H.263] or VOP fidelity [MPEG-4].) (See page 219, MacroBlock fidelity.)
- As real-time overlays, when the overlay is selected (See page 153, MB statistics.) (See page 159, Fidelity.) (See page 163, Average fidelity.)

Reference filename

The name of the file used as the reference or source of encoding, of the encoded stream.

This file must be one of the following formats:

- 8 bits per sample, 4:2:0
- More than 8 bits per sample, and/or 4:2:2 or 4:4:4 (as used by H.264/AVC High Profile/FRExt, High/10, High/4:2:2, High/4:4:4)
YUV format of 8 bits per sample 4:2:0. The YUV file output is raw YUV with no headers of any kind: this is the same format as used by the Microsoft MPEG-4 Part 2 reference encoder Reference [6] in the Compression Standards and File Types section and as used commonly by other programs: (See page 15.)

- No headers of any kind (no file or frame headers)
- One byte per sample
- Row raster order (top picture row first)
- Planar YUV 4:2:0 sub-sampled (4 bytes of Y data for each byte of U data and each byte of Y data)
- Y plane values are 0-255 unsigned
- U and V plane values are unsigned with a DC offset of 128

Other uncompressed formats. The general uncompressed video file format is as follows:

- No headers of any kind (no file or frame headers)
- Concatenated planar image data
- Row raster order (top picture row first)
- Unsigned samples

For 8-bit sample depth:

- One byte per sample
- For 9-16 bit sample depth:
 - Two bytes per sample
 - Both little- and big-endian byte orders supported

For YUV format:

- Concatenated Y, U and V planes
- U and V planes sub-sampled as required
- Y plane samples are unsigned
- U and V plane samples are unsigned with a DC offset of 2^{-n}, where n is the chroma sample bit depth
For RGB format:

- Concatenated R, G and B planes
- For grayscale format:
 - Luma plane only

NOTE. There are built-in example YUV reference files for three of the example bitstreams: for MPEG-4 Man Walking, for H.264/AVC Grenadier Guards and for MPEG-2 Grenadier Guards. When these example streams are selected and fidelity analysis is enabled, the file names are automatically filled in. (See page 75, Example files.)

Encoding

This control specifies the encoding of image samples in the file format. The following options are available:

- One byte - this specifies that image samples are stored in one byte per sample. This format is appropriate if all image planes are 8-bits deep

- Two byte MSB first - this specifies that image samples are stored in a pair of bytes for each sample. The most significant byte occurs first in each pair (big-endian). This format is appropriate if one or more image planes are deeper than 8-bits

- Two byte LSB first - this specifies that image samples are stored in a pair of bytes for each sample. The least significant byte occurs first in each pair (little-endian). This format is appropriate if one or more image planes are deeper than 8-bits

Header skip

The number of bytes at the start of the file before the first frame: MTS4EA will skip past these bytes (ignoring them).

Use frame rate for synchronization

This checkbox specifies that decoded video frames should be compared to reference frames according to corresponding time stamps. If this checkbox is not selected, then corresponding frame numbers are used.
Frame rate

The rate at which the uncompressed video frames were recorded, in frames per second.

NOTE. The number entered in the Frame rate field can be an integer (for example, 30), or a fraction (for example, 30000/1001) or a decimal number (for example, 29.97).

Note that this frame rate is often different from the frame rate of the encoded video; for example, there can be frame skipping in the encoder, or a lower frame rate selected (such as encoding 30 frames/second video at 15 frames/second).

The Frame Rate value is used to determine which uncompressed video frame to associate with which encoded frame; MTS4EA works out the time code for each uncompressed video frame based upon the Frame Rate value and associates the uncompressed video frame concerned with the encoded frame which has the closest time code.

Metric

This selects the measurement metric to use, which is one of the following:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>Peak-to-signal-Ratio</td>
</tr>
<tr>
<td>PSNR [full signal range]</td>
<td></td>
</tr>
<tr>
<td>PSNR [full signal range]</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MAD</td>
<td>Mean Absolute Difference</td>
</tr>
<tr>
<td>SAD</td>
<td>Sum Absolute Difference</td>
</tr>
</tbody>
</table>

The objective fidelity metrics provided by MTS4EA measure the degradation of the decoded image with respect to a reference image. The metric is evaluated independently for each image plane in the color space dictated by the video decoder (typically YUV).

The fidelity metrics are calculated either per MacroBlock or overall on the frame as a whole, according to the following equations.

For the explanations of fidelity metrics, the following nomenclature is used:

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[...]</td>
<td>Denotes taking the absolute value of an expression</td>
</tr>
<tr>
<td>[\sum]</td>
<td>Denotes the summation of an expression over the range of ((x, y)) in the image plane</td>
</tr>
<tr>
<td>(f(x, y))</td>
<td>Is the sample value at the location ((x, y)) in the reference image plane</td>
</tr>
<tr>
<td>(g(x, y))</td>
<td>Is the sample value at the location ((x, y)) in the decoded image plane</td>
</tr>
<tr>
<td>(N)</td>
<td>Is the total number of samples in the image plane</td>
</tr>
</tbody>
</table>
PSNR (full signal range). The PSNR (Peak Signal to Noise Ratio) metric is defined as the ratio between signal power and noise power, on a decibel scale. In the context of image processing, signal power is taken to be the square of the peak image sample value and noise power is taken as the square of RMS error in the image.

\[
\text{PSNR} = 10 \cdot \log \left(\frac{S^2}{\text{RMS}^2} \right)
\]

For PSNR (full signal range) the peak image value is assumed to be the maximum value for the bit-depth in all three image planes. For example, in an 8-bit image, this implies:

\[
\text{PSNR}_{255} = 20 \cdot \log \left(\frac{255}{\text{RMS}} \right)
\]

PSNR (ITU-R BT.601 signal range). For PSNR (ITU-R BT.601 signal range) the PSNR is calculated differently in Y than in U and V:

\[
\text{PSNR}_Y = 20 \cdot \log \left(\frac{220}{\text{RMS}} \right)
\]

\[
\text{PSNR}_{U,V} = 20 \cdot \log \left(\frac{225}{\text{RMS}} \right)
\]

RMSE (Root Mean Square Error). The RMS is defined as the square root of the MSE.

\[
\text{RMS} = \sqrt{\text{MSE}}
\]

MSE (Mean Square Error). The MSE metric is defined as the mean of the squares of differences between samples in the reference and decoded image planes.

\[
\text{MSE} = \frac{1}{N} \sum_{x,y} [f(x,y) - g(x,y)]^2
\]

MAD (Mean Absolute Difference). The MAD metric is defined as the mean average of absolute differences between samples in the reference and decoded image planes.

\[
\text{MAD} = \frac{1}{N} \sum_{x,y} |f(x,y) - g(x,y)|
\]

SAD (Sum Absolute Difference). The SAD metric is defined as the sum of absolute differences between samples in the reference and decoded image planes.

\[
\text{SAD} = \sum_{x,y} |f(x,y) - g(x,y)|
\]
Closed caption enable...

This opens the Closed Caption tab of the Analysis options and allows you to enable closed caption analysis.

Enable
Use this control to enable/disable closed caption analysis. When you enable closed caption analysis and click OK, the CC availability indicators and closed caption tooltips appear, and the MTS4EA starts pre-scanning the selected file for closed caption content. The pre-scan function scans up to a maximum of 50 MB of the file searching for user data content. The CC availability indicators are updated during the pre-scan, with detected caption types turning green. (See page 360, **Closed caption tooltips and toolbar items**.)

NOTE. In Closed Caption Analysis mode, the **Closed caption enable setting is selected by default.**

Extract CC
Use this control to enable/disable the extracting of the decoded captions to a file.

Caption type. Use the drop-down list to select the type of caption to save to the extracted file: ATSC 608, SCTE 20, SCTE 21, or CEA 708.

File format. Use the drop-down list to select the format of the extracted captions file: .srt (SubRip Test), .scc (Scenarist Closed Caption), or .mcc (MacCaption_MCC).
Starting Timecode. Use this control to select the starting timecode of the extracted captions file: 00:00:00:00 or Read from video file. If the starting timecode is set to be read from the file, but the file has no timecode information, the timecode of the file will automatically be set to start at 00:00:00:00.

Services. Use this control to select which service to read the closed caption data: CC1, CC2, CC3, or CC4. When CEA 708 is the selected caption type, a drop-down box appears to enable the selection of services 1 to 63.

Filename. Use the Filename box to enter the name of the extracted captions file. Alternatively, click the ellipsis button to browse for a file location.

Output decoded video file...

This opens the Decoded output tab of the Analysis options and allows you to write a decoded file to disk.

![Output decoded video file](image)

Encoding

This control specifies the encoding of image samples in the file format. The following options are available:

- **One byte** - this specifies that image samples are stored in one byte per sample. This format is appropriate if all image planes are 8-bits deep.

- **Two byte MSB first** - this specifies that image samples are stored in a pair of bytes for each sample. The most significant byte occurs first in each pair (big-endian). This format is appropriate if one or more image planes are deeper than 8-bits.

- **Two byte LSB first** - this specifies that image samples are stored in a pair of bytes for each sample. The least significant byte occurs first in each pair (little-endian). This format is appropriate if one or more image planes are deeper than 8-bits.
Video analysis options...

The Video Analysis menu option opens the Video Analysis dialog box, which allows you to select and set up the range of video analysis options. The available tab selections depend on the selected analysis mode (ES or CC).

Figure 28: Video analysis options – ES analysis mode

Figure 29: Video analysis options – CC analysis mode
View video

Open the video view.

H.265/HEVC video views

For H.265/HEVC streams only, you can select between showing the Decoded, Predicted, or Residual views using the drop-down box in the toolbar. You can use the Image Inspector to examine the selected view.

Decoded. The Decoded video view shows the video as a combination of the Predicted and Residual views.
Predicted. The Predicted video view shows the video as derived from the Prediction units in the video frame CTUs.
Residual. The Residual video view shows the video as derived from the residual bits used to encode the CTUs on the video frame.
View video navigator

Thumbnail view

This shows a thumbnail view of the frames in a video file, with some basic information.

Two different views can be selected. In either case, a right-click context-sensitive menu allows selection of the other views and navigation to the corresponding frame in the other views (or the start address of the corresponding frame, as appropriate). (See page 249, Right-click popup menu/Goto views.)

The video frames are shown in display order (decode order can be different if there are B-frames/B-VOPs).

The displayed information is:

- Frame type/VOP type
- Display frame/VOP number
- Display time in seconds

NOTE. For interlaced bitstreams, the frame/VOP type reported is that relating to the second field in a frame. This means that if the top field is first in frame/VOP 1 (and this will always be Intra-coded) and the bottom field is Inter [P] coded, the frame will be reported as P.
Analysis menu

Detail view

![Video Navigator: MTS4EA Example - Window Car](image)

Figure 30: Video navigator — ES Analysis mode

![Video Navigator: Closed Caption Example - 525i-Tek CC Test](image)

Figure 31: Video navigator — CC Analysis mode

NOTE. In CC Analysis mode, the details in the video navigator depend on the type of MTS4EA license.
The displayed information is:

- Display frame/VOP number
- Frame type/VOP type

NOTE. For interlaced bitstreams, the reported frame/VOP type is that relating to the second field in a frame. This means that if the top field is first in frame/VOP 1 (and this will always be Intra-coded) and the bottom field is Inter [P] coded, the frame will be reported as P.

- Decode frame/VOP number
- Display time in seconds
- Frame size in bits
- Address of start of frame (in the video elementary stream, not in the overall container file if there is one)

The columns may be resized and dragged into a different order if desired.

Right-click popup menu/Goto views.

(See page 50, Synchronized views/navigating the views.)
View video trace Ctrl+Shift+T

This option opens the Trace view on the current output Trace file, enabled using the Analysis > Video trace enable… option. (See page 196, Video trace enable… Ctrl+T.)

The screenshot below shows a Trace file in which the following options have been selected when creating the file: Alerts, DCT, Buffer, and Summary.

All available trace options are displayed in the example screenshot. The display of different trace options can be selectively toggled by pressing the relevant button in the Trace view toolbar. Trace options not selected when creating the trace file are greyed out.
In the following example screenshot, the DCT and Buffer trace options have been turned off and are therefore not displayed.

An additional filtering feature is the custom filter; the text box on the right side of the Trace view toolbar. By entering a string in the custom filter text box and selecting Filter, only those lines containing the entered text present in the current display will be displayed. The custom filter is applied to the currently displayed trace data. The filter text box is highlighted when in use. If one of the normal filter buttons is selected, the normal trace display is reinstated.

NOTE. If there is not a current Trace file (and Trace enable is not enabled) then this menu option/toolbar icon is unavailable (grayed out).

Trace files created by versions of MTS4EA prior to version 6 will be loaded as plain text, without color highlighting or smart filtering.

If the video stream has been rerun and a Trace file saved with the same name as that already open, then clicking the View trace menu option or icon or Ctrl+V will refresh the open Trace file.
Go to other views/right click menu - Interpret & Parse Bitstream only

When you right-click, a context-sensitive menu appears that allows going to the area in another view which corresponds to the area which has been selected in the Trace file.

Copying text

The filtered contents of the Trace window can be copied to the Windows clipboard. This can be done in several ways:

- By pressing Ctrl+C
- By right-clicking with the mouse and selecting Copy
- By clicking the copy icon -

The whole of the contents can be selected by clicking the Select All icon -

Line numbers

Line numbers can be turned on/off:

Line numbers displayed are those within the whole file (see following screenshot), not just those in the visible, filtered lines.
Find data

The Trace file can be searched for any data, using the Find: Prev (previous) and Next buttons. This finds the previous/next occurrence of any of the enabled strings. The line containing the result will be indicated by highlighting and red arrows in the margin.

NOTE. The F3 key can also be pressed, to find next. The Shift+F3 key can also be pressed, to find previous.

There are some standard strings that are useful to search for:

- Error
- Warning
- Frame

These are found by enabling the relevant check box (Frame example below):
To search for any text, select the box next to Text and enter the text in the box (in this example, “Block=Y0”):

When the current view is filtered, the find feature will still search the whole (unfiltered) file, but if the result is not being currently viewed, the closest visible line will be indicated with red arrows.

Closed captions

When closed caption data exists in the stream, you can view the caption data in the Trace file whether or not closed caption analysis is enabled.
Lines too long for window width

If a line is too long to be displayed within the width of the View trace window, then a horizontal scroll bar is displayed and a blue arrow is appended to the right-hand side of the View trace window, to indicate that a line extends to the right.

Trace file export

The MTS4EA saves Trace files with a .vpt file extension. Files are exported with the currently filters active; only the displayed content is exported.

Currently, the .vpt file is a standard ASCII file, which could be viewed in any text file viewer. The .vpt extension is associated with the MTS4EA in Windows, and by double-clicking on a .vpt file in Windows Explorer, the file is automatically opened in the MTS4EA.

Trace file import

Using the File > Open other… option, previously saved or exported trace files can be opened. Older files will be opened as simple text file; only custom filtering can be applied.
View video graphs

This option calls Microsoft Excel to display the graphs generated: a macro is then run within Excel to create the graphs.

NOTE. Macros must be enabled within Microsoft Excel to see the graphs.

The default selection within Microsoft Excel is (usually) to disable macros (as below) - you must click on Enable Macros:

![Microsoft Excel dialog box](image)

NOTE. The data used to generate the graphs is available on the Data tab in the Excel file.

The statistics options selected on the Graph enable tab within MTS4EA are then displayed on individual tabs within Excel:
View video stream hex Ctrl+H

This opens the current video file in a hex viewer, which shows the data in binary, hexadecimal and ASCII data (in any combination of the three).

NOTE. *Multiple View hex windows can be opened at the same time.*
Using HexView, you can scroll through the file, and search for specific:

- Absolute address (from the start of the file)
- Relative address (from the currently selected location)
- Bit patterns
- Hex data
- ASCII data

NOTE. In the field where the data to find is entered, a wildcard character can be entered - this is . [period]

Also, entering a hex value, then clicking Dec will convert this number to decimal (and vice versa).
Setting information displayed; window width

The HexView window can be set (for example, resized) as with any other window in Windows.

The same data is shown in each of the three sections, in their respective formats:

- **Binary**
- **Hexadecimal**
- **ASCII**

Each of these areas can be individually displayed/not displayed by clicking the appropriate check box in the top left.
Setting bytes per line

This menu is used to set the number of bytes per line:

If the current width of the window is insufficient to show all the columns, then a scroll bar automatically appears at the bottom, allowing scrolling left/right to see all the columns, as in the following example:
Right-clicking in the HexView window generates the menu:

The top four buttons of the menu have the same functions as the buttons given on the top line (and as the HexView settings option on the Window menu).

Goto view. The Goto view takes the focus to the corresponding area in the selected view. (See page 50, *Synchronized views/navigating the views.*)

Synchronize views. When the Synchronize views icon is pushed in, then all open windows automatically follow the selection. (See page 50, *Synchronized views/navigating the views.*)
Highlighting a section

A section of data can be highlighted in any of the (visible) binary, hex or ASCII sections by clicking and dragging the mouse over the area:

A specific address can be found in the video stream, either of the following:

- An absolute address, from the start of the video file
- A relative address, from the first byte of the currently selected area
Find absolute address. To go to an absolute address, select Absolute address from the drop-down menu:

<table>
<thead>
<tr>
<th>Goto</th>
<th>Absolute address</th>
<th>Hex</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01000010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00011110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11011111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>11011110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The address to find is entered in the box next to the Goto button. This address can be in hex or decimal. If an invalid character is entered for an address (for example, entering anything other than 0-9 or a-f for a hexadecimal address) then the Goto button is grayed out.

Note that the Goto button changes to Next for all data to find except for the Absolute address. (And when Absolute address is selected, the Prev button is grayed out.)

The Hex/Dec radio button selects the format of the data being searched - Hexadecimal or Decimal.

Find relative address. An address relative to the currently highlighted address can be found. If no address is highlighted, the address found is the offset from 0.

The address to find is entered in the box next to the Next button. This address can be in hex or decimal. If an invalid character is entered for an address (for example, entering anything other than 0-9 or a-f for a hexadecimal address), the Find button is grayed out.

NOTE. The F3 key can be used, to find next; Shift+F3 key, to find previous.

The Hex/Dec radio button selects the format of the data being searched.

Find binary/hex/ASCII. These options in the menu find data in the bitstream. Up to 64 characters can be entered.

NOTE. The Binary search searches for the bit pattern regardless of byte location; the Hex and ASCII searches are byte aligned.

The F3 key can be used, to find next; Shift+F3 key, to find previous.
Wildcard searching using period. A wildcard can be entered in the data to be found - . [period].

The wildcard matches a single digit in the selected base; the wildcard matches:

- One bit in the binary find
- A hex digit in the hex find
- An ASCII character in the ASCII find

For example, entering ‘0001B.’ as a hex string will find the following patterns in the selected example stream:

![Image showing wildcard search result]

The wildcard can be inserted in any position, for example, ‘03..456.8’ is a valid search string, which will find any 9 consecutive digits where the first two are 03, digits 5-7 are 456, and the last digit is 8.

![Image showing wildcard search result]

Conversion of hex<->decimal

If a hex value is entered into the find box:

![Image showing conversion interface]

When the Dec button is clicked, this value is converted to hex (and vice versa):
View video stream structure Ctrl+R

This allows the structure of all supported container formats to be viewed and expanded/contracted (by clicking on the - and + symbols at the left end of each line). In addition, for H.264/AVC video elementary stream format, the view shows the top-level structure of the stream.

The view is divided into four columns:

- **Syntax**: Shows the stream syntax parse tree, including the names of each syntax element or syntactic structure. Nested syntax structures are shown by nesting nodes of the tree. An icon shows the type of data at each tree node. (See page 267, Icons in Stream structure view.)

- **Value**: Shows the interpreted value of syntax elements in the tree. The content of this field will vary according to the type of data to be shown.

- **Start bit**: Shows the start bit address of the syntax node. The address is given as a hexadecimal byte position followed by a bit position number.

- **Size**: Shows the size in bits of the syntax node. For nodes with children, this shows the total bits of the node and all its children.
The following example shows the video stream structure for a H.264/SVC stream:
In the Stream structure view, the icons that appear at the node of each branch of the tree structure denote the type of data contained in that node. There are several icons which are common to all standards as described in the following table.

Table 4: Icons general to all standards

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🎥</td>
<td>Video elementary stream</td>
</tr>
<tr>
<td>🎧</td>
<td>Audio elementary stream</td>
</tr>
<tr>
<td>📦</td>
<td>Container stream</td>
</tr>
<tr>
<td>🖼️</td>
<td>Packet or other syntactic grouping (various colors used – see standard specific icons)</td>
</tr>
<tr>
<td>📜</td>
<td>Binary data</td>
</tr>
<tr>
<td>🔔</td>
<td>Integer data field</td>
</tr>
<tr>
<td>☑️</td>
<td>Binary data field</td>
</tr>
<tr>
<td>☐️</td>
<td>Exponential-Golomb coded data field</td>
</tr>
<tr>
<td>🧶</td>
<td>String data field</td>
</tr>
<tr>
<td>🔗</td>
<td>Identifier data field</td>
</tr>
<tr>
<td>🕒</td>
<td>Time data field</td>
</tr>
<tr>
<td>🕗</td>
<td>Custom data field</td>
</tr>
<tr>
<td>❓</td>
<td>Unknown data field</td>
</tr>
<tr>
<td>💻</td>
<td>User data</td>
</tr>
<tr>
<td>🔨</td>
<td>Array based data structure</td>
</tr>
<tr>
<td>🕗</td>
<td>List based data structure</td>
</tr>
<tr>
<td>🎥</td>
<td>Video ES slice data</td>
</tr>
<tr>
<td>🎥</td>
<td>Video ES macroblock data</td>
</tr>
</tbody>
</table>
The following table shows icons that are specific to different standards.

Table 5: Standard specific icons

<table>
<thead>
<tr>
<th>Standard</th>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.264/AVC</td>
<td></td>
<td>IDR access unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-IDR access unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'moov' box type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'mdat' box type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'trak' box type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generic MP4 descriptor</td>
</tr>
<tr>
<td>MPEG-2 TS</td>
<td></td>
<td>Transport packet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program association section</td>
</tr>
<tr>
<td>MPEG-2 PS, PES</td>
<td></td>
<td>System header</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pack header</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pack syntactic structure</td>
</tr>
<tr>
<td>ASF</td>
<td></td>
<td>Header object</td>
</tr>
<tr>
<td></td>
<td></td>
<td>File properties object</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stream properties object</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Index object</td>
</tr>
</tbody>
</table>
Creating sub-streams

The MTS4EA allows you to create a sub-stream from an AVC or HEVC elementary streams. To create a sub-stream:

1. Open the Stream Structure View.

2. Select any access unit, and then right-click on it.

3. Click Create Sub-stream.

4. Select Mark start point to select the start point.

5. Select Mark end point to select the end point.

NOTE. The sub-stream will have its own start and end points based on the Access Unit.

6. Save the created sub-stream by selecting the location and specifying a stream name.
View video buffer analysis

This allows the buffer usage to be analyzed in detail. The analysis varies by video standard:

For H.265/HEVC the analysis is of:
- Performance using the HRD at the picture level (Access Unit level - displayed in red)
- Performance using the HRD at the sub-picture level, if available (Decoding Unit level - displayed in dotted blue)

For H.264/AVC the analysis is of:
- Performance using the Hypothetical Reference Decoder (HRD) (displayed in red)

For MPEG-4 the analysis is of:
- Video Buffer Verifier (displayed in Red)
- Video Complexity Verifier (displayed in Green)
- Video Memory Verifier (displayed in Blue)

For MPEG-2 the analysis is of:
- Video Buffer Verifier (displayed in Red)

The icon controls and general look of the buffer analysis is the same for all standards:

- The buffer analysis controls that are common to all standards are explained in the sections beginning Buffer analysis toolbar icons to Buffer analysis alerts/scroll bar area (although some of the diagrams in these sections are specific to a standard regarding the titles and data content, the functions are the same across all standards). (See page 271, Buffer analysis toolbar icons.) (See page 275, Buffer analysis alerts/scroll bar area.)

- MPEG-4 and MPEG-2 VBV analysis are very similar and are explained in the sections beginning Buffer analysis controls: MPEG-4 and MPEG-2 to Buffer analysis popup alerts: MPEG-4 and MPEG-2. (See page 276, Buffer analysis controls: MPEG-4 and MPEG-2.) (See page 278, Buffer analysis popup alerts: MPEG-4 and MPEG-2.)
- The H.264/AVC HRD analysis is distinct and is explained in the sections beginning **HRD buffer analysis: H.264/AVC** (See page 278.) to **HRD buffer overflow/underflow indication: H.264/AVC** (See page 281.).

- The H.265/HEVC HRD analysis is distinct and is explained in the sections beginning **HRD buffer analysis: H.265/HEVC** (See page 279.) to **HRD buffer overflow/underflow indication: H.264/AVC** (See page 281.).

Buffer analysis toolbar icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoom in (+) and zoom out (-) centered on the center of the window (affects scale of x-axis only)</td>
</tr>
<tr>
<td></td>
<td>Fit all data into window</td>
</tr>
<tr>
<td></td>
<td>Locate origin (zero), start of sequence</td>
</tr>
<tr>
<td></td>
<td>Lock X/Y zoom in/out and scrolling/panning. For example, when the Lock Y button is pressed, zoom in and zoom out and scroll/pan only affect the X-direction. This allows (for example) you to keep a useful vertical scale, while still viewing the whole length of the video sequence</td>
</tr>
<tr>
<td></td>
<td>Autoscroll (fill the analysis data in real-time) as the video is being decoded and scroll the window to the right</td>
</tr>
<tr>
<td></td>
<td>Increase track height (affects scale of y-axis only)</td>
</tr>
<tr>
<td></td>
<td>Decrease track height (affects scale of y-axis only)</td>
</tr>
<tr>
<td></td>
<td>Measure the data at the cursor. The data values are reported on the status line at the bottom of the analysis window. Offsets and angles/slopes of lines can also be measured, by holding the mouse and dragging</td>
</tr>
<tr>
<td></td>
<td>Scroll/pan (the cursor changes to show the scroll/pan direction)</td>
</tr>
<tr>
<td><img src="image" alt="Zoom in/zoom out centered on the location of this cursor. Press the <shift> key to zoom out" /></td>
<td>Zoom in/zoom out centered on the location of this cursor. Press the <shift> key to zoom out</td>
</tr>
</tbody>
</table>

These functions are also available on the right-click menu.
Using the measure tool

Moving the measure tool over the graph displays the values in the status line:

Comparative Video Verifiers

Point: (-0.149 s, 84 %)
The left-hand value is the X-axis (time) value in seconds, to the nearest millisecond; the right-hand is the Y-axis value: either in percentage terms, if there is more than one graph; or in the correct units, if there is only one graph (as below)

Video Buffer Verifier

Point: (0.266 s, 564093 bits)
(Only the VBV is shown here)
Click and drag the mouse to measure the distance (X and Y) and angle:

Start: (0.181 s, 280397 bits) End: (0.312 s, 333178 bits) Delta: (0.132 s, 52781 bits) Gradient: 490445 bits/s
Buffer analysis graph area

The left axis displays:

- Values normalized to 100%, if there is more than one graph
- Values appropriate for that graph (see the following figure)

When the buffer data is too wide/too high for the current window, scroll bars appear at the bottom/right (as appropriate).
Buffer analysis alerts/scroll bar area. The buffer overflow/underflow is indicated in the Graph window as shown below:

Each bar line fills and auto-scales, corresponding with the horizontal scroll bar (B=VBV, C=VCV, M=VMV) Red shows overflow; yellow shows underflow

Each buffer item changes to red or yellow if there has been any overflow/underflow, and the number indicates in how many frames there is non-conformance. If there is both overflow and underflow, the color is red.

MPEG-4 and MPEG-2 buffer analysis. All the example screenshots and explanations below are for MPEG-4; similar displays and information are used for MPEG-2.
Buffer analysis controls: MPEG-4 and MPEG-2.

Configure the buffer analysis using one of the following methods:
- Use the values supplied in the bitstream (the check box shows from where in the streams the values come).
- Enter custom values to suit the hardware on which the decoder will run (see below also)

Individually enable/disable the various buffer displays

The values used for VBV, VCV and VMV are displayed, but cannot be altered unless Use custom parameters is selected.

The boxes below the title Use parameters from stream header show where the values used have come from: in the example above, there were no values specified in the vbb_parameters, nor was there a profile_and_level_indication, so the maximum value implied by Simple Profile as given in the video_object_type_indication is used.

NOTE. There is an order of precedence: if the vbb_parameters are specified in the bitstream, then these values are used; if not, then the maximum values are used as allowed in the Profile/Level given by the profile_and_level_indication. If there is no profile_and_level_indication, then the maximum values are used as implied by the video_object_type_indication.
Use custom buffer parameters: MPEG-4 and MPEG-2. Custom parameters can be entered for a variety of reasons, for example:

- The VBV/VCV/VMV parameters have not been specified in the bitstream: in this case the MTS4EA will assume the maximum allowable values for the Profile/Level and these may be too large for the particular operation.

- The VBV/VCV/VMV parameters specified in the bitstream do not reflect the actual limitations of the hardware on which the decoder will have to decode the bitstream.

- To try different values to see if the conformance parameters are met with different limits.

Custom parameters are entered as below:

When custom parameters are used, this is indicated in the status bar of the main MTS4EA window by the word BUF:

NOTE. These values can also be selected/entered from the Decoder options selection on the Play menu (the MPEG-4 tab).

The values entered as Custom parameters affect both the alert popup warnings and the warnings that are reported in the Trace files; the Custom parameters are the values used to trigger these warnings.

To reset the values entered to the values specified by the bitstream, reselect the Use parameters button from the stream header.
Buffer analysis popup alerts: MPEG-4 and MPEG-2. Where the bitstream exceeds the values given by:

- `vbv_parameters`
- `profile_and_level_indication`
- The custom parameters

When each of these is selected as the source of the parameters, popup alerts occur during video decoding unless disabled in the Alerts menu (the video must be playing for the popup alerts to be generated).

NOTE. When the buffer parameters are implied by `video_object_type_indication`, no popup alert is generated in the event of exceeding the limits, nor is there a warning in the Trace files. This is in accordance with the implied rules in the MPEG-4 standard.

HRD buffer analysis: H.264/AVC. The Hypothetical Reference Decoder (HRD) in H.264/AVC provides a complex mechanism for buffer analysis; this is much more complex than the buffer analysis in MPEG-4/MPEG-2.

NOTE. The HRD analysis is of the Coded Picture Buffer (CPB) only, not of the Decoded Picture Buffer (DPB).

In order to understand the HRD analysis, you must read and understand Annex C of the H.264/AVC standard, ISO document 14496-10 (E).

HRD parameters do not have to be specified in a bitstream; many H.264/AVC streams do not have them specified (only the Bus Junction and Grenadier Guards H.264/AVC example streams provided with the MTS4EA have HRD information).

NOTE. If HRD parameters are not provided in an H.264/AVC bitstream, the icon and menu item for View buffer analysis is grayed out.

HRD buffer analysis: H.264/SVC. HRD buffer analysis is not supported for H.264/SVC streams. When you open a H.264/SVC stream, the icon and menu item for View buffer analysis is grayed out.
HRD buffer analysis: H.265/HEVC. The H.265/HEVC HRD analysis is similar to the H.264/AVC HRD analysis at the picture level. In addition, it can contain some parameters, at the subpicture level. The operations at the subpicture level are similar to the ones at the picture level, except that they apply to a subset of NAL units (called “Decoding Units”), comprising the entire picture.

The HRD operation is explained in detail in Annex C of the HEVC standard.

HRD parameters do not have to be compulsorily specified in a bitstream; many HEVC streams do not have them specified.

NOTE. If HRD parameters are not provided in a HEVC bitstream, the icon and menu item for the View buffer analysis is grayed out.

HRD list of schedule indexes (buckets): H.264/AVC and H.265/HEVC. Due to the complexity of HRD analysis, entering custom parameters is not currently possible in MTS4EA; the display shows the list of indexes or buckets that are given in the bitstream.

If the HRD parameters are given in a bitstream, there can be 1 to 31 indexes or buckets, numbered from 0.

In the following example below, there are two indexes/buckets: index 0 is selected and is used for the graph display, as shown. Clicking on the line below would display the data from index 1 in the graph display.

The meanings of the column headings are:

Index: The bucket or index number.

CPB size (bits): The size in bits of the Coded Picture Buffer (CPB).

Bit rate (bits/s): The bit rate of the hypothetical transmission channel.

Initial delay (s): The initial delay of the hypothetical transmission channel before the first frame is decoded.

CBR flag: The status of the Constant Bit Rate (CBR) flag: 0=off; 1 = on.
Subpicture HRD details: H.265/HEVC. The Number of DUs column specifies the number of Decoding Units contained in each frame. The meanings of the other columns are similar to the picture level details.

<table>
<thead>
<tr>
<th>Index</th>
<th>CPB size (bits)</th>
<th>Bit rate (bits/s)</th>
<th>Initial delay (s)</th>
<th>Number of DUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>368640</td>
<td>614400</td>
<td>0.480200</td>
<td>4</td>
</tr>
</tbody>
</table>

HRD results display: H.264/AVC and H.265/HEVC. When a bitstream has HRD parameters specified, and the HRD buffer analysis has been done by MTS4EA, clicking on the appropriate index/bucket number displays the graph for that index/bucket (in the following example, index/bucket number 0):

The areas of the graph display are explained in *Buffer analysis graph area* (See page 274.) and *Buffer analysis alerts/scroll bar area* (See page 275.).
As examples:

- Frame type and number is given at the top of the graph (in light gray)
- The vertical lines correspond with the decode times of the relevant frame

NOTE. In case of H.265/HEVC, the dotted blue vertical lines correspond to the decode/removal times of the appropriate Decoding Unit (DU).

Removal time legend:

	DU removal time
1	AU removal time

HRD buffer overflow/underflow indication: H.264/AVC and H.265/HEVC. HRD buffer analysis overflow and underflow is indicated in the following locations:

- The bar line below the graph area
- The status bar
- Popup alerts

The bar line and status bar indications are the same as overflow and underflow indications for MPEG-4/MPEG-2. (See page 275, *Buffer analysis alerts/scroll bar area*.)

The popup alerts for HRD buffer overflow/underflow are shown on-screen and enabled/disabled as with any other popup alert. (See page 321, *Explanation of Fatal/Error/Warning/Info display*.)
View video fidelity analysis

This displays the fidelity analysis graph view:

![Fidelity Analysis Graph View](image)

The fidelity analysis graph view is similar to the graph view used for buffer analysis in MPEG-4, MPEG-2 and H.264/AVC. Both views have the same:

- Control icons (See page 271, *Buffer analysis toolbar icons.*)
- Method of displaying frame types, frame numbers, frame times in the graph area. (See page 274, *Buffer analysis graph area.*)
- Means of measuring angles (See page 272, *Using the measure tool.*)
- Right-click popup menu

The fidelity analysis results are shown separately for Y, U and V planes:

- Y-plane in mauve
- U-plane in green
- V-plane in blue
NOTE. The MPEG-4 example stream Man Walking has the YUV reference file supplied with MTS4EA: therefore this is a useful example to choose to examine the fidelity analysis functions.

The first ten frames of the YUV reference file are supplied for the Grenadier Guards example streams that are provided with MTS4EA both as an H.264/AVC example and as an MPEG-2 example.

Where the frame rate is incorrectly set for the uncompressed video file, then the correspondence between the encoded video frames and the uncompressed video source frames is lost; this will substantially reduce the fidelity analysis values.

Fidelity analysis view icons toolbar

The icons above have the same functions as the icons on the buffer analysis toolbar; see Buffer analysis toolbar icons. (See page 271.) The icons below are unique to the Fidelity analysis view:

Of these three, the first two are available at all times. The third is only available when interlacing is in use and the picture can be broken down into units; it is grayed out at all other times.

These icons represent the following:

The ability to plot time in seconds on the x-axis, as shown:

The ability to plot frame number on the x-axis, as shown:
The ability to plot picture units on the x-axis, as shown:

Fidelity metrics available. Six different fidelity metrics are available:

- **PSNR (255 signal range)**
- **PSNR (ITU-R BT.601 signal range)**
- **RMSE (Root Mean Square Error)**
- **MSE (Mean Square Error)**
- **MAD (Mean Absolute Difference)**
- **SAD (Sum Absolute Difference)**

(See page 239, *Metric.*)
View bits per video frame analysis

This displays the Bits per Frame Analysis graph.

Figure 32: Bits per Frame Analysis graph – MPEG-4 example

Figure 33: Bits per Frame Analysis graph – H.265/HEVC example
Depending on the stream format, the key (on the right side) gives a color code for the VOP/frame types; for more information see VOP type [MPEG-4] or Frame type [H.265/HEVC, H.264/AVC, MPEG-2, H.263, VC-1]. (See page 116.)

In addition to the standard buttons, the toolbar contains two buttons that allow the X-axis to be either frame or picture oriented:

The Frame unit toolbar button displays the total bits per frame; for interlaced pictures this would be the sum of the picture fields:

Figure 34: Bits per Frame Analysis graph – MPEG-2 example of Frame units display
The Picture units toolbar button also displays the total bits per frame, but, in the case of interlaced pictures, each frame contains two picture fields:

![Bit per Frame Analysis graph - MPEG-2 example of Picture units display](image)

Figure 35: Bits per Frame Analysis graph – MPEG-2 example of Picture units display

The bits per frame can be measured by selecting the toolbar measurement tool, placing the crosshair cursor over the point to be measured, and reading the result from the left side of the status bar.
View AVC to SVC MB percentage view

This displays the AVC versus SVC MB percentage for the current picture. The key (on the right side) gives a color code for the MB types (SVC and AVC).

View CU size distribution

For H.265/HEVC, this displays the CU Size Distribution analysis graph. The key (on the right side) gives a color code for the different CU size types.
View extracted Closed Caption

When closed caption analysis is enabled and the Extract CC option is enabled, this displays the extracted closed caption file. The file displays details about the closed caption contents.
View QP variation

For H.265/HEVC, this displays the Quantization Parameter Variation analysis graph. The key (on the right side) gives a color code for the Maximum, Mean and Minimum QP values within a frame.

In the case when the Maximum, Mean and Minimum QP values are the same, the graph will appear as shown below.
Audio trace enable...

The Trace options provide text outputs, which describe the contents of an encoded stream, to various levels of detail. The available options vary with each audio standard, see following sections (unless otherwise stated, each option applies to every audio standard).

NOTE. Using these options can generate a lot of data - files hundreds of megabytes or more in size. It may be advisable to collect the data on a range of frames, not all (this is a selectable option).

Alternatively, you can set a maximum file size, after which no more trace data is output to the selected file.

NOTE. The audio can be stopped and the Trace file opened immediately after going past the last frame number in the frame range – there is no need to wait until the end of the sequence.

NOTE. To set the range of frames over which to collect the Trace data, click on the Frame range tab.
Frame range tab

This option allows you to specify the start and end frames between which to gather the Trace information.

![Frame range tab](image)

NOTE. Frame range is unavailable in pause mode (indicated when the Pause icon is pushed in on the toolbar and Play menu). This is because the frame range over which statistics are to be accumulated cannot be changed during pause mode. (If it could, you would not be sure that the Trace information was collected over the correct range of frames.) For example, if the audio was paused at frame 23 and Trace was enabled for a range of frames from 20-25, the Trace data would be incorrect.

All frames. This option is the default and calculates the sequence statistics from the first to the last frame.

To set a range of frames. If the All frames check box is cleared, a range of frames can be entered (in this case, frames 1 to 17 inclusive):

![Frame range tab](image)
Trace tab **Enable.** This option enables/disables the Trace output. If the output is disabled, the remaining selections on the Trace tab are unavailable, although the values are stored during the current use of MTS4EA (they are reset to their default values the next time the MTS4EA is started).

Filename. By default, the filename suggested is the same as the base name of the input audio file, that is, the audio filename without the extension.

Any other filename can be entered; MTS4EA will append an .vpt extension to this filename if it does not already end in this (.vpt = MTS4EA trace).

To browse to a specific folder and enter the filename there, click on the [...] button:
File size limit (available disk space). Trace files can generate a lot of data. This means that collecting data over many frames can easily generate a Trace file hundreds of megabytes in size.

This entry allows you to limit the amount of disk space taken by the Trace file. Once the Trace file reaches this size, it stops writing more data.

Parse bitstream. If this option is selected, then the bitstream is parsed to a file. This gives the individual bit patterns for the bitstream fields as well as the mnemonic used within the standard to identify the field.

The preceding example is the Parse bitstream output for an MPEG-1 Audio Layer II stream.

To quickly find if there are any errors in the Trace file, simply use the Find next button function and search on either ‘Error’ or ‘Warning’.

NOTE. The data from the output of Parse bitstream is one of the best ways that MTS4EA provides to do bitstream syntax debugging.
Go to other views/right click menu. A context-sensitive menu, brought up by a right-click of the mouse, is available in Interpret and Parse bitstream files. It allows you to:

- Copy selected trace data to the clipboard.
- Go to the area in another view that corresponds to the area that was selected in the Trace file.

NOTE. The right-click 'Goto view' context-sensitive menu is only active in the Trace/Interpret and Trace/Parse Bitstream trace files.

Interpret. This provides interpretation of the decoded data in the bitstream. Example outputs are shown below for MPEG-1:

```
{0x00000000.7} [ATS HDR] syncword = 00ff
{0x00000001.3} [ATS HDR] 18 = 1 : MPEG Audio (ISO/IEC 11172-3)
{0x00000002.2} [ATS HDR] Layer = 2 : Layer II
{0x00000002.0} [ATS HDR] protection_bit = 1 : CRC protection absent
{0x00000002.7} [ATS HDR] bitrate_index = 10 : Bitrate is 192 kbits/s
{0x00000002.2} [ATS HDR] sampling_frequency = 1 : Sampling frequency is 48000 Hz
{0x00000002.1} [ATS HDR] padding_bit = 0 : Padding absent
{0x00000002.0} [ATS HDR] private_bit = 0
{0x00000003.7} [ATS HDR] node = 0 : Stereo
{0x00000003.5} [ATS HDR] node_extension = 0 : For joint stereo, subbands 0-3 coded in stereo, 4-31
{0x00000003.3} [ATS HDR] copyright = 0 : No copyright
{0x00000003.2} [ATS HDR] original_copy = 0 : Copy, not original
{0x00000003.1} [ATS HDR] emphasis = 0 : No emphasis present
{0x00000004.7} [ATS AUD] allocation = 5 : 63 quantization levels. no sample grouping
{0x00000005.7} [ATS AUD] allocation = 3 : 15 quantization levels, no sample grouping
{0x00000005.5} [ATS AUD] allocation = 3 : 15 quantization levels, no sample grouping
{0x00000006.7} [ATS AUD] allocation = 3 : 15 quantization levels. no sample grouping
{0x00000006.5} [ATS AUD] allocation = 3 : 15 quantization levels. no sample grouping
{0x00000007.7} [ATS AUD] allocation = 3 : 15 quantization levels. no sample grouping
{0x00000007.5} [ATS AUD] allocation = 4 : 9 quantization levels. 3 samples grouped in one code
{0x00000008.7} [ATS AUD] allocation = 4 : 9 quantization levels. 3 samples grouped in one code
{0x00000008.5} [ATS AUD] allocation = 4 : 9 quantization levels. 3 samples grouped in one code
```

NOTE. To quickly find if there are any errors in the Trace file, use the Find Prev/Next buttons on the trace view toolbar to navigate to the next/previous error or warning.

Go to other views/right-click menu. By right-clicking with the mouse, a context-sensitive menu appears (Interpret & Parse Bitstream only), which allows you to: Copy selected trace data to the clipboard.

Go to the area in another view which corresponds to the area which has been selected in the Trace file.

Audio frame summary. This Trace output provides a series of data items dependent on the audio standard; for each individual audio frame, it will output data as listed here. All items after the first are per channel, and this portion of the list is repeated once for each channel in the audio stream. The n in square brackets is replaced by the index of the channel the data item refers to.
AAC:
- Frame number
- Total SBR data size \(n \) (bits)
- Total config data size \(n \) (bits)
- Total data size \(n \) (bits)
- Max scalefactor blocks \(n \) (blocks)
- Global gain \(n \)
- LTP data present \(n \)
- Predictor data present \(n \)
- MS mask present \(n \)
- Pulse data present \(n \)
- TNS data present \(n \)
- Gain control data present \(n \)
- Window sequence \(n \)
- Window shape \(n \)

MPEG-2 Audio:
- Frame number
- Total audio data size \(n \) (bits)
- Ancillary data size \(n \) (bits)

The definition of each of these columns is given in the description of the Frame tooltip; (See page 194, *Analysis menu*.)

Audio data bit usage [MPEG-2].
This Trace output provides a series of six data items, listed below, for each individual audio frame:

- Frame number
- allocation (bits)
- sample (bits)
- samplecode (bits)
- scalefactor (bits)
- scfsi (bits)

The definition of each of these columns is given in the description of the histograms. (See page 189, *Show histogram*.)

Frame data bit usage [MPEG-2].

![Frame data bit usage](image)

This Trace output provides a series of nine data items, listed below, for each individual audio frame:

- Frame number
- AncillaryData (bits)
- AudioData (bits)
- AudioSequence (bits)
- ErrorCheck (bits)
- Frame (bits)
- Header (bits)
- HuffmanCodeBits (bits)
- MainData (bits)
The definition of each of these columns is given in the description of the histograms. (See page 189, Show histogram.)

Main payload bit usage [MPEG-4].

![Trace output](image)

This Trace output provides a series of 5 data items, listed below, for each individual audio frame:

- Frame number
- Config size (bits)
- Main payload size (bits)
- SBR size (bits)
- Subsidiary payload size (bits)

The definition of each of these columns is given in the description of the histograms. (See page 189, Show histogram.)

Subsidiary payload bit usage [MPEG-4].

\[
\begin{align*}
1.56, & 0, 0, 12, 0, 11, 0, 0, 0, 0, 0, 9, 0 \\
2.56, & 0, 0, 0, 0, 11, 0, 0, 0, 6, 0 \\
3.56, & 0, 0, 0, 0, 11, 0, 0, 0, 6, 0 \\
4.56, & 0, 0, 0, 0, 11, 0, 0, 0, 6, 0 \\
5.56, & 0, 0, 0, 0, 11, 0, 0, 0, 6, 0 \\
6.56, & 0, 0, 0, 0, 11, 0, 0, 0, 6, 0 \\
7.21, & 0, 0, 0, 0, 15, 0, 0, 0, 6, 0 \\
8.21, & 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 6, 0 \\
9.21, & 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 6, 0 \\
10.21, & 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 6, 0 \\
11.56, & 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 6, 0
\end{align*}
\]

The following data items form the series of twelve seen in the Trace excerpt preceding (frames 1-11 shown):

- Frame number
- channel_pair_element (bits)
- coupling_channel_element (bits)
- data_stream_element (bits)
- fill_element (bits)
- gain_control_data (bits)
- ics_info (bits)
- lfe_channel_element (bits)
- program_config_element (bits)
- pulse_data (bits)
- raw_data_block (bits)
- single_channel_element (bits) (bits)

The definition of each of these columns is given in the description of the histograms. (See page 189, Show histogram.)

SBR bit usage [MPEG-4]. Similar to the subsidiary payload bit usage Trace above, this Trace output provides a series of 16 data items, listed below, for each individual audio frame:

- Frame number
- sbr_channel_pair_base_element (bits)
- sbr_channel_pair_element (bits)
- sbr_channel_pair_enhance_element (bits)
- sbr_data (bits)
- sbr_dtdf (bits)
- sbr_envelope (bits)
- sbr_extension_data (bits)
- sbr_extension (bits)
- sbr_grid (bits)
- sbr_header (bits)
- sbr_invf (bits)
- sbr_noise (bits)
- sbr_single_channel_element (bits)
- sbr_sinuosoidal_coding (bits)
- unused sbr data (no header found) (bits)

The definition of each of these columns is given in the description of the histograms. (See page 189, Show histogram.)
Frame bit usage [MPEG-4].

<table>
<thead>
<tr>
<th>Frame number, dynamic_range_info (bits), extension_payload (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0, 352, 22, 0, 0, 432, 324, 2115, 96</td>
</tr>
<tr>
<td>2, 0, 0, 22, 0, 0, 391, 315, 2172, 0</td>
</tr>
<tr>
<td>3, 0, 0, 22, 0, 0, 363, 351, 2158, 0</td>
</tr>
<tr>
<td>4, 0, 0, 22, 0, 0, 371, 306, 2125, 0</td>
</tr>
<tr>
<td>5, 0, 0, 22, 0, 0, 375, 360, 2039, 0</td>
</tr>
<tr>
<td>6, 0, 0, 22, 0, 0, 343, 234, 2022, 0</td>
</tr>
<tr>
<td>7, 0, 0, 22, 0, 0, 113, 133, 2486, 0</td>
</tr>
<tr>
<td>8, 0, 0, 22, 0, 0, 131, 98, 2358, 0</td>
</tr>
<tr>
<td>9, 0, 0, 22, 0, 0, 125, 84, 2314, 0</td>
</tr>
<tr>
<td>10, 0, 0, 22, 0, 0, 118, 94, 2227, 0</td>
</tr>
</tbody>
</table>

This Trace output provides a series of 10 data items, listed below, for each individual audio frame:

- Frame number
- dynamic_range_info (bits)
- extension_payload (bits)
- individual_channel_stream (bits)
- ltp_data (bits)
- reordered_spectral_data (bits)
- scale_factor_data (bits)
- section_data (bits)
- spectral_data (bits)
- tns_data (bits)

The definition of each of these columns is given in the description of the histograms. (See page 189, Show histogram.)
Audio analysis options...

The Audio Analysis Options dialog box provides three tabs: Frame range, Trace and A/V delay. Frame range and Trace are described in Audio Trace. (See page 291.)

The A/V delay options are described in Audio/Video Delay. (See page 312.)

View audio

(See page 184, Show audio waveform.)

View audio trace

This option opens the Trace view on the current output Trace file, as given in the Analysis menu Trace tab.

NOTE. If there is not a current Trace file (and Trace is not enabled) this menu option/toolbar icon is unavailable (grayed out).

NOTE. Multiple audio trace files can be opened and viewed simultaneously. They can be opened using the Open Other option in the File menu.

NOTE. If the stream has been rerun and a Trace file by the same name is already open, then clicking the View trace menu option or icon will refresh the currently open Trace file.

Go to other views/right click menu – Interpret & Parse bitstream only

By right-clicking, a context-sensitive menu appears, which allows you to go to the corresponding area in another view:

NOTE. This right-click context-sensitive menu is only active in the Trace/Interpret and Trace/Parse Bitstream trace files.
Copying text

The contents of the Trace window can be copied to the Windows clipboard. This can be done in several ways:

- By pressing <Ctrl+C>
- By right-clicking and selecting Copy
- By clicking the Copy icon (see below)

The icon to the immediate right of the Copy icon is the Select all icon. Rather than highlighting and dragging over what could be a lengthy Trace file, you can click on this icon to highlight all of the text in the Trace file for copying.

Line numbers

Line numbers can be turned on/off:

Find data

The Trace file can be searched for any data, using the Find: Prev (previous) and Next buttons. This finds the previous/next occurrence of any of the enabled strings.

NOTE. The <Shift+F3> key can also be pressed, to find previous.

There are some standard strings that are useful to search for:

- Error
- Warning
- Frame
These are found by enabling the relevant check box (Frame example below):

To search for any text, check the box next to Text and enter the text in the box (in this example, searching for 'tns_data_present'):

.lines too long for window width

If a line is too long to be displayed within the width of the View trace window, a horizontal scroll bar is displayed and a blue arrow is appended to the right-hand side of the View trace window, to indicate the line extends to the right:

Trace file format

MTS4EA saves Trace files with a .vpt file extension. Currently, the .vpt file is a standard ASCII file which can be viewed in any text file viewer.
View audio stream hex

This opens the current audio stream in a hex viewer, which shows the data in binary, hexadecimal, and ASCII data (in any combination of the three).

NOTE. Multiple View hex windows can be opened at the same time.

Using HexView, you can scroll through the file, and search for specific:

- Absolute address (from the start of the file)
- Relative address (from the currently-selected location)
- Binary data
- Hex data
- ASCII data

NOTE. In the field where the data to find is entered, a wildcard character can be entered - this is '.' (a period).

NOTE. By entering a hex value and then clicking on Dec, you can convert the number to decimal (and vice versa).
Elements of the HexView window.

The width and size of the HexView window can be set as with any other window in Windows. The same data is shown in each of the three sections:

- Binary
- Hexadecimal
- ASCII

Each of these areas can be individually displayed/hidden by clicking the appropriate tick box in the top left-hand corner of the window.

In this example the binary display has been turned off, leaving only hex and ASCII:
Setting bytes per line. This dropdown menu is used to set the number of bytes per line:

If the current width of the window is insufficient to show all the columns, then a scroll bar automatically appears at the bottom, allowing you to scroll left/right to see all the columns, as in the following example:
Right-click popup menu/Goto view. Right-clicking in the HexView window generates a menu, from which it is possible both to set the number of bytes displayed per line and to navigate to the same location within the stream in an alternative view:

Synchronize views. When the Synchronize views icon is pushed in, all open windows automatically follow the selection that you make.

Highlighting a section. A section of data can be highlighted in any of the (visible) binary, hex or ASCII sections by clicking and dragging the mouse over the area:
Find **absolute address**. A specific address can be found in the audio stream, either:

- An absolute address, from the start of the audio file
- A relative address, from the first byte of the currently selected area

<table>
<thead>
<tr>
<th>Address</th>
<th>Hex</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>90</td>
<td>DE</td>
</tr>
<tr>
<td>0110</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>0011</td>
<td>20</td>
<td>38</td>
</tr>
</tbody>
</table>

The address to find is entered in the box next to the Goto button. This address can be in hex or decimal.

If an invalid character is entered for an address (entering anything other than '0-9' or 'a-f' for a hexadecimal address), the Goto button is greyed out.

Note that the Goto button changes to Next for all data to find except for the Absolute address. (When Absolute address is selected, the Prev button is greyed out.)

The Hex/Dec option button selects the format of the data being searched - hexadecimal or decimal.

Find **relative address**. An address relative to the currently highlighted address can be found. If there is no address highlighted, the address found is the offset from 0.

The address to find is entered in the box next to the Next button. This address can be in hex or decimal. If an invalid character is entered for an address (for example, entering anything other than '0-9' or 'a-f' for a hexadecimal address), the Find button is greyed out.

NOTE. The `<F3>` key can also be pressed to find next. The `<Shift+F3>` key can also be pressed to find previous.

The Hex/Dec radio button selects the format of the data being searched.

Find **Binary/Hex/ASCII**. These menu options find data in the bitstream. Up to 64 characters can be entered.

NOTE. The Binary search searches for the bit pattern irrespective of byte location; the Hex and ASCII searches are byte aligned.
Wildcard searching using ".": A wildcard can be entered in the data to be found, this is the period character - ".".

The wildcard matches a single digit in the base selected; the wildcard matches:

- One bit in the binary find
- A hex digit in the hex find
- An ASCII character in the ASCII find

For example, entering '0001b.' as a hex string to find (any character after the '0001b' pattern will find the following patterns in the selected example stream:

The wildcard can be inserted in any position. For example, '03..456.8' is a valid search string, which will find any nine consecutive digits where the first two are '03', digits 5-7 are '456' and the last digit is '8'.

Conversion of hex<->decimal. If a hex value is entered into the find box, and the Dec option button is clicked, the value is converted to hex (and vice versa):
View audio stream structure

This allows the structure of the following file types to be viewed and expanded/contracted (by clicking on the ‘-‘ and ‘+’ symbols at the left end of each line). Each branch of the structure can be clicked on to expand it and see the nodes below it - see the examples following:

![Figure 36: MP4 containing AAC LC](image)

![Figure 37: Container files, for example, MPEG-2 PES](image)
The view is divided into four columns:

Syntax. This column shows the stream syntax parse tree, including the names of each syntax element or syntactic structure. Nested syntax structures are shown by nesting nodes of the tree. An icon shows the type of data at each tree node.

Value. This column shows the interpreted value of syntax elements in the tree. The content of this field will vary according to the type of data to be shown.

Start bit. Shows the start bit address of the syntax node. The address is given as a hexadecimal byte position followed by a bit position number.

Size. Shows the size in bits of the syntax node. For nodes with children, this shows the total bits of the node and all its children.

(See page 265, *View video stream structure Ctrl+R.*)
Audio/Video delay

This feature provides a complete solution for measuring audio/video synchronization delay in an encoding system. MTS4EA provides a selection of predefined, clock-tick test streams in various formats. You can select an audio and a video stream and encode them using your own equipment. You can then analyze the resulting encoded stream using the MTS4EA and measure any time delay between the audio and video that may have been introduced by the encoding.

The available test streams include uncompressed streams for testing elementary stream encoders and compressed streams for testing transport multiplexers.

(See page 84, *Export A/V delay streams*....)

A/V Delay test enable

This menu option opens the Video Analysis Options dialog box. This option, when used with the supplied A/V Delay streams, allows you to measure audio/video delay, which may have been introduced when encoding elementary streams. When enabled, the feature allows you to select preset or user selected delays.

Select the required option from the drop-down list; the preset lead and lag values are shown in the list. If you want to set your own delay values, select User Defined and enter values in the lead and lag fields.
View A/V Delay analysis

This menu option displays the A/V Delay graph. You will need to decode the stream to view the results.

The audio/visual limits you set (either preset or user-defined) are displayed in green. The actual delay is shown in red. In the preceding example, the limits are set at +5 ms and -15 ms. The example stream that has been decoded shows that the audio leads the video by 22.75 ms.
Enforce extra restrictions

This Analysis menu option enables a range of extra checks specific to a selected standard to be performed on the stream as it is decoded.

When a specific option is enabled from the Enforce Extra Restrictions menu, that option will apply only to streams of the appropriate standard and will have no effect on any other stream.

When an option is selected, the status bar will display the message “Extra restrictions in force”.

To turn off the extra restrictions, select the item in the submenu again; the status bar will change so that “Extra restrictions” is no longer displayed. Closing the stream or opening a new stream does not reset the option; it will remain in force until it is turned off using the menu or until MTS4EA is restarted.

When a stream violates one of the extra checks, an alert is raised in the usual way. The alert details are available in the same way as all other alerts, both in the Alert view and in the Alert trace (if enabled).

Extra restrictions can also be enabled using the command line –q option.

ARIB TR-B14 option

This option consists of a set of additional restrictions for H.264/AVC elementary streams as specified in Tables 5-2 to 5-14 of the ARIB TR-B14 standard (see Reference [24] in Standards References). Other System Layer and Elementary Stream Layer checks in ARIB TR-B14 are not carried out.

When this option is enabled it will be active only for H.264/AVC streams; there will be no effect for other streams.

Extra restrictions can also be enabled from the command line. (See page 373, Command line/batch mode.)

H.264 transform option

This option consists of a set of additional restrictions for H.264/AVC elementary streams as specified in Scaling and Transformation Processes in sections 8.5.9 - 8.5.12 of the H.264 standard (see Reference [12] in Standards references).

When this option is enabled it will be active only for H.264/AVC streams; there will be no effect for other streams.

Extra restrictions can also be enabled from the command line. (See page 373, Command line/batch mode.)
Scalability level selection

This Analysis menu option enables the display and selection of a specific layer to be analyzed. This option is enabled only for SVC streams, and only if the SVC stream has the scalability_info SEI message encoded. Otherwise, the highest enhancement layer is analyzed by default.

You can filter layers for selection based on one of the following parameters:

- Resolution
- Bitrate (kbps)
- Frame Rate (fps)
- Quality ID

An example of filtering based on resolution is shown below:
The Bitstream editor facility allows you to:

- Insert, delete and modify bits and bytes at any point in the bitstream
- Copy sections of the bitstream
- Rerun the analysis on the edited bitstream
- See a change log of all edits that were made

Edit audio/video stream

When the Bitstream editor window is initially accessed, the following message will pop up advising you that the syntax will not be visible in this view until it is played (decoded):

MTS4EA Elementary Stream Analyzer: Warning
Syntax element labels will be available in the stream editor after the stream is decoded (video/audio is played).
Once decoded, the syntax area will be populated.

The pink area containing the syntax is displayed by default. If so desired, these labels can be removed from the display by clicking on the “Show labels” button:

The bottom half of the window - the change log - is empty until edits have been made to the stream.
Bitstream editor icons

The functions of the remaining icons in the Bitstream editor view are outlined in the following table:

Table 6: Bitstream editor icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>![icon]</td>
<td>The edited stream can be given a new name and saved</td>
</tr>
<tr>
<td>![icon]</td>
<td>Cut (Ctrl+X) becomes available only when part of the stream is highlighted</td>
</tr>
<tr>
<td>![icon]</td>
<td>Copy (Ctrl+C) becomes available only when part of the stream is highlighted</td>
</tr>
<tr>
<td>![icon]</td>
<td>Paste (Ctrl+V) becomes available only when part of the stream is highlighted and copied to the clipboard</td>
</tr>
<tr>
<td>![icon]</td>
<td>Delete bits; becomes available only when part of the stream is highlighted</td>
</tr>
<tr>
<td>![icon]</td>
<td>Inverts bits highlighted 0 becomes 1, 1 becomes 0; becomes available only when part of the stream is highlighted</td>
</tr>
<tr>
<td>![icon]</td>
<td>Undo last edit (Ctrl+Z)</td>
</tr>
<tr>
<td>![icon]</td>
<td>Insert bits mode (this is enabled by default)</td>
</tr>
<tr>
<td>![icon]</td>
<td>Show labels (this is enabled by default)</td>
</tr>
</tbody>
</table>
Change log

As changes are made to the bitstream, the displayed text changes in color and the changes made appear as list items in the bottom half of the window. As in most of the views in MTS4EA, it is possible to highlight and double-click on any one of these items to be taken to the corresponding area in the relevant view. In this case, the bitstream view that occupies the top half of the window.

As can be seen in this example, each numbered change lists both the Edited and Original addresses. This is because edits will have a cumulative effect on the addresses of bits later in the stream. So, if a bit or bits are deleted or inserted, the addresses of the following bits are changed. Therefore, to avoid confusion, both the original address and the address following earlier deletions or insertions are given.

Undo last edit Ctrl+Z

The last edit made to the bitstream can be undone by clicking on this icon or by using the shortcut Ctrl+Z.

Saving edited stream...

Once all desired changes have been made, the stream can then be immediately played and reanalyzed. Alternatively, the stream can be saved under a new name and reopened later for analysis.

Edit commands

The Edit menu options (Cut, Copy, Paste, Delete, Invert, Undo, Insert Mode) have the same functions as those described in the Bitstream editor icons table. (See Table 6.)
Alert menu

This menu controls the setting of the overall level of the popup alerts and gives access to configure individual alerts as enabled/disabled.

These popup alerts occur when the video is being decoded. Consequently:

- The popup alert appears when the frame concerned is decoded, but for bitstreams containing B-frames/B-VOPs the display order of frames/VOPs may be different
- When seeking backwards/forwards through a stream, the popup alerts will not appear if that part of the bitstream has already been decoded and is in the step-back buffer cache. (See page 324, Popup alerts in the step-back buffer.)

NOTE. For some Alerts, extra information is provided about the section of the stream that has generated the error, and the standard if it is standard-specific.

(See page 385, General codes used in Trace files and Alerts.)

Alert levels

There are four different levels of alerts: Fatal, Error, Warning and Info (in order of decreasing severity). (See page 328, Description of alert levels.)

When a less severe alert is set, the more severe alerts are set automatically. (For example, setting Warnings on automatically sets Errors and Fatal on.)

NOTE. The Fatal alert is always set (and cannot be turned off). Each time a video stream is opened in the MTS4EA, the alert level is set to Info (the strictest) and all Alerts are reenabled.

When an alert is triggered, a message box is displayed. At the same time, decoding is suspended.

The message box will provide you with the reason that decoding was interrupted - see the following section.
Explanation of Fatal/Error/Warning/Info display

For bitstreams that contain B-VOPs/B-frames, it is vital to understand that the popup alert relates to the decode frame number, not the displayed frame number. (See page 323, Decode/display frame/VOP numbers in bitstreams with B-frames/B-VOPs.)

For all Fatal, Error, Warning and Info displays:

- The bitstream position of the error is the number of bytes from the beginning of the video bitstream, where the first byte is byte zero.
- The position is displayed in hexadecimal (0x) and decimal (dec.).
- The bit start is the first bit of this bitstream field, where bit 7 is the most significant bit in a byte and bit 0 the least. This means that bit 7 is the first bit in each byte of the bitstream.

In each of the compression standards, there are many bitstream fields that give values that are least significant bit first (lsbf) and many others that are most significant bit first (msbf). There are also many others that are simply bit-patterns: they do not have a direct numeric value.

For msbf bitstream fields, numbering bit 7 as the first bit in each byte is correct. For lsbf bitstream fields, the bit order has to be reversed when calculating the given value. See Explanation of bit/bitstart in the Bitstream Syntax Debugging section for more information.

(See page 392, Explanation of bit/bit start.)
The information provided in the Summary box is the same as that provided in the Summary tooltip:

(See page 110, Video-frame summary tooltip Ctrl+U.)

Note: this is the address of the first bit in the frame/VOP, not the address of the error.

In this example, the exact time of the error cannot be determined as the error occurs during the decoding of a frame/VOP header.

Usually, there will be too many fields to all be displayed within the available space. In which case, a vertical scroll bar appears. Scroll down to see the remaining fields.
Decode/display frame/VOP numbers in bitstreams with B-frames/B-VOPs. The popup alert relates to the Warnings and Errors that the MTS4EA finds during decoding.

This means that for bitstreams that contain B-frames/B-VOPs (where the decode order is different from the display order) it can appear that the popup alerts are out of sequence. In this case, it is very important to look carefully at the data in the Summary box, which shows the Decode and Display frame numbers.

For example, if this is the order of data in the bitstream (the decode order):

<table>
<thead>
<tr>
<th>Decode frame number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame type</td>
<td>I</td>
<td>P</td>
<td>B</td>
<td>B</td>
<td>P</td>
</tr>
<tr>
<td>Error occurs in frame</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

Then this would be the order of data in the display:

<table>
<thead>
<tr>
<th>Display frame number</th>
<th>-</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame type</td>
<td>-</td>
<td>I</td>
<td>B</td>
<td>B</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Error displayed in frame</td>
<td>-</td>
<td>a, b</td>
<td>c</td>
<td>d</td>
<td>-</td>
<td>e</td>
</tr>
</tbody>
</table>

NOTE. Frame display delayed by one frame.

In these diagrams, it can be seen that for the first P-frame, the error associated with decoding it is displayed before it appears on-screen - at the same time as the first frame is displayed.

If this has happened, text in a yellow warning rectangle will appear in the popup alert:

![Alert Menu Diagram](image-url)
The difference in decode versus display order:

- Can occur in any bitstream which has B-frames/B-VOPs
- And can happen in any frame/VOP in the bitstream concerned, where the frame/VOP is a B-frame/B-VOP

NOTE. Note that the yellow warning can also appear in other circumstances, where the alert has occurred some time after a displayed frame.

Popup alerts in the step-back buffer. When a stream is decoded, popup alerts may occur. The results of the decoding are stored in a cache, the Step-back buffer. (See page 98, *General.*)

It is possible to step forward/backward over the frames where these alerts occur. To avoid a continual repetition of the popups (and potentially many such alerts appearing), the popup alerts are not displayed when seeking forward/backward in these situations.

If one or more popup alerts would have occurred, then this is indicated in one of two ways:

- There may be a popup message, at most once per seek forward or backward:

 ![MTS4EA Compressed Video IS Analyzer](image)

 - The current frame has been retrieved from the step-back buffer, but alerts were generated when this frame was first decoded. The relevant alerts have been highlighted in the alert log view.
 - Do you want to go to the alert log view now?

 ![Yes](image) ![No](image)

- If the Alert log window is open, the alerts that would have popped-up are highlighted in the Alert log window. (See page 334, *View Alert log.*)
Alert menu

Copy alert details to the Windows clipboard. The details of an alert can be copied using Ctrl+C or the copy icon.

Check box options.

- Check this box to prevent seeing further alert(s) for this specific warning. Other Warnings, Errors and Fatals will still trigger an alert.

- Check this box to prevent seeing further alert(s) for any alert level.
Abort, Pause, Continue buttons.

Abort stops the decoding immediately; at the end of the current alert, stream in Stop mode.

Pause keeps decoding to the end of the current frame/VOP; thereafter stream enters Stop mode.

Continue decoding (in normal/fast/step modes)

NOTE. Abort can also be requested by pressing the Esc key.
Goto button. This takes the focus to the position in the selected view that corresponds most closely to the location of the error. (See page 50, *Synchronized views/navigating the views.*)

In these views, selecting Goto takes the focus to the following locations:

<table>
<thead>
<tr>
<th>View</th>
<th>Location taken to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>If the error can be located to within a particular MacroBlock... \</td>
</tr>
<tr>
<td></td>
<td>...to the MacroBlock containing the error (highlighted with a yellow/black dotted square)</td>
</tr>
<tr>
<td></td>
<td>If not (the error is in a frame header or file header)... \</td>
</tr>
<tr>
<td></td>
<td>...to the top of the frame that immediately follows the error, indicated by a yellow/black dotted rectangle around the first row of MacroBlocks</td>
</tr>
<tr>
<td>Hex</td>
<td>The byte where the error is</td>
</tr>
<tr>
<td>Stream edit</td>
<td>The byte where the error is</td>
</tr>
<tr>
<td>Alert log</td>
<td>The log of alert popups that have occurred (not those filtered/not shown)</td>
</tr>
<tr>
<td>Navigator</td>
<td>The frame containing the error or the frame that immediately follows the error (if the error is in a header)</td>
</tr>
<tr>
<td>Buffer</td>
<td>The frame containing the error or the frame that immediately follows the error (if the error is in a header)</td>
</tr>
<tr>
<td>Trace</td>
<td>The syntax element in the Interpret or Parse bitstream file corresponding to the location where the error has been found</td>
</tr>
<tr>
<td>Fidelity</td>
<td>Graph of fidelity analysis (such as PSNR)</td>
</tr>
<tr>
<td>Audio waveform</td>
<td>Graph of audio stream: Y-axis is normalized amplitude; X-axis is time (seconds)</td>
</tr>
<tr>
<td>Bits per frame</td>
<td>Bits per frame graph – the frame containing the error</td>
</tr>
<tr>
<td>Stream Structure</td>
<td>Stream structure – highlight node containing error</td>
</tr>
<tr>
<td>CU size distribution</td>
<td>CU size Distribution graph – the frame containing the error</td>
</tr>
<tr>
<td>QP variation</td>
<td>QP variation graph – the frame containing the error</td>
</tr>
</tbody>
</table>
Description of alert levels

Fatal
A Fatal error occurs when there is something encountered in the bitstream that cannot be decoded by the MTS4EA.

This selection cannot be turned off, and the decoder cannot continue after a Fatal error.

Fatal errors in the MTS4EA are commonly caused by:

- Severe errors in the syntax of the bitstream, which make it completely unintelligible to MTS4EA
- Options being selected in the video bitstream that are not yet supported by MTS4EA

For example, the Fatal error below was caused by the OBMC flag in an MPEG-4 bitstream being set (on), that the video bitstream in question is using overlapped block motion compensation. (OBMC = Overlapped Block Motion Compensation: although it is in the current MPEG-4 standard, none of the MPEG-4 profiles or levels defined currently support OBMC.)
Error When this item is selected, the decoder will stop at any point where there is an Error in the bitstream.

These occur commonly where out-of-range values have been used in the bitstream, or invalid codes (the example below in an H.263 stream):

![Error 21002: VLD error](image)

Warning When selected, this item will provide several warnings that indicate behavior that is not correct, but does not necessarily damage the decoding of the bitstream. Items such as too many leading zeros before picture start codes, temporal references not set, and MacroBlocks not updated in Intra mode will cause such warnings (the example below in an H.263 stream):

![Warning 31751: PSUPP being sent](image)

Info When checked, this item will provide information popups if relevant:

- It may be that the behavior is within the acceptable bounds of the standard concerned (and the relevant Profile/Level), but perhaps is used in a non-recommended manner or at the limits
- It is felt that additional information would be useful
Configure alerts

This determines which specific alerts are enabled/disabled.

NOTE. The overall alert level is set from the Alerts menu options Errors, Warnings and Infos, and this the enabling of specific alerts but not the disabling of specific alerts.

This means, for example:

- That a specific Warning alert can be enabled/disabled, but trigger a Warning alert if the overall alert level is set to Errors or Fatal only. This is indicated in the status bar. (See page 342, Status bar indication of alert status.)

- But if the overall alert level is Info and an individual Error alert is disabled, then an alert will not be triggered for this individual error

- Examples of different combinations of overall and individual alerts and the consequential status bar displays are given under (See page 342, Status bar indication of alert status.)

NOTE. Depending upon the standard, all the alerts that MTS4EA tests for are not necessarily currently available onscreen to be individually enabled/disabled. Access to more of these will be provided in future versions of MTS4EA.
Enable/disable specific alerts

This displays two folders at the top level:

- General alerts, which can apply regardless of the standard concerned
- A standard folder (for example, MPEG-4 or H.263) that contains alerts specific to the standard concerned

![Alert configuration](image)

The + next to each folder can be clicked to reveal lower levels:

![Alert configuration](image)

Figure 38: Alert configuration — ES Analysis mode

NOTE. This is used to configure the individual alerts. Even if an alert is enabled here, if the overall alert level is set higher, the alert will not trigger a popup.
Alert menu

Figure 39: Alert configuration — CC Analysis mode

NOTE. Depending on the type of MTS4EA license, the closed caption alerts are enabled or disabled by default.
Elements of the Alert configuration window

- Click + to expand/collapse a folder
- Icons for Fatal, Error and warning alerts
- Some alerts disabled: indicated by grayed-out check box
- Selecting a folder enables/disables all alerts below this folder
- Lower level folders (titles follow structure of video stream)
- Click to enable all alerts
- Click to disable all alerts
View Alert log

The Alert log keeps a list of the popup alerts that have occurred during the decoding of the bitstream:

![Alert log window](MTS4EA7.1.3 - MTS4 Example - Space - [AlertLog MTS4Example - Space])

The Alert log window icons and column titles are as follows:

Alert filter icon.
(See page 335, *Showing/hiding alerts (alert filter).*)

Show/hide video alerts.

Show/hide audio alerts.

Configure alerts icon.
Clicking on this icon opens the Alert configuration dialog box. (See page 330, *Configure alerts.*) If this icon is clicked, then the Alert configuration dialog box is opened with the error selected in the Alert log window highlighted in the Alert configuration dialog box. If this icon is grayed out, it can be enabled by selecting any alert that is shown.

View alert details icon.
If this icon is grayed out, it can be enabled by selecting any alert that is shown. (See page 337, *View details of the alerts.*)

Copy.
This icon becomes available only once an alert is highlighted. This function allows the selected alert to be copied to the Windows clipboard for pasting into any Windows application. Copying can also be done by pressing Ctrl+C.

Level. The error level: Fatal or Error or Warning or Info.

ID. The unique ID number assigned to this error type within MTS4EA.
Class. The area within the hierarchy of the compressed standard; see the screenshot above which shows an error in the Video Object Layer and seven warnings in the Video Object Plane within the MPEG-4 bitstream. The classes vary with the video standards.

Title. The title assigned to this error type.

Decode the number of the decoded frame in which this error was found. See Decode/display frame/VOP numbers in bitstreams with B-frames/B-VOPs for more information on decoded versus displayed frame numbers, in bitstreams that include B-frames/B-VOPs. (See page 323.)

NOTE. If <1 is displayed, the error occurred before the decode of the first frame - the error occurred in the header.

Display. The number of the displayed frame in which this error is shown.

See Decode/display frame/VOP numbers in bitstreams with B-frames/B-VOPs for more information on decoded versus displayed frame numbers, in bitstreams that include B-frames/B-VOPs. (See page 323.)

NOTE. If <1 is displayed, this means that the error has occurred before the decode of the first frame, the error has occurred in the header.

Address (bytes). The byte address in the bitstream where this error was found.

NOTE. For video bitstreams that have been extracted from container files (for example, MP4 files, 3GPP files, MPEG-2 Packet Streams) this address is the byte address in the extracted video stream, not in the overall container file.

Details. This is the description text that is shown when the popup alert is displayed.

Showing/hiding alerts (alert filter)

In some cases there can be hundreds or thousands of alerts. These might be known issues and you do not want to list them in the Alert log window (because they would clutter the window unnecessarily).

Therefore, the alerts that are shown in the Alert log window can be filtered. The filtering is based on the setting of the alert popup enable in the Alert configuration (See page 330, Configure alerts.)
If the filter icon is out, all alerts are shown, regardless of whether they are enabled for a popup alert:

(In this example, 14 alerts are hidden out of the total of 14 alerts)
The Alert log filter can also be turned on/off by right-clicking and selecting the option from the popup menu.

NOTE. When the filter icon is grayed out, all the alerts are enabled for display, so that there are no alerts to filter.

View details of the alerts. This can be done in several ways:

- Double-click an alert in the Alert log window
- Single-click an alert, right-clicking to get the popup menu, and then click View alert details
- Select an alert by single-clicking an alert, and then clicking the icon

When this is done, a display very similar to the original popup alert display is shown:
Alert menu

Alert highlighting when seeking forward/backward through video in the step-back buffer. The MTS4EA buffers video (and the data associated with each video frame) in a step-back buffer or cache. (See page 98, General.)

When stepping backward/forward through video that is held in the step-back buffer, to avoid continually having known alerts appear. The MTS4EA only highlights the alerts relevant to the area being skipped in the Alert log.

For example, if you skip forward 100 frames, and there would normally be four popup alerts during the decoding of these frames, the MTS4EA will highlight the four alerts in the Alert log. (If the alerts have been skipped and are hidden in the Alert log, as indicated by the status bar of the Alert log, the MTS4EA cannot highlight the alerts.)

An example of the highlighting of alerts is shown in the following screenshot:

If the Alert log is closed, then the MTS4EA displays a warning, as shown in the following figure:

This is displayed only once for all the Alerts between the relevant frames.
Right-click popup menu

The available functions in the Alert log can be selected by right-clicking and selecting the function from the popup menu:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View alert details…</td>
<td>(See page 337, View details of the alerts.)</td>
</tr>
<tr>
<td>Enable alert</td>
<td></td>
</tr>
<tr>
<td>Configure alert…</td>
<td></td>
</tr>
<tr>
<td>Filter alerts</td>
<td></td>
</tr>
<tr>
<td>Goto view</td>
<td></td>
</tr>
<tr>
<td>Synchronize views</td>
<td></td>
</tr>
</tbody>
</table>

The functions of this menu are:

View alert details. (See page 337, View details of the alerts.)

Enable alert. An individual alert can be enabled or disabled by clicking on this menu selection:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View alert details…</td>
<td></td>
</tr>
<tr>
<td>Enable alert</td>
<td></td>
</tr>
<tr>
<td>Configure alert…</td>
<td></td>
</tr>
<tr>
<td>Filter alerts</td>
<td></td>
</tr>
<tr>
<td>Goto view</td>
<td></td>
</tr>
<tr>
<td>Synchronize views</td>
<td></td>
</tr>
</tbody>
</table>

Alert disabled | **Alert enabled**

NOTE. This allows an individual alert to be enabled/disabled from this menu, without having to open the Alert configuration dialog box.

Configure alert. (See page 330, Configure alerts.)

Filter alerts. (See page 335, Showing/hiding alerts (alert filter.).)

Go to view. (See page 50, Synchronized views/navigating the views.)

Synchronize views. (See page 50, Synchronized views/navigating the views.)
Closed caption syntax alerts

When closed caption analysis is enabled, the following syntax checks can be enabled to initiate alerts:

- Closed Caption Field error
- Closed Caption Data with Invalid byte
- Closed Caption Data with Invalid XDS command
- Closed Caption Data with Invalid XDS code
- CC data on invalid field
- Invalid character in 608 CC
- Illegal Midrow code
- Number of rows exceeds the maximum
- Number of columns exceed the maximum (32)
- Illegal PAC Attribute
- Inappropriate base row number
- Invalid odd parity
- EIA 708 caption appeared before EIA 608 caption
- Closed Caption with Forbidden Field Number
- Insufficient user data bytes
- Closed Caption with Forbidden Field Number
- Caption with unsupported Character
- SPA Received without active window
- Window not Defined but Set
- Window not Defined but Displayed
- Window not Defined but hidden
- Window not Defined but Toggled
- Window not Defined but made inactive
- Invalid Block Size
- Invalid Block Size when service number is zero
- Invalid extended service Number
- SPC Received without active window
- Invalid row count
- Invalid column count
- Invalid marker bits
- Invalid closed caption count
- ATSC CC data is not first user data
- SPL Received without active window
- SWA Received without active window
- Wrong CC data type occurred for picture structure
- Invalid CC data occurrence order
- Invalid xds checksum
- Invalid No. of xds packet characters
- Invalid Bitvalue for xds packet characters
- Caption character received without active mode
- Invalid xds characters
- Unsupported xds packet type
- Invalid xds packet type
- Invalid xds packet control code
- Unsupported xds packet control code
- xds End code not found
- Invalid URL checksum
- Invalid URL checksum character
Status bar indication of alert status

The status bar displays the status of the alerts.

One or more alerts disabled

When one or more alerts are disabled, either because:

- The overall alert level does not include Warnings, Errors and Fatals.
- One or more of the specific alerts have been disabled
- The status bar changes as shown:

- Figure 40: Overall alert level: Infos disabled (all other levels enabled)
- Figure 41: Overall alert level: Warnings disabled (Errors and Fatals enabled)
- Figure 42: Overall alert level: Errors disabled
- Figure 43: Overall alert level: All disabled - except one/more specified Warning alerts
- Figure 44: Overall alert level: All disabled - except one/more specific Error alerts
Window menu

The commands on this menu are typical of a standard Windows application, such as arranging windows; list of open windows.

Quickly switch windows

Pressing Ctrl+Tab together displays a list of open MTS4EA windows:

Repeatedly pressing Ctrl+Tab steps through all the open windows. Alternatively, the mouse can be used to select a window.
Cascade, Tile, Arrange Icons, Close All functions

These function according to standard Windows commands:

- Cascade arranges the open windows in a cascade:

 ![Cascade Example](image1.jpg)

- Tile Horizontally arranges the open windows as shown:

 ![Tile Horizontally Example](image2.jpg)
- Tile Vertically arranges the open windows as shown:

- Arrange Icons lines up the windows when they are minimized

- Close all closes all windows in the MTS4EA
Toolbars

In the following example, the Main and Views toolbars are shown, but not the Interlace and Visual Difference toolbars. When selected, a toolbar is displayed with the icons visible. This is indicated by the check mark in the Window menu. Toolbar buttons may be grayed out when a function is inactive.

Main (See page 355, *Functions of the Main toolbar buttons.*)

Audio views (See page 355, *Functions of the Main toolbar buttons.*)

Video views (See page 355, *Functions of the Main toolbar buttons.*)

Interlace The Interlace toolbar is not shown by default; it is always turned on when a stream that is interlaced (or could be interlaced - in H.264/AVC this may not be known until later in the stream) is opened. (See page 357, *Interlace toolbar.*)

HEVC

Closed caption

Visual Difference The Visual Difference toolbar is not shown by default; it is not shown until Visual Difference is enabled on the Overlay menu. (See page 174, *Overlay color Ctrl+W.*)
Audio output

MB statistics

The MB Statistics toolbar is not shown by default. No details are shown on the toolbar until a selection is enabled in the MB Statistics options in the Overlay menu. (See page 153, MB statistics.)

Status bar

When selected (which is the default setting), the Status Bar is displayed at the bottom of the window. When not selected, it is hidden.

(See page 370, Status bar.)

Video scale

Best fit

This sets the size that the decoded video appears in the video window.

Best fit

This zooms the displayed video as far as is possible within the video window, while still maintaining the original aspect ratio of decoded video.
These set the displayed video to the selected size in the video window. If the selected size is larger than the available window area, then a section of the video window will be displayed, with scroll bars:

When the MTS4EA starts, it is set by default to 100% or 1:1; the video displays at its actual size with one screen pixel equaling one pixel in the displayed video.

Fit to window This zooms the displayed video to completely fill the video window; it does not maintain the original aspect ratio of decoded video.
HexView settings

The HexView menu has four options:

- Show ASCII
- Show hex
- Show binary
- Bytes per line

Show ASCII, Show hex, Show binary

These options individually turn on/off the display of the specified area of the HexView.

They can be turned on/off from either this menu or from the top line of the HexView window itself, when it is open.

Bytes per line

This sets the displayed number of bytes per line:

- Auto sets the maximum number of bytes that will fit within the active HexView window at the size it is, allowing for the visible ASCII/hex/binary areas.
- When 4, 8, 16 or 32 is selected, then the given number of bytes are displayed, and if the display is too wide for the active HexView window, a horizontal scroll bar is displayed along the lower edge of the HexView window.
Graph view settings
The Graph view menu has ten options, which control how the data appears on the Buffer analysis graph. These options are described in the following table:

<table>
<thead>
<tr>
<th>Icons in menu</th>
<th>Equivalent toolbar icons</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Zoom-in</td>
<td>+</td>
<td>Zoom in (centered on current window)</td>
</tr>
<tr>
<td>- Zoom-out</td>
<td>-</td>
<td>Zoom out (centered on current window)</td>
</tr>
<tr>
<td>✗ Fit to range</td>
<td>✗</td>
<td>Fit all data into the visible window</td>
</tr>
<tr>
<td>☰ Goto origin</td>
<td>☰</td>
<td>Go to the origin (time = 0)</td>
</tr>
<tr>
<td>✖ X-Axis lock</td>
<td>✖</td>
<td>Lock the X-axis when zooming/scrolling</td>
</tr>
<tr>
<td>✖ Y-Axis lock</td>
<td>✖</td>
<td>Lock the Y-axis when zooming/scrolling</td>
</tr>
<tr>
<td>✤ Autoscroll</td>
<td>✤</td>
<td>Autoscroll to follow frames as decoded</td>
</tr>
<tr>
<td>✦ Move tool</td>
<td>✦</td>
<td>Move window left/right/up/down</td>
</tr>
<tr>
<td>+ Measure tool</td>
<td>+</td>
<td>Measure the values at center point of +</td>
</tr>
<tr>
<td>✧ Zoom tool</td>
<td>✧</td>
<td>Zoom in/out, centered on cursor</td>
</tr>
<tr>
<td>☰ Goto view</td>
<td>☰</td>
<td>n/a</td>
</tr>
<tr>
<td>☰ Synchronise views</td>
<td>☰</td>
<td>n/a See Synchronized Views/Navigating the Views (See page 50.)</td>
</tr>
</tbody>
</table>

Synchronize views

When Window > Synchronize Views (✓) is selected, all open windows synchronize automatically.

For example, if the Video navigator and Hex views are both open at the same time as the Audio waveform view, the Synchronize views icon is pushed in and the stream is played. The individual video frames appear in the navigator view and the highlighting in the HexView window advances so that all views display the same relative point in the stream at any one time.
Active views

A list of all of the open views is displayed at the bottom of the Windows menu. A check mark appears next to the currently selected view. Highlight an entry to change the selection.
Help menu

This menu provides access to the Help information (User Manual PDF), the tutorials, configuration information, and license information (including licensed options).

User manual (PDF) F1

This displays a PDF version of this user manual when the F1 key is pressed or icon on the toolbar is clicked. In the manual PDF, you can use the table of contents or the Navigation page to quickly view the desired section in the manual. You can also print out the complete manual or specific pages.

See the Adobe Acrobat documentation for details about how to navigate through PDF documents.

Tutorials (PDF)

This displays a PDF version of the tutorials on how to optimize your use of the MTS4EA. It is strongly recommended that you work through the tutorials.

License manager

This displays the MTS4EA License manager, including:

- Current license status information
- Other possible MTS4EA options that can be licensed
- Option to update the license key

For more information on the license manager, see Installation and Licensing.

About MTS4EA

This displays the exact version number of the MTS4EA and the copyright message, and allows access to the MTS4EA build options.
Toolbars, Status bar, and shortcut keys

Icon toolbars

These toolbars provide quick selection of some of the commonly used functions. There are two main icon toolbars, which can be individually moved and docked:

- Main toolbar, containing functions such as play the video and open files.
- Views toolbar, to access the views other than the video views.

NOTE. There are other toolbars for individual windows and controls, for example for Interlace and Buffer analysis. This section refers to only the main icon toolbars.

Disabled toolbar buttons

At various times, some of the buttons are grayed out, indicating that they are disabled because that function cannot be active at the time.

The only buttons available in the above example are the Open video, Open project file, Save project file, Open stream, Synchronize selection and Help buttons.

Active/inactive toolbar buttons

When a toolbar icon looks as if it is pressed in, it is active (selected).

Moving/docking

The Main toolbar is docked at the top of the window below the main menu by default, but it can be dragged from this position to be floating or be docked on any of the other three edges of the main window, by clicking and dragging the narrow vertical line at the left edge of the toolbar:

The Views toolbar is normally docked below the Main toolbar, but can be moved/undocked as required.
Functions of the Main toolbar buttons

Each of the Main toolbar buttons provides quick access to a specific function of the MTS4EA, as follows:

<table>
<thead>
<tr>
<th>Toolbar icon</th>
<th>Ctrl +</th>
<th>Name</th>
<th>Description</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>Open stream…</td>
<td>Open a video/audio file</td>
<td>(See page 47.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(See page 56.)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1:1</td>
<td>Set video scale: Best fit or 1:1</td>
<td>(See page 347.)</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>Black/White</td>
<td>Set overlay digits to black/white</td>
<td>(See page 174.)</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>MB types</td>
<td>MacroBlock type overlay</td>
<td>(See page 139.)</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Motion vectors</td>
<td>Overlay motion vectors display</td>
<td>(See page 149.)</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>MB tooltip</td>
<td>Open/close the MacroBlock tooltip</td>
<td>(See page 122.)</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>Summary tooltip</td>
<td>Open/close the Summary tooltip</td>
<td>(See page 110.)</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>Image inspector</td>
<td>Open/close the Image inspector</td>
<td>(See page 135.)</td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>Help *</td>
<td>Open the User Manual PDF</td>
<td>(See page 353.)</td>
</tr>
</tbody>
</table>

*The F1 key is pressed without pressing the Ctrl key

Functions of the Views toolbar buttons

Each of the Views toolbar buttons provides quick access to a specific function of MTS4EA.

<table>
<thead>
<tr>
<th>Toolbar icon</th>
<th>Ctrl +</th>
<th>Name</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shift+T</td>
<td>View trace…</td>
<td>View the currently selected Trace file</td>
<td>(See page 250.)</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>View stream hex…</td>
<td>Open the current stream in the HexView</td>
<td>(See page 257.)</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>View file structure…</td>
<td>Open the current video/container file and view the structure in navigable tree form</td>
<td>(See page 266.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>View buffer analysis…</td>
<td>Graphs of VBV/VCV/VMV.(depends upon standard)</td>
<td>(See page 270.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Video navigator…</td>
<td>Show thumbnail viewer of each video frame and basic information</td>
<td>(See page 247.)</td>
</tr>
<tr>
<td>Toolbar icon</td>
<td>Ctrl +</td>
<td>Name</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronize views</td>
<td>Synchronize all open views</td>
<td>(See page 351.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>View fidelity analysis...</td>
<td>Show fidelity analysis</td>
<td>(See page 282.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>View graphical analysis</td>
<td>Show graphical analysis (in Excel)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>View alert log...</td>
<td>Display log of alerts</td>
<td>(See page 334.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audio waveform view...</td>
<td>Open the current audio stream on the Audio waveform view</td>
<td>(See page 184.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mute audio</td>
<td>Turn audio off/on</td>
<td>(See page 107.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronize audio</td>
<td>Synchronize audio and video streams</td>
<td>(See page 107.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit video stream...</td>
<td>Open the stream for editing</td>
<td>(See page 318.)</td>
</tr>
</tbody>
</table>
Context-sensitive toolbars/tooltips

These are toolbars and tooltips (or sometimes information windows) that only appear or are only available (not grayed out) for specific video standards or specific functions.

NOTE. These toolbars dock and are minimized/maximized in the same way as standard Windows toolbars, and in the same manner as the MacroBlock and Summary tooltips.

Interlace toolbar

Only one of these four buttons is pushed in (active) at any time.

NOTE. The Interlace toolbar only appears when a bitstream could have Interlace within it. The fact that the Interlace toolbar is there does not necessarily mean that the bitstream is interlaced – only that interlace is permissible/possible in the given standard, Profile and Level.

These are examples of video streams where the Interlace toolbar can appear (this is not a complete list):

- H.264/AVC (All supported profiles)
- VC-1 Advanced profile
- MPEG-4 Advanced simple profile, levels 4 and 5
- MPEG-2 Main profile, Main level

NOTE. When the Interlace toolbar has not been automatically displayed by the MTS4EA (or it has been closed), it can be displayed by clicking the Windows menu, and then selecting Toolbars, Interlace.
Combined frame view. Both fields are shown together, as a single image:

![Combined frame view](image)

NOTE. Some data and functions are not available when the video is displayed in this view. For example, the MacroBlock tooltip is empty and cannot be used, and motion vectors, MacroBlock Types and other overlaid data do not appear.

Separated fields view. The top and bottom fields are shown separately, one above the other:

![Separated fields view](image)
Top-field view. Only the top-field image data is displayed. For field coded MacroBlocks, the MB tooltip and overlays show data relevant to the top field. For frame coded MacroBlocks, the MB tooltip and overlays show data relevant to the frame.

Each row is shown twice (duplicated) to produce an image to the full image height:

![Image of top-field view]

Bottom-field view. As above but for bottom field.
When closed caption analysis is enabled, the following tooltips and toolbar items appear:

- **Show or hide the CEA608 tooltip.** This closed caption toolbar item () shows or hides the CEA608 tooltip.

When the video is playing, the tooltip shows various parameters of the CEA608 captions in the stream:

- **Caption Type.** Use the drop-down list to select the type of CEA608 caption you want to view: ATSC 608, SCTE 20 or SCTE 21. The drop-down list contains only the type of captions available in the stream.
- **Caption Services.** Displays attribute values for each of the CEA608 caption services in the stream.
XDS. Displays attribute values for Extended Data Services in the stream such as V-chip content ratings. The XDS attribute values are only available when XDS is shown as detected by the CC Availability indicators.

Text Services. Displays attribute values for CEA608 text services in the stream. These attribute values are only available when Text Services is shown as detected by the CC Availability indicators.
Show or hide the CEA708 tooltip. This closed caption toolbar item () shows or hides the CEA708 tooltip.

When the video is playing, the tooltip shows various parameters of the CEA708 captions in the stream:

- **Service Type.** Lists the type of CEA708 caption service in the stream: Standard or Extended.

- **Caption Service.** Use the drop-down list to select which CEA708 caption service to view.

- **Window ID.** Use the drop-down list to select which CEA708 window ID to view.

- **Attribute.** Displays attribute values for CEA708 captions in the stream. Click the +/- box next to an attribute type to view the related attribute values.
Show or hide the Multi-Caption buffer. This closed caption toolbar item ()); shows or hides the buffered overlay text display of all the closed caption content found in the stream.

When the video is playing, the Multi-Caption buffer shows activity related to the captions in the stream.

Open the extracted Closed Caption file. When closed caption analysis is enabled, the Extract CC option is enabled, and a path for the saved closed caption file is provided, this closed caption toolbar item ()); saves closed caption information to a file. Double-click the saved file to view details about the extracted closed caption content.
MacroBlock Types color key tooltip

This is an information tooltip that appears when the MacroBlock Types overlay is on: its function is to explain the colors used. This appears when the MB types overlay is on, the icon is active.

NOTE. To force undocking of the MB types color key tooltip, hold the Ctrl key while dragging with the mouse.

The MB types color key tooltip can also be turned on again by going to the Window menu, selecting Toolbars, and then clicking the MB types key.

This tooltip can be closed by clicking on the X at the top of the tooltip; to redisplay it click the MB types overlay icon off then on.

![MB Types Key](image)

Figure 45: H.264/AVC example
Figure 46: H.264/SVC example

NOTE. The Intra inferred MacroBlock type was shown in yellow in previous versions of MTS4EA. However, because it occurs infrequently and is a 16x16 type, it is now grouped in the Intra 16x16 MacroBlock type, and the Intra 4x4 MacroBlock type is now shown in yellow.

Figure 47: MPEG-4 example
Navigation panel

The Navigation panel provides:

- Progress bar
- Play panel
- Closed caption availability panel (CC Analysis mode only)
- CC render over video configuration

Progress bar

The Progress bar shows the following information:

- Play indicator. The center of the Progress bar has an indicator showing the current position of the playback. You can move the indicator to set the video start position.

- Current Play time. On the left side of the progress bar, the play time is displayed in HH:MM:SS format, indicating the current position of the playback.

- Total Play time. To the right of the Progress bar indicator, the total time/duration of the stream is displayed in HH:MM:SS format.

- Loop check box. When the Loop check box is selected and either Play, Fast forward, Blind fast forward, Reverse play, Fast backward or Blind fast backward is clicked, then the file will be continually played in a loop. For example, the file is decoded until its end, at which point the decoding starts again at the beginning of the file. This repeats until Stop or Pause is clicked.
The Play panel provides easy access to many of the functions in the Play menu. (See page 86, *Play menu.*) The following table describes each of the available functions:

<table>
<thead>
<tr>
<th>Toolbar icon</th>
<th>Ctrl +</th>
<th>Name</th>
<th>Description</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td>Play forward</td>
<td>Play a video/audio file (forwards)</td>
<td>(See page 90.)</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Fast forward</td>
<td>Fast forward a video file</td>
<td>(See page 91.)</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Blind fast forward</td>
<td>Blind fast forward a video file (video blanked)</td>
<td>(See page 92.)</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Pause/Step forward</td>
<td>Pause a video file/advance by one frame</td>
<td>(See page 93.)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Stop</td>
<td>Stop playing a video/audio file</td>
<td>(See page 92.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pause on frame…</td>
<td>Pause on specific frame number</td>
<td>(See page 97.)</td>
</tr>
<tr>
<td>Shift + P</td>
<td></td>
<td>Play backward</td>
<td>Play a video file backwards</td>
<td>(See page 93.)</td>
</tr>
<tr>
<td>Shift + F</td>
<td></td>
<td>Fast backward</td>
<td>Fast backward a video file</td>
<td>(See page 93.)</td>
</tr>
<tr>
<td>Shift + B</td>
<td></td>
<td>Blind fast backward</td>
<td>Blind fast backward a video file (video blanked)</td>
<td>(See page 94.)</td>
</tr>
<tr>
<td>Shift + A</td>
<td></td>
<td>Pause/Step backward</td>
<td>Pause a video file/step back by one frame</td>
<td>(See page 94.)</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>Skip forward</td>
<td>Skip forward to the next frame type/time/number</td>
<td>(See page 95.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>of frames selected in the skip-step drop-down list</td>
<td></td>
</tr>
<tr>
<td>Shift + K</td>
<td></td>
<td>Skip backward</td>
<td>Skip backward to the previous frame type/time/number of frames selected in the skip-step drop-down list</td>
<td>(See page 95.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skip step</td>
<td>Use the drop-down list to select the skip increment</td>
<td>(See page 95.)</td>
</tr>
</tbody>
</table>
Closed caption availability indicators

The Closed caption availability indicators are displayed in the navigation panel. The color of the indicators turns green when the corresponding closed caption property/data is detected in the stream. Initially, the data in the close caption availability panel is updated based on the results of the pre-scan of the first 50 MB of the file. The indicator states are updated during play based on the available closed caption types in the stream.

CC render over video configuration

The CC render over video information is displayed in a drop-down box available in the Navigation panel. The drop-down list initially contains the caption types detected from the pre-scan of 50 MB of the file. The drop-down list is updated during play if additional caption types are detected.

How the closed caption content is rendered over the video during play depends on the selection in the CC render over video drop-down list:

- None. When None is selected, no closed caption content is rendered over the video.
- Caption types list. When any caption type is selected, the corresponding closed caption content is rendered over the video.

NOTE. The CC render over video drop-down list is populated with only the caption types detected in the stream.
Show Grid control. When a caption service is selected in the drop-down list, click the Show grid control () to view the caption grid on the video display. The caption grid shows the 15 rows and 32 columns available for CEA608 captioning (not available for EIA708 captioning).
Status bar

The status bar provides:

- A one-sentence description of each menu item, as the mouse is moved over the menu item.
- The stream Play mode. (See page 49, Playing mode restrictions.)
- Context-sensitive information. The information displayed depends on which window type is open and the current status of the file within that window.

The status bar can be displayed or hidden from within the Window menu, in the same way as the icons toolbar:

<table>
<thead>
<tr>
<th>Toolbars</th>
<th>Status Bar</th>
<th>Status Bar displayed</th>
<th>Status Bar hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tile Horizontally</td>
<td>Tile Vertically</td>
<td>Arrange Icons</td>
<td>Close all</td>
</tr>
<tr>
<td>Video scale</td>
<td>HexView settings</td>
<td>Graph view settings</td>
<td>Synchronise views</td>
</tr>
<tr>
<td>✔ 1 MPEG4 Example - Space</td>
<td>✔ 1 MPEG4 Example - Space</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on status bar indications of:

- Alert levels, alert warnings, alerts disabled:
 (See page 342.)
- Frame range (in/out):
 (See page 162.)
- When custom parameters are used for buffer analysis, this is indicated in the status bar of the main MTS4EA window by the word BUF:
 (See page 276.)
 (See page 277.)
Ctrl shortcut keys

All shortcut keys are accessed by holding the Ctrl key and pressing the letter given in the following table, except the F1 key:

<table>
<thead>
<tr>
<th>Toolbar icon</th>
<th>Ctrl +</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mouse</td>
<td></td>
<td>Force undock</td>
<td>Force undocking of tooltip (for example, Summary/MacroBlock)</td>
</tr>
<tr>
<td>1</td>
<td>1:1</td>
<td>Set video scale:</td>
<td>Best fit or 1:1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Pause/Step forward</td>
<td>Pause a video file/advance by one frame</td>
</tr>
<tr>
<td>Shift + A</td>
<td></td>
<td>Pause/Step backward</td>
<td>Pause a video file/step back by one frame</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Blind fast forward</td>
<td>Blind fast forward a video file (video blanked)</td>
</tr>
<tr>
<td>Shift + B</td>
<td></td>
<td>Blind fast backward</td>
<td>Blind fast backward a video file (video blanked)</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Copy</td>
<td>Copy highlighted selection</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>Motion vectors</td>
<td>Overlay motion vectors display</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>Fast forward</td>
<td>Fast forward a video file</td>
</tr>
<tr>
<td>Shift + F</td>
<td></td>
<td>Fast backward</td>
<td>Fast backward a video file</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>Graph enable</td>
<td>Enable the graph output</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>View stream hex…</td>
<td>Open the current stream in the HexView</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>Image inspector</td>
<td>Open/close the Image inspector</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>Skip forward</td>
<td>Skip to next I-frame/forward n frames/forward n seconds</td>
</tr>
<tr>
<td>Shift + K</td>
<td></td>
<td>Skip backward</td>
<td>Skip to previous I-frame/backward n frames/backward n seconds</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>MB tooltip</td>
<td>Open/close the MacroBlock tooltip</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>Open stream…</td>
<td>Open a video/audio file</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>Play forward</td>
<td>Play a video/audio file (forwards)</td>
</tr>
<tr>
<td>Shift + P</td>
<td></td>
<td>Play backward</td>
<td>Play a video file backwards</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>View file structure…</td>
<td>Open the current video/container file and view the structure in navigable tree form</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Stop</td>
<td>Stop playing a video/audio file</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>Trace enable</td>
<td>Enable the Trace output</td>
</tr>
<tr>
<td>Shift+T</td>
<td></td>
<td>View trace…</td>
<td>View the currently selected Trace file</td>
</tr>
</tbody>
</table>
Toolbars, Status bar, and shortcut keys

<table>
<thead>
<tr>
<th>Toolbar icon</th>
<th>Ctrl +</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td></td>
<td>Summary tooltip</td>
<td>Open/close the Summary tooltip</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Paste</td>
<td>Paste cut/copied selection in Bitstream editor view</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td>Black/White</td>
<td>Set overlay digits to black/white</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Cut</td>
<td>Cut highlighted selection in Bitstream editor view</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>MB types</td>
<td>MacroBlock type overlay</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>Undo last edit</td>
<td>Undo last edit in Bitstream editor view</td>
</tr>
<tr>
<td>Tab</td>
<td></td>
<td>Switch windows</td>
<td>Quickly switch between open windows</td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>Help</td>
<td>Go to Help topics</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>Find next</td>
<td>In Trace and HexView only</td>
</tr>
<tr>
<td>Shift+F3</td>
<td></td>
<td>Find previous</td>
<td>In Trace and HexView only</td>
</tr>
</tbody>
</table>

1 The F1, F2 & F3 keys are pressed without pressing the Ctrl key

* The F1, F2 & F3 keys are pressed without pressing the Ctrl key

Alt menu keys

Menus can be selected by pressing the Alt key and the letter underlined in the menu option name. For example, pressing Alt+f will open the File menu. The cursor keys (or the mouse) can be used to select the option required.
Command line/batch mode

This feature allows the MTS4EA to be run in one of two ways:
- Command line mode
- Batch mode

Command line mode

In command line mode, the MTS4EA opens with the Windows display as usual, but using the files and flags specified in the command line.

Batch mode

In batch mode, there is no Windows display (the window is actually minimized and not activated) and the input file, flags and output files are specified in the command line.

The exception to this in batch mode is when no input file is specified. In this case, the MTS4EA opens in Windows mode, allows you to specify a bitstream file name, and then closes Windows mode and goes back to batch mode.

The MTS4EA exits automatically from batch mode when the last selected frame has been decoded.

NOTE. Remember the –b option to run MTS4EA in batch mode (rather than command-line mode).
Running the MTS4EA in command line/batch mode

To use command line or batch mode:

- Use Windows Start/Run and type in the line
- Open a command prompt window (typically from Windows Start/Programs/Accessories) and enter the line

The format of the line to be entered is:

`MTS4EA [options...] <filename>` where:

- `[options...]` is zero or more of the options listed in 0
- `<filename>` is the input video file to be decoded

NOTE. If you are using the demo version of MTS4EA, then you should use `mts4ea_demo` instead of `mts4ea` in the command line.
The input video filename must be the full filename (including any file extension after the . [period]).

Using demonstration sequences in batch mode

To use the batch mode with the example files provided in the File menu (File > Examples…) you must use the –d option with the file name specified in the following table.

<table>
<thead>
<tr>
<th>Demo sequence</th>
<th>Standard</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.265/HEVC byte streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbidden city</td>
<td>HEVC Main Profile / Main Tier / Level 6</td>
<td>hevc_1</td>
</tr>
<tr>
<td>Grenadier guards</td>
<td>HEVC Main Profile / Main Tier / Level 6</td>
<td>hevc_2</td>
</tr>
<tr>
<td>Red portico</td>
<td>HEVC Main Profile / Main Tier / Level 2.1</td>
<td>hevc_3</td>
</tr>
<tr>
<td>H.264/AVC byte streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neon Night</td>
<td>H.264/AVC Baseline Profile/Level 2</td>
<td>avc_1</td>
</tr>
<tr>
<td>Canary Wharf</td>
<td>H.264/AVC Extended Profile/Level 3</td>
<td>avc_2</td>
</tr>
<tr>
<td>Bus Junction</td>
<td>H.264/AVC Baseline Profile/Level 3</td>
<td>avc_3</td>
</tr>
<tr>
<td>Grenadier Guards</td>
<td>H.264/AVC Main Profile/Level 3</td>
<td>avc_4</td>
</tr>
<tr>
<td>Stripy Shirts</td>
<td>H.264/AVC High Profile/10</td>
<td>avc_5</td>
</tr>
<tr>
<td>Times Square</td>
<td>H.264/AVC High Profile/4:4:4</td>
<td>avc_6</td>
</tr>
<tr>
<td>H.264/SVC byte stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td>Scalable Baseline Profile/Level3</td>
<td>svc_1</td>
</tr>
<tr>
<td>VC-1 advanced stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Park</td>
<td>VC-1 Advanced</td>
<td>vc1_1</td>
</tr>
<tr>
<td>MPEG-4 elementary streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman Drinking</td>
<td>MPEG-4 Main Profile</td>
<td>mpg4_1</td>
</tr>
<tr>
<td>Train in Station</td>
<td>MPEG-4 Main Profile</td>
<td>mpg4_2</td>
</tr>
<tr>
<td>Space</td>
<td>MPEG-4 Simple Profile</td>
<td>mpg4_3</td>
</tr>
<tr>
<td>Man Walking</td>
<td>MPEG-4 Advanced Simple Profile</td>
<td>mp4asp_1</td>
</tr>
<tr>
<td>Synthetic</td>
<td>MPEG-4 Advanced Simple Profile</td>
<td>mp4asp_2</td>
</tr>
<tr>
<td>Window Car</td>
<td>MPEG-4 Advanced Simple Profile</td>
<td>mp4asp_3</td>
</tr>
<tr>
<td>H.263 streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rally (250k)</td>
<td>H.263 Baseline/MPEG-4 Short Header</td>
<td>h263_1</td>
</tr>
<tr>
<td>Rally (2M)</td>
<td>H.263+ with Annex T</td>
<td>h263_2</td>
</tr>
<tr>
<td>Person Track</td>
<td>H.263+ with Annexes D, F, I, J, S, T</td>
<td>h263_3</td>
</tr>
<tr>
<td>MP4 files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Woman</td>
<td>MP4 file containing MPEG-4 Simple Profile/ Level 1</td>
<td>mp4fil_1</td>
</tr>
<tr>
<td>Piccadilly Circus</td>
<td>MP4 file containing MPEG-4 Simple Profile/ Level 2</td>
<td>mp4fil_2</td>
</tr>
<tr>
<td>Beijing Weather Girl</td>
<td>MP4 file containing MPEG-4 Simple Profile/ Level 5 (with audio)</td>
<td>mp4fil_3</td>
</tr>
<tr>
<td>Demo sequence</td>
<td>Standard</td>
<td>File name</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>H.264/AVC Baseline Profile/Level 1.2</td>
<td>mp4fil_4</td>
</tr>
<tr>
<td>Live Band</td>
<td>MPEG-4 Simple Profile/Level 1 (video); AAC HE (audio)</td>
<td>audio_4</td>
</tr>
<tr>
<td>Stage Interview</td>
<td>MPEG-4 Simple Profile/Level 1 (video); AAC Main (audio)</td>
<td>audio_5</td>
</tr>
<tr>
<td>3GPP file</td>
<td>3GPP file containing MPEG-4 Simple Profile/Level 1</td>
<td>3gpfil_1</td>
</tr>
<tr>
<td>MPEG-2 program streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Junction</td>
<td>MPEG-2 Main Profile/ Main Level</td>
<td>mp2_1</td>
</tr>
<tr>
<td>Person Track</td>
<td>MPEG-2 Main Profile/ Main Level</td>
<td>mp2_2</td>
</tr>
<tr>
<td>Grenadier Guards</td>
<td>MPEG-2 Main Profile/ Main Level</td>
<td>mp2_3</td>
</tr>
<tr>
<td>MPEG-2 transport streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Gate</td>
<td>H.264/AVC Main Profile</td>
<td>mp2ts_1</td>
</tr>
<tr>
<td>Mangroves</td>
<td>MPEG-2 MP@ML</td>
<td>mp2ts_2</td>
</tr>
<tr>
<td>Captain Bob</td>
<td>MPEG-2 MP@ML (with MPEG-1 Audio Layer II)</td>
<td>mp2ts_3</td>
</tr>
<tr>
<td>Microsoft® ASF files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beach Girl</td>
<td>Simple Profile</td>
<td>asf_1</td>
</tr>
<tr>
<td>Great Wall</td>
<td>Main Profile</td>
<td>asf_2</td>
</tr>
<tr>
<td>ADTS streams</td>
<td>AAC LC</td>
<td></td>
</tr>
<tr>
<td>Dance Track</td>
<td>AAC LC</td>
<td>audio_6</td>
</tr>
<tr>
<td>A/V Delay stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clapperboard</td>
<td>MPEG-2 Main Profile / Main Level (video)</td>
<td>avdelay</td>
</tr>
<tr>
<td></td>
<td>Dolby AC-3 (audio)</td>
<td></td>
</tr>
</tbody>
</table>

To use these demonstration sequences, the option `-d` is used. (See page 377, List of options.)

In addition, the following YUV files are provided for fidelity analysis and visual differencing with the example streams:

<table>
<thead>
<tr>
<th>YUV files</th>
<th>Use with compressed demo sequence</th>
<th>Frame rate</th>
<th>Number of frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>guards_yuv</td>
<td>H.264/AVC Grenadier Guards</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>MPEG-2 Grenadier Guards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>man_walking_yuv</td>
<td>MPEG-4 Man Walking</td>
<td>30</td>
<td>All</td>
</tr>
</tbody>
</table>

Command line/batch mode options

Form of options. All options take the following form:

 -x <value>

(Where x is the option and <value> is the value entered; for some options there is no value.)

If there is a value, there is always a <space> between the -x and the value.

All options must be separated by spaces.

NOTE. Where filenames or folders have spaces in the path or name, these must be put inside double quotes.

There is limited checking on the options/option values.

List of options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Value (if any)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td><alertlevel></td>
<td>Alert level, which must be one of the following text strings: error, warn, or fatal. If the warning alert level is on, trace outputs will also include error and fatal level alerts. Fatal level alerts are always on.</td>
</tr>
<tr>
<td>-b</td>
<td></td>
<td>When present, enable batch mode. If not present, command line mode is used.</td>
</tr>
<tr>
<td>-c</td>
<td><codec></td>
<td>Override the automatic codec detection. (See page 381, CODEC identities.)</td>
</tr>
<tr>
<td>-d</td>
<td></td>
<td>When this flag is present, it signifies that one of the demonstration tutorial video sequences as provided with the MTS4EA is to be used as the input video file. The particular demonstration sequence to be used is specified by the filename. (See page 375, Using demonstration sequences in batch mode.). (This filename is given at the end of the command line, like any other input filename.)</td>
</tr>
<tr>
<td>-e</td>
<td><number></td>
<td>Audio lead tolerance in milliseconds.</td>
</tr>
<tr>
<td>-f</td>
<td><firstframe></td>
<td>Integer value specifying the first frame to be used for the YUV and Trace outputs. If this option is not specified then frame number 1 (the first frame in the video sequence) is used.</td>
</tr>
<tr>
<td>-g</td>
<td><number></td>
<td>Audio lag tolerance in milliseconds.</td>
</tr>
<tr>
<td>-h</td>
<td></td>
<td>Displays help Window (MTS4EA opens after OK is clicked).</td>
</tr>
<tr>
<td>Option</td>
<td>Value (if any)</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>-i</td>
<td><trackID></td>
<td>Where the input file is a container file such as MP4 or 3GPP or MPEG-2 Program Stream, there can be more than one video track in the file. If -i is not specified then the first video track found is used. If the track ID specified is not present, a file missing error is given. (See page 380, Specifying track identities.)</td>
</tr>
<tr>
<td>-j</td>
<td><trackID></td>
<td>Same as for -i, but audio related.</td>
</tr>
<tr>
<td>-k</td>
<td>[F:]<integer></td>
<td>Specify a byte offset entry point to the video elementary stream. If the F: is used then the integer is treated as a frame offset.</td>
</tr>
<tr>
<td>-l</td>
<td><lastframe></td>
<td>Integer value specifying the last frame to be used for the YUV and Trace outputs. If this option is not specified, the last frame in the video sequence is used.</td>
</tr>
<tr>
<td>-m</td>
<td><size></td>
<td>Integer value specifying the maximum video trace file size, in megabytes. If -m is not given or the value is set to 0, there is no limit on the size of the trace file (other than the available disk space).</td>
</tr>
<tr>
<td>-n</td>
<td><size></td>
<td>Integer value specifying the maximum audio trace file size, in MB.</td>
</tr>
<tr>
<td>-o</td>
<td><options></td>
<td>The Video Trace file options are any combination of the following letters with no spaces between them:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Option Video trace output generated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a Macroblock fidelity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b Parse bitstream</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d DCT level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f Frame summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g GOB summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i Interpret</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l Alerts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m Macroblock summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p Pixel level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>s Stream summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>u Buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v voc fidelity</td>
</tr>
<tr>
<td>-p</td>
<td><options></td>
<td>The Audio Trace file options are any combination of the following letters with no spaces between them:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Option Audio trace output generated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b Parse bitstream</td>
</tr>
<tr>
<td></td>
<td></td>
<td>h Audio histograms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i interpret</td>
</tr>
</tbody>
</table>
Command line/batch mode

#### Option	Value (if any)	Description
-q | <name> | Enforces extra restrictions per standard:

Options

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrib14</td>
<td>ARIB TR-B14 transform</td>
</tr>
<tr>
<td>Transform</td>
<td>intermediate value checking</td>
</tr>
</tbody>
</table>

Restrictions enforced

- r | <yuvfile> | Full name of the YUV reference file used for fidelity analysis.
(See also the options -s, -u and -v.)

- s | <size> | Header skip of the YUV reference file used for fidelity analysis.
(See also the options -r, -u and -v.)

- t | <tracefile> | Full name of the Video Trace output file.
If no video trace output file is specified, the trace options are ignored.

- u | <number> | Frame rate of the YUV reference file used for fidelity analysis.
The number can be an integer, or a fraction expressed as a/b (where a and b are integers) or a decimal number.
(See also the options -r, -s and -v.)

- v | <string> | Metric used for fidelity analysis: the string value must be one of the following:
psnr - PSNR with 255 signal range
psnritu - PSNR with ITU-R BT.601 signal range
rmse - Root Mean Square Error
mse - Mean Square Error
mad - Mean Absolute Differences
sad - Mean Absolute Differences
(See also the options -r, -s and -u.)

- w | <error_file> | Output trace file with warnings/errors/fatal alerts only - no other trace information.
<error_file> is the name of the file that holds the warnings/errors/fatal alerts.
If there are no warnings/errors/fatal alerts, the <error_file> is zero length
Option | Value (if any) | Description
--- | --- | ---
-x | <options> | The format of image samples in uncompressed video files for input or output. This option is used when working with H.264/AVC High Profile to denote: The correct format for the uncompressed input when doing PSNR analysis The format for uncompressed output The format option is one of the following codes: 1 - one byte per sample 2le - two bytes per sample, little-endian 2be - two bytes per sample, big-endian
-y | <yuvfile> | Full name of the YUV output file (See page 382.)
-z | <tracefile> | Full name of the audio trace output file. If no audio trace output file is specified, the trace options are ignored.
-B | <layerID> | This selection applies to H.264/SVC streams only. Layer ID to be analyzed. This must correspond to one of the Layer IDs as specified in the scalable_info SEI message (Integer value).

Specifying track identities

The format for specifying the track <trackID> to decode for the command line options –i and –j is as follows: A series of track numbers separated by a period (.) that give the path to the elementary stream from the top container. The numbers can be base 10 or in a hexadecimal format. Optionally a codec may be specified after an equals sign (=) at the end of the path. If the codec is specified, then MTS4EA will force that decoder to be attached to the stream. To specify just the codec to attach use the –c option.

Example 1: `mts4ea -i 0x1000.0xe0=AVC jaws4.ts`

This looks on track 0x1000 (4096) and then on sub track 0xe0 (224) and tries to attach the H.264/AVC decoder. This is a typical format for transport streams with the PID first, followed by the PES stream_id.

Example 2: `mts4ea -c VC1A lostInSpace.vc1`

This forces the VC-1 Advanced Profile decoder to be used for the input stream. This can be useful in rare cases when the stream type is not recognised or is mis-recognised by MTS4EA.
CODEC identities

The allowed values for the codec are given in the following table. If the value contains a space then it must be given within double quotes:

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.263</td>
<td>video</td>
<td>H.263</td>
</tr>
<tr>
<td>AVC</td>
<td>video</td>
<td>H.264/AVC</td>
</tr>
<tr>
<td>SVC</td>
<td>video</td>
<td>H.264/SVC</td>
</tr>
<tr>
<td>HEVC</td>
<td>video</td>
<td>H.265/HEVC</td>
</tr>
<tr>
<td>MPEG-2</td>
<td>video</td>
<td>MPEG-2 video</td>
</tr>
<tr>
<td>MPEG-4</td>
<td>video</td>
<td>MPEG-4 part 2 video</td>
</tr>
<tr>
<td>VC1A</td>
<td>video</td>
<td>VC-1 Advanced Profile</td>
</tr>
<tr>
<td>VC1SM</td>
<td>video</td>
<td>VC-1 Simple/Main Profile</td>
</tr>
<tr>
<td>ASF</td>
<td>container</td>
<td>Microsoft Advanced Systems Format</td>
</tr>
<tr>
<td>MP4</td>
<td>container</td>
<td>ISO</td>
</tr>
<tr>
<td>3GPP</td>
<td>container</td>
<td>3GPP</td>
</tr>
<tr>
<td>ADTS</td>
<td>container</td>
<td>ISO</td>
</tr>
<tr>
<td>MPEG-2 TS</td>
<td>container</td>
<td>ISO</td>
</tr>
<tr>
<td>MPEG-2 PS</td>
<td>container</td>
<td>ISO</td>
</tr>
<tr>
<td>MPEG-2 PES</td>
<td>container</td>
<td>ISO</td>
</tr>
<tr>
<td>AAC</td>
<td>audio</td>
<td>ISO</td>
</tr>
<tr>
<td>MPEG-2 audio</td>
<td>audio</td>
<td>ISO</td>
</tr>
<tr>
<td>MPEG-1 audio</td>
<td>audio</td>
<td>ISO</td>
</tr>
<tr>
<td>AC-3</td>
<td>audio</td>
<td>Dolby Digital AC-3</td>
</tr>
<tr>
<td>MXF</td>
<td>container</td>
<td>SMPTE 377M-2004 Material Exchange Format</td>
</tr>
</tbody>
</table>
Example command lines

Three examples of valid command lines follow:

First frame: unspecified so frame 1 assumed, last frame: 13

```bash
mts4ea -b -l 13 -a warn -y test1.yuv -t "D:\test traces\test1.tex" -o bi test1.m4v
```

[YUV output file name]
[Trace file output (in quotes because of <space> in path)]
[Input file name]
[Trace options: parse Bitstream and interpret]

Warning alert level

NOTE. The uncompressed video output file in this section is the uncompressed video output resulting from decoding the compressed video; this is a different file than the uncompressed video reference file that is used when doing fidelity analysis.

Skip the first 100 frames of the video

```bash
mts4ea -k F:100-a fatal gigli.264
```

[Input file name]
[Suppress all alerts below fatal level, that is information, warnings, and errors]

An uncompressed file for reference in fidelity analysis

```bash
mts4ea -r uncompressed.yuv -v mse -t fidelity.vpt -o v plan9.m2v
```

[Input file name]
[The trace file name]
[The metric for fidelity analysis]
[Trace file options – just the frame fidelity]

The YUV data is either:

- 8 bits per sample, 4:2:0
- More than 8 bits per sample, and/or 4:2:2 or 4:4:4 (as used by H.264/AVC High Profile/FRExt, High/10, High/4:2:2, High/4:4:4)
YUV format 8 bits per sample 4:2:0. The YUV file output is raw YUV with no headers of any kind. This is the same format as used by the Microsoft MPEG-4 Part 2 reference encoder Reference [6] (see Compression Standards and File Types section) (See page 15.) and as used commonly by other programs:

- No headers of any kind (no file or frame headers)
- One byte per sample
- Row raster order (top picture row first)
- Planar YUV 4:2:0 sub-sampled (4 bytes of Y data for each byte of U data and each byte of Y data)
- Y plane values are 0-255 unsigned
- U and V plane values are unsigned with a DC offset of 128

Other uncompressed formats. The general uncompressed video file format is as follows:

- No headers of any kind (no file or frame headers)
- Concatenated planar image data
- Row raster order (top picture row first)
- Unsigned samples

For 8-bit sample depth:

- One byte per sample

For 9-16 bit sample depth:

- Two bytes per sample
- Both little- and big-endian byte orders supported

For YUV format:

- Concatenated Y, U and V planes
- U and V planes sub-sampled as required
- Y plane samples are unsigned
- U and V plane samples are unsigned with a DC offset of 2^{-1}, where n is the chroma sample bit depth

For RGB format:

- Concatenated R, G and B planes
- For grayscale format:
- Luma plane only
Bitstream syntax debugging

This section gives some tips and suggestions on debugging the syntax of video bitstreams syntax.

In order to understand these, you will need to have the relevant video standard(s) to hand.

NOTE. This manual section applies to streams that only contain video, such as MPEG-4 Elementary Streams - it does not apply to debugging container files such as MP4/3GPP, which can also contain audio and other data.

General codes used in Trace files and Alerts

Trace data and Alerts will often have two sets of information fields, such as shown below:

```
(0x00000000,7) [SC] (MP4) MPEG-4 Start Code = 0;
(0x00000004,7) [SC] (MP4) start_code_prefix
(0x00000007,7) [VOL] (MP4) video_object_layer_st:
(0x00000009,6) [VO] (MP4) is_visual_object_iden!
(0x00000009,5) [VO] (MP4) visual_object_verid =
(0x00000009,1) [VO] (MP4) visual_object_priorit!
(0x0000000A,6) [VOL] (MP4) aspect ratio = 1
(0x0000000A,2) [VOL] (MP4) vol_control_parameter:
(0x0000000A,1) [VOL] (MP4) chroma_format 4:2:0
```

Three-letter codes are used within the outputs generated by Trace/Interpret, Alerts and (sometimes) Trace/Parse Bitstream.

The codes are used to indicate the part of the picture hierarchy that applies to the text data given.
<table>
<thead>
<tr>
<th>Three-letter code</th>
<th>Syntactic structure in H.265/HEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSN</td>
<td>byte_stream_nal_unit</td>
</tr>
<tr>
<td>NALU</td>
<td></td>
</tr>
<tr>
<td>NAL</td>
<td>nal_unit</td>
</tr>
<tr>
<td>STB</td>
<td>rbsp_slice_trailing_bits</td>
</tr>
<tr>
<td>RTB</td>
<td>rbsp_trailing_bits</td>
</tr>
<tr>
<td>Top-level RBSPs</td>
<td></td>
</tr>
<tr>
<td>AUD</td>
<td>access_unit_delimiter_rbsp</td>
</tr>
<tr>
<td>ESQ</td>
<td>end_of_seq_rbsp</td>
</tr>
<tr>
<td>EST</td>
<td>end_of_stream_rbsp</td>
</tr>
<tr>
<td>FLD</td>
<td>filler_data_rbsp</td>
</tr>
<tr>
<td>PPS</td>
<td>pic_parameter_set_rbsp</td>
</tr>
<tr>
<td>SEI</td>
<td>sei_rbsp</td>
</tr>
<tr>
<td>SPS</td>
<td>seq_parameter_set_rbsp</td>
</tr>
<tr>
<td>VPS</td>
<td>video_parameter_set_rbsp</td>
</tr>
<tr>
<td>PTL</td>
<td>profile_tier_level</td>
</tr>
<tr>
<td>SCL</td>
<td>scaling_list</td>
</tr>
<tr>
<td>DRP</td>
<td>dec_ref_pic_marking</td>
</tr>
<tr>
<td>PWT</td>
<td>pred_weight_table</td>
</tr>
<tr>
<td>RPL</td>
<td>ref_pic_list_modification</td>
</tr>
<tr>
<td>SLH</td>
<td>slice_segment_header</td>
</tr>
<tr>
<td>Slice segment data</td>
<td></td>
</tr>
<tr>
<td>SLD</td>
<td>slice_segment_data</td>
</tr>
<tr>
<td>SAO</td>
<td>soa_data</td>
</tr>
<tr>
<td>CTU</td>
<td>coding_quadtree</td>
</tr>
<tr>
<td>CDU</td>
<td>coding_unit</td>
</tr>
<tr>
<td>PRU</td>
<td>prediction_unit</td>
</tr>
<tr>
<td>TRT</td>
<td>transform_tree</td>
</tr>
<tr>
<td>TRU</td>
<td>transform_unit</td>
</tr>
<tr>
<td>RES</td>
<td>residual</td>
</tr>
<tr>
<td>SEI</td>
<td></td>
</tr>
<tr>
<td>BUP</td>
<td>buffering_period</td>
</tr>
<tr>
<td>PIT</td>
<td>pic_timing</td>
</tr>
<tr>
<td>PSR</td>
<td>pan_scan_rect</td>
</tr>
<tr>
<td>FLP</td>
<td>filler_payload</td>
</tr>
<tr>
<td>UDR</td>
<td>user_data_registered_itu_t_135</td>
</tr>
<tr>
<td>UDU</td>
<td>user_data_unregistered</td>
</tr>
<tr>
<td>REP</td>
<td>recovery_point</td>
</tr>
</tbody>
</table>
Bitstream syntax debugging

<table>
<thead>
<tr>
<th>Three-letter code</th>
<th>Syntactic structure in H.265/HEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI</td>
<td>scene_info</td>
</tr>
<tr>
<td>PSS</td>
<td>picture_snapshot</td>
</tr>
<tr>
<td>PRS</td>
<td>progressive_refinement_segment_start</td>
</tr>
<tr>
<td>PRE</td>
<td>progressive_refinement_segment_end</td>
</tr>
<tr>
<td>FGC</td>
<td>film_grain_characteristics</td>
</tr>
<tr>
<td>PFH</td>
<td>post_filter_hint</td>
</tr>
<tr>
<td>TMI</td>
<td>tone_mapping_info</td>
</tr>
<tr>
<td>FPA</td>
<td>frame_packing_arrangement</td>
</tr>
<tr>
<td>DIO</td>
<td>display_orientation</td>
</tr>
<tr>
<td>SPI</td>
<td>structure_of_pictures_info</td>
</tr>
<tr>
<td>APS</td>
<td>active_parameter_sets</td>
</tr>
<tr>
<td>DUI</td>
<td>decoding_unit_info</td>
</tr>
<tr>
<td>TSL</td>
<td>temporal_sub_layer_zero_index</td>
</tr>
<tr>
<td>SCN</td>
<td>scalable_nesting</td>
</tr>
<tr>
<td>RRI</td>
<td>region_refresh_info</td>
</tr>
<tr>
<td>DPH</td>
<td>decoded_picture_hash</td>
</tr>
<tr>
<td>RSM</td>
<td>reserved_sei_message</td>
</tr>
<tr>
<td>VUI</td>
<td>hrd_parameters</td>
</tr>
<tr>
<td>HRD</td>
<td>vui_parameters</td>
</tr>
</tbody>
</table>
Three-letter codes for H.264/AVC

<table>
<thead>
<tr>
<th>Three-letter code</th>
<th>Syntactic structure in H.264/AVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSN</td>
<td>byte_stream_nal_unit</td>
</tr>
<tr>
<td>NALU</td>
<td></td>
</tr>
<tr>
<td>NAL</td>
<td>nal_unit</td>
</tr>
<tr>
<td>STB</td>
<td>rbsp_slice_trailing_bits</td>
</tr>
<tr>
<td>RTB</td>
<td>rbsp_trailing_bits</td>
</tr>
<tr>
<td>RBSPs</td>
<td></td>
</tr>
<tr>
<td>AUD</td>
<td>access_unit_delimiter_rbsp</td>
</tr>
<tr>
<td>ESQ</td>
<td>end_of_seq_rbsp</td>
</tr>
<tr>
<td>EST</td>
<td>end_of_stream_rbsp</td>
</tr>
<tr>
<td>FLD</td>
<td>filler_data_rbsp</td>
</tr>
<tr>
<td>PPS</td>
<td>pic_parameter_set_rbsp</td>
</tr>
<tr>
<td>SEI</td>
<td>sei_rbsp</td>
</tr>
<tr>
<td>SPS</td>
<td>seq_parameter_set_rbsp</td>
</tr>
<tr>
<td>SLA</td>
<td>slice_data_partition_a_layer_rbsp</td>
</tr>
<tr>
<td>SLB</td>
<td>slice_data_partition_b_layer_rbsp</td>
</tr>
<tr>
<td>SLC</td>
<td>slice_data_partition_c_layer_rbsp</td>
</tr>
<tr>
<td>SLW</td>
<td>slice_layer_without_partitioning_rbsp</td>
</tr>
<tr>
<td>Slice header</td>
<td></td>
</tr>
<tr>
<td>DRP</td>
<td>dec_ref_pic_marking</td>
</tr>
<tr>
<td>PWT</td>
<td>pred_weight_table</td>
</tr>
<tr>
<td>RPL</td>
<td>ref_pic_list_reordering</td>
</tr>
<tr>
<td>SLH</td>
<td>slice_header</td>
</tr>
<tr>
<td>Slice data</td>
<td></td>
</tr>
<tr>
<td>MBL</td>
<td>macroblock_layer</td>
</tr>
<tr>
<td>MBP</td>
<td>mb_pred</td>
</tr>
<tr>
<td>RES</td>
<td>residual</td>
</tr>
<tr>
<td>CAB</td>
<td>residual_block_cabac</td>
</tr>
<tr>
<td>CAV</td>
<td>residual_block_cavlc</td>
</tr>
<tr>
<td>SLD</td>
<td>slice_data</td>
</tr>
<tr>
<td>SMP</td>
<td>sub_mb_pred</td>
</tr>
<tr>
<td>SEI</td>
<td></td>
</tr>
<tr>
<td>BUP</td>
<td>buffering_period</td>
</tr>
<tr>
<td>DRR</td>
<td>dec_ref_pic_marking_repetition</td>
</tr>
<tr>
<td>ELP</td>
<td>filler_payload</td>
</tr>
<tr>
<td>EFP</td>
<td>full_frame_freeze</td>
</tr>
<tr>
<td>FFR</td>
<td>full_frame_freeze_release</td>
</tr>
<tr>
<td>FRS</td>
<td>full_frame_snapshot</td>
</tr>
<tr>
<td>Three-letter code</td>
<td>Syntactic structure in H.264/AVC</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>MCS</td>
<td><code>motion_constrained_slice_group_set</code></td>
</tr>
<tr>
<td>PSR</td>
<td><code>pan_scan_rect</code></td>
</tr>
<tr>
<td>PIT</td>
<td><code>pic_timing</code></td>
</tr>
<tr>
<td>PRE</td>
<td><code>progressive_refinement_segment_end</code></td>
</tr>
<tr>
<td>PRS</td>
<td><code>progressive_refinement_segment_start</code></td>
</tr>
<tr>
<td>REP</td>
<td><code>recovery_point</code></td>
</tr>
<tr>
<td>RSM</td>
<td><code>reserved_sei_message</code></td>
</tr>
<tr>
<td>SCI</td>
<td><code>scene_info</code></td>
</tr>
<tr>
<td>SEM</td>
<td><code>sei_message</code></td>
</tr>
<tr>
<td>SEP</td>
<td><code>sei_payload</code></td>
</tr>
<tr>
<td>SPP</td>
<td><code>spare_pic</code></td>
</tr>
<tr>
<td>SSC</td>
<td><code>sub_seq_characteristics</code></td>
</tr>
<tr>
<td>SSI</td>
<td><code>sub_seq_info</code></td>
</tr>
<tr>
<td>SSL</td>
<td><code>sub_seq_layer_characteristics</code></td>
</tr>
<tr>
<td>UDR</td>
<td><code>user_data_registered itu_t_t2</code></td>
</tr>
<tr>
<td>UDU</td>
<td><code>user_data_unregistered</code></td>
</tr>
<tr>
<td>VUI</td>
<td></td>
</tr>
<tr>
<td>HRD</td>
<td><code>hrd_parameters</code></td>
</tr>
<tr>
<td>VUI</td>
<td><code>vui_parameters</code></td>
</tr>
</tbody>
</table>

If appropriate, these are paired together in the form: [TTT:LLL] where the following are used to generate the data given in the Trace file:

- TTT indicates the top called syntactic structure
- MMM indicates the middle called syntactic structure
- LLL indicates the lowest called syntactic structure
Bitstream syntax debugging

<table>
<thead>
<tr>
<th>Three-letter code</th>
<th>Name in H.263</th>
<th>Name in MPEG-4</th>
<th>Standard section</th>
</tr>
</thead>
<tbody>
<tr>
<td>[VOS]</td>
<td></td>
<td>VisualObjectSequence</td>
<td>6.2.2</td>
</tr>
<tr>
<td>[VO]</td>
<td></td>
<td>VisualObject</td>
<td>6.2.2</td>
</tr>
<tr>
<td>[VOL]</td>
<td></td>
<td>VideoObjectLayer</td>
<td>6.2.3</td>
</tr>
<tr>
<td>[PL]</td>
<td>Picture Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[GOV]</td>
<td>-</td>
<td>Group_of_VideoObjectPlane</td>
<td>6.2.4</td>
</tr>
<tr>
<td>[VOP]</td>
<td>-</td>
<td>VideoObjectPlane</td>
<td>6.2.5</td>
</tr>
<tr>
<td>[VPS]</td>
<td>Picture Layer</td>
<td>video_plane_with_short_header</td>
<td>6.2.5.2</td>
</tr>
<tr>
<td>[GOB]</td>
<td>GOB (Group of Blocks) layer</td>
<td>gob_layer</td>
<td>6.2.5.2</td>
</tr>
<tr>
<td>[MB]</td>
<td>MB (MacroBlock) layer</td>
<td>macroblock</td>
<td>6.2.6.2</td>
</tr>
<tr>
<td>[MOV]</td>
<td>MVD, MVD 2,4</td>
<td>motion_vector</td>
<td>6.2.6.2</td>
</tr>
<tr>
<td>[BLK]</td>
<td>Block layer</td>
<td>block</td>
<td>6.2.7</td>
</tr>
<tr>
<td>[inf]</td>
<td>Information about the internal state of the decoder or variables that may be described in the relevant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three-letter codes for MPEG-2

<table>
<thead>
<tr>
<th>Three-letter code</th>
<th>Syntactic structure in MPEG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top level</td>
<td></td>
</tr>
<tr>
<td>EUD</td>
<td>extension_and_user_data</td>
</tr>
<tr>
<td>GPH</td>
<td>group_of_pictures_header</td>
</tr>
<tr>
<td>PCD</td>
<td>picture_data</td>
</tr>
<tr>
<td>PCH</td>
<td>picture_headers</td>
</tr>
<tr>
<td>PCX</td>
<td>picture_coding_extension</td>
</tr>
<tr>
<td>SQH</td>
<td>sequence_header</td>
</tr>
<tr>
<td>SQX</td>
<td>sequence_extension</td>
</tr>
<tr>
<td>VSQ</td>
<td>video_sequence</td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>APS</td>
<td>additional_pan_scan_parameters</td>
</tr>
<tr>
<td>ARW</td>
<td>active_region_window</td>
</tr>
<tr>
<td>BLK</td>
<td>block</td>
</tr>
<tr>
<td>CRP</td>
<td>coded_block_pattern</td>
</tr>
<tr>
<td>CDD</td>
<td>content_description_data</td>
</tr>
<tr>
<td>CPI</td>
<td>coded_picture_length</td>
</tr>
<tr>
<td>CTC</td>
<td>capture_timecode</td>
</tr>
</tbody>
</table>
Three-letter code

<table>
<thead>
<tr>
<th>Code</th>
<th>Syntactic structure in MPEG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXD</td>
<td>extension_data</td>
</tr>
<tr>
<td>FCT</td>
<td>frame_or_field_capture_timestamp</td>
</tr>
<tr>
<td>MBK</td>
<td>macroblock</td>
</tr>
<tr>
<td>MBM</td>
<td>macroblock_modes</td>
</tr>
<tr>
<td>MVS</td>
<td>motion_vectors</td>
</tr>
<tr>
<td>NSC</td>
<td>next_start_code</td>
</tr>
<tr>
<td>PAD</td>
<td>padding_bytes</td>
</tr>
<tr>
<td>SLI</td>
<td>slice</td>
</tr>
<tr>
<td>USD</td>
<td>user_data</td>
</tr>
<tr>
<td>VEC</td>
<td>motion_vector</td>
</tr>
</tbody>
</table>

Extensions

<table>
<thead>
<tr>
<th>Code</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRX</td>
<td>copyright_extension</td>
</tr>
<tr>
<td>CPX</td>
<td>camera_parameters_extension</td>
</tr>
<tr>
<td>ITU</td>
<td>itu_t_extension</td>
</tr>
<tr>
<td>PDX</td>
<td>picture_display_extension</td>
</tr>
<tr>
<td>PSS</td>
<td>picture_spatial_scalable_extension</td>
</tr>
<tr>
<td>PTS</td>
<td>picture_temporal_scalable_extension</td>
</tr>
<tr>
<td>QMX</td>
<td>quant_matrix_extension</td>
</tr>
<tr>
<td>SDX</td>
<td>sequence_display_extension</td>
</tr>
<tr>
<td>SSX</td>
<td>sequence_scalable_extension</td>
</tr>
</tbody>
</table>

If appropriate, these are paired together in the form: [TTT:LLL] where the following are used to generate the data given in the Trace file:

- TTT indicates the top called syntactic structure and
- MMM indicates the middle called syntactic structure(s) and
- LLL indicates the lowest called syntactic structure
Explanation of bit/bit start

In each of the compression standards there are many bitstream fields which give values which are least significant bit first (lsbf) and many others which are most significant bit first (msbf). There are also many others that are simply bit-patterns: they do not have a direct numeric value.

MTS4EA has adopted the convention of naming the left-most bit as bit 7; as this is correct for presentation of numbers in bytes where the left-most bit is the most significant bit of the byte.

For msbf bitstream fields, numbering bit 7 as the first bit in each byte is correct.

For lsbf bitstream fields, the bit order has to be reversed when calculating the value given (and of course, all other decoders have to do this, not just MTS4EA).

To explain this further, consider a hypothetical bitstream:

<table>
<thead>
<tr>
<th>First bit in bitstream = MTS4EA bit 7</th>
<th>MTS4EA bit 0 at position 0 (in byte 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitstream 0101 101 0</td>
<td>0011 1100 0100 0000</td>
</tr>
<tr>
<td>Byte 0</td>
<td>1 2</td>
</tr>
<tr>
<td>Hex value 5A</td>
<td>3C 48</td>
</tr>
</tbody>
</table>

Using the preceding example bitstream, the following statements are illustrated in the following table:

- The position is 1 (byte 1)
- The bit/bit start is 4 (in byte 1)
- The length is 7 bits

<table>
<thead>
<tr>
<th>Bitstream 0101 1010 0011 1100 0100 0000</th>
<th>Bit start; position 4</th>
<th>Length: 7 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hex value 5A 3C 48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This field (1110001) has a hexadecimal value of 0x71 if most significant bit first (1110001) or 0x47 if least significant bit first (1000111).
Bitstream syntax debugging using the MTS4EA

Using the various tools in the MTS4EA, bitstream syntax debugging can be quick and straightforward.

How the MTS4EA does syntax checking

The MTS4EA checks for hundreds of potential errors to ensure that the bitstream under test complies with the relevant standard. The MTS4EA checks for errors at multiple levels:

- At the first level, it will check for the presence of a particular allowable bitstream field (for example, if the picture size should be specified, that data consistent with this is present within the bitstream).
- At the second level, it will check within the bitstream field that the value given is permitted, that is, the bitstream field is self-consistent. (For example, that the values given for picture size are within the permitted range of values).
- At the third level, it will check that the values across multiple bitstream fields are consistent (for example, that there are the correct number of MacroBlocks for the picture size).

Principal tools within the MTS4EA for syntax debugging

There are three main tools for syntax checking:

- The Alerts provided when displaying the video sequence using the MTS4EA (see description of alert levels in the How to use the MTS4EA section).
- The Trace/Parse Bitstream function (See page 43, How to use the MTS4EA.)
- The Trace/Interpret function (See page 43, How to use the MTS4EA.)

Essentially, of the three principal tools provided within the MTS4EA (Alerts, Trace/Parse Bitstream and Trace/Interpret):

- Alerts give a summary of all levels of debug (first, second and third, as mentioned in How the MTS4EA does syntax checking)
- Trace/Parse Bitstream concentrates on the first and second levels
- Trace/Interpret concentrates on the second and third levels

All three tools are provided so that:

- A quick overview is available (using the Alerts)
- Sometimes it is useful to be able to continue debugging at a lower level, even if some higher-level errors are found (which is the reason for Trace/Parse Bitstream and Trace/Interpret)

NOTE. You can open multiple windows in the MTS4EA, so that one window has the video, with windows for the Trace/Parse Bitstream output and a third window for Trace/Interpret output, all on the same video sequence.
Procedure for bitstream syntax debugging

The following is a suggested procedure for getting started with debugging the video bitstreams you have generated.

After a period of time, you will generate your own methodologies, but this is a good starting point.

General tips

Start debugging with short video sequences. It is easier to debug a shorter video sequence than a longer one, so start debugging with shorter versions of your compressed video sequences.

If you have to Trace out all the data of a whole video sequence into a Trace file, this file will not be too (unmanageably) large.

Use the HexView. It is often useful to also view the video bitstream file in the HexView provided within the MTS4EA, looking at the same point as the displayed video or a printed trace.

(See page 43, How to use the MTS4EA.)

Overview

In general, it is better to proceed as follows:

1. Alerts
2. Analysis/Trace/Parse Bitstream (with or without the HexView)
3. Analysis/Trace/Interpret

For some debugging, it is more useful to use Trace/Interpret first, followed by Parse Bitstream, if required, depending on the nature of the errors.

For each of these steps, use the appropriate procedure:
Alerts debugging

1. Open the video sequence under test (using File/Open stream)
2. The Alerts level is set to All when any video stream is opened.
3. If the syntax of the header of the bitstream is (reasonably) correct, then there will not be any Error or Warning messages; in which case, proceed to step 5.
4. If there are Error or Warning messages at this point, read the message carefully, noting the position (byte address) and bit position given. (See How to use the MTS4EA for information on how to interpret the data provided in these pop-up windows. (See page 43.)) At this point, it is likely you will need to understand the bits in the bitstream go to Trace/Parse bitstream debugging. (See page 395.)
5. If there are no Errors or Warnings on File/Open, play the video sequence and see if any Errors or Warnings occur. If they do not, go to Trace/Parse bitstream debugging. (See page 395.)
6. If there are Errors and/or Warnings, stop playing the video, turn on the Summary Tooltip, (see How to use the MTS4EA section) and play the video again until it stops at the first Error/Warning. (See page 43.)
7. Note the Frame number at which the Error/Warning occurs, and the other data (or open multiple copies of MTS4EA). then go to Trace/Parse Bitstream Debugging. (See page 395.)

Trace/Parse bitstream debugging

Procedure.

1. If you know the frame number at which an Error or Warning occurs, set the Frame Range to one frame before and one frame after the location of the Error or Warning. (See page 395, Trace/Parse bitstream debugging.)
2. Set the Trace filename and the maximum Trace File size. (See page 43, How to use the MTS4EA.)
3. Set Parse Bitstream on and all other Trace functions off.
4. Turn Summary Tooltip on (icon) and play the video from the start; you can stop the video as soon as it has passed the frame numbers to be captured.
5. Use View trace to see the Trace file output.
6. You should see a Trace out file similar to that shown in the see How to use the MTS4EA section. (See page 43.)
7. Search for Errors and Warnings (using the Find next button in the View trace window).
8. If there are no Errors or Warnings, it is a higher-level error. (See page 398, Trace/Interpret debugging.)
9. If there are Errors/Warnings, examine the bitstream data and the mnemonic given on the right side of the trace file and relate this to the video standard you are using to see if you can discover the problem.

NOTE. It is very important to understand that the error may well have occurred at some prior point in the bitstream. It could be that the error/warning reported is the ripple effect result of some earlier incorrect value. This is usually the case with an Out of Sync error.

For example:

In MPEG-4, if using `video_plane_with_short_header()` (MPEG-4 standard section 6.2.5.2), and `pei = 1`, then following this should be eight bits of a `psupp` field (these can be repeated), followed by the `gob_layer()`, `gob_resync_marker` (17 bits, 0000 0000 0000 0000 1)

However, if `pei = 0`, then the `gob_resync_marker` should follow directly.

Therefore if `pei` was set to 0 by accident, but there was a `psupp` field inserted set to all zeroes, the bit pattern following `pei` would be: 0000 0000 0000 0000 0000 0000 1. This would appear to be an error in the `gob_resync_marker` (that is because the 17th bit after `pei=0` would not be set to 1).

10. Check that there are no elements of a standard being used that should not be there. For example, if you are compressing data to H.263 baseline or MPEG-4 short_header, search for: `{263+}` and `{263 Ann}` to find any H.263+ annexes used.

11. Check the three-letter codes in the square brackets used by MTS4EA and reported in the trace output, such as [SC], as given in *Three-letter codes for H.264/AVC*, and that the three-letter code corresponds with the relevant standard section. (See page 388.)
Parse bitstream example outputs. See also Parse Bitstream in the How to use the MTS4EA section for more information.

(See page 43.)
Trace/Interpret debugging

Overview. This is the highest level of debugging; MTS4EA interprets the bitstream and tries to tie it up with allowable values in the standards.

There are many occasions on which Trace/Parse Bitstream will not give an error/warning but Trace Interpret will. For example:

- Parse Bitstream will find a bitstream field and check that it is in the permissible range of values
- But Interpret will ensure that the value given is consistent with the rest of the data in the bitstream

There are times when it is useful to use both.

Procedure. The procedure for Trace/Interpret debugging is very similar to that for Trace/Parse Bitstream:

1. If you know the frame number at which an Error or Warning occurs, then set the Frame Range to one frame before and one frame after the location of the Error or Warning. (See page 395, *Trace/Parse bitstream debugging*.)

2. Set the Trace File name and the maximum Trace File size. (See page 43, *How to use the MTS4EA*.)

3. Set Interpret on and all other Trace functions off.

4. Turn the Summary Tooltip on and play the video from the start; you can stop the video as soon as it has passed the frame numbers to be captured.

5. Use View trace to see the Trace file output.

6. You should see a Trace out file similar to that shown in the see How to Use the MTS4EA section.

7. Search for Errors and Warnings (using the Find next button in the View trace window).
8. If there are Errors/Warnings/Out of Syncs, then examine the bitstream data and the mnemonic given on the right side of the trace file and relate this to the video standard you are using to see if you can discover the problem.

NOTE. It is very important to understand that the error may have occurred at some prior point in the bitstream. It could be that the error/warning reported is the ripple effect result of some earlier incorrect value. This is usually be the case with an Out of Sync error.

For example:

In MPEG-4, if using `video_plane_with_short_header()` (MPEG-4 standard section 6.2.5.2), and pei = 1 then following this should be 8 bits of a psupp field (these can be repeated), followed by the gob_layer(), gob_resync_marker (17 bits, 0000 0000 0000 0000 0000 0000 1).

However, if pei = 0 then the gob_resync_marker should follow directly.

Therefore if pei was set to 0 by accident, but there was a psupp field inserted set to all zeroes, the bit pattern following pei would be: 0000 0000 0000 0000 0000 0000 1. This would appear to be an error in the gob_resync_marker (that is because the 17th bit after pei=0 would not be set to 1).

9. Check that there are no elements of a standard being used that should not be there. For example, if you are compressing data to H.263 baseline or MPEG-4 short_header, search for: `{263+}` and `{263 Ann}` to find any H.263+ annexes used.

10. Check the three-letter codes in the square brackets used by the MTS4EA and reported in the trace output, such as [SC], as given in *Three-letter codes for H.264/AVC*, and that the three-letter code corresponds with the relevant standard section. (See page 388.)
Interpret example outputs. See also Interpret in the How to Use the MTS4EA section for more information. (See page 43.)

Figure 50: MPEG-4 Example, at start of bitstream

Bitstream position in bytes from the start of the bitstream file (hexadecimal value).

Figure 51: MPEG-4 example, at start of VOP
Figure 52: H.264/AVC example, at start of byte stream

```c
(...)

Figure 53: H.263 example at start of bitstream

```
Bitstream syntax debugging
Appendix A: Decoder plugins for the MTS4EA

This section covers use of MTS4EA Decoder Plugins.

Purpose of the MTS4EA Decoder Plugins

The MTS4EA Decoder Plugins allow the advanced user to substitute various elements of MTS4EA decoder with custom/alternate elements.

There are several reasons why you may want to do this:

- There are various divergences between the outputs of different decoders due to rounding errors or different floating-point arithmetic used, because the video standards do not completely define these. The differences given mean that the output given by the MTS4EA - particularly using the YUV output in batch mode (see Command line/batch mode in the How to use the MTS4EA section for more information) - cannot be exactly compared with the output from another decoder. By being able to substitute a user’s own part of the codec for that section of the decoder, the YUV outputs generated should exactly match those of the user. (See page 406, idct Plugin.)

- Sometimes the video standard has errors and differs from common implementations. Many implementations differ from the standard in this way. (See page 406, qs Plugin.)

- Sometimes it is useful to be able to use the MTS4EA function within your own decoder, to guarantee that numerically identical results are output by the MTS4EA decoder and your own.

NOTE. The DLLs provided by Telestream are provided and licensed solely for the purposes of test and may NOT be redistributed under ANY circumstances.

Support of Decoder Plugins

Use of the Decoder Plugins assumes a considerable and detailed understanding of the video standard(s) concerned, and a thorough understanding of how to write Windows DLLs, and are provided for use by advanced developers only.

NOTE. Other than the documentation provided here and in the files provided on the CD in the folder of the Decoder Plugins, no technical support will be provided to a developer in developing their own Decoder Plugin.
Appendix A: Decoder plugins for the MTS4EA

Decoder Plugin file layout on the CD

All the Decoder Plugins are on the CD in the folder: \decoder plugins. Below this are three folders:

\bin: contains the DLLs
\docs: contains the documentation
\include: contains the .h files to include in your programs

bin folder
Below this folder are the DLLs provided by the MTS4EA. The DLLs are organized in their own folders.

Where a DLL is not dependent upon a particular video standard, this folder resides directly below the bin folder. Where there are standards-dependencies, then the DLL folders reside below the folder of the standard concerned.

Examples are:

<table>
<thead>
<tr>
<th>Folder</th>
<th>Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Decoder plugins\bin\idct\</td>
<td>tekIdct.dll</td>
<td>IDCT DLL file } export LIB files to link to } the IDCT DLL</td>
</tr>
<tr>
<td></td>
<td>tekIdct.exp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tekIdct.lib</td>
<td></td>
</tr>
<tr>
<td>\Decoder plugins\bin\mpeg4\gmc</td>
<td>tekGmc.dll</td>
<td>GMC (Global Motion Compensation) DLL file } export LIB files to link to } the GMC DLL</td>
</tr>
<tr>
<td></td>
<td>tekGmc.exp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tekGmc.lib</td>
<td></td>
</tr>
<tr>
<td>\Decoder plugins\bin\mpeg4\qs</td>
<td>tekQs.dll</td>
<td>Quarter Sample (QS) DLL file } export LIB files to link to } the QS DLL</td>
</tr>
<tr>
<td></td>
<td>tekQs.exp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tekQs.lib</td>
<td></td>
</tr>
</tbody>
</table>

docs folder
This folder contains the documentation for each supplied DLL. To view the documentation, open the file: index.html using a browser.

The API to the DLLs, file lists, structures, data fields and globals are all accessed by clicking on the related links.
Appendix A: Decoder plugins for the MTS4EA

include folder

This folder contains all the .h files that contain the declarations of the interface for each plugin.

For each plugin, only one include is required: that is for the related DLL. For example, for the IDCT plugin, only the tekIdct.h file needs to be included in your own source files.

NOTE. Any other .h files that are listed in the include folder, and which are also needed by the included .h file, will be included within the .h file.

An example of this is the ‘tekIdct.h’, which includes ‘MTS4EA.h’.

Format for generating Decoder Plugins

The Decoder Plugins were written using Microsoft Visual C 6.0.

The Plugins are all Microsoft Windows DLLs.

The only versions of Windows supported are given in the Software, hardware, and user prerequisites section.

NOTE. No other development tools or variants to these are supported for the Decoder Plugins.

Use of Decoder Plugins

To use a specific Plugin, copy it from the plugin folder to the System folder located where the MTS4EA executable is (typically C:\Program files\Telesstream\MTS4CC\System).

There will already be a DLL of the same name within the MTS4EA executable folder; the copied Plugin should overwrite this.

As delivered, all the Plugins that are in the MTS4EA executable folder are MTS4EA variants of these.
Appendix A: Decoder plugins for the MTS4EA

Decoder Plugins provided

idct Plugin
This allows you to substitute your own IDCT function instead of using the one provided with the MTS4EA. By using the same IDCT function in the MTS4EA and in your own decoder, the YUV outputs from the MTS4EA should be numerically identical to the YUV outputs provided by your own decoder.

qs Plugin
The MPEG-4 standard (Reference [1], see Compression standards and file types section) specifies the recommended method for calculating quarter sample accuracy predicted blocks (relating to motion vectors). However, the standard is non optimal in the way that these are calculated (for example introducing more rounding errors than necessary) and is not as clear as it might be. Consequently, common implementations of the quarter sample functions implement the calculations slightly differently (typically in a different order) to that given in the standard.

The Microsoft reference decoder (Reference [6], see Compression standards and file types section), although it is (theoretically) normative, is one such implementation that does not actually implement the quarter sample calculations in accordance with the standard; it takes a better approach.

(See page 15, Compression standards and file types.)

There has been some debate about this within the MPEG committee, and the prevailing conclusion is that the Microsoft implementation may be the preferred version and that the standard should at some point be changed to reflect this.

The MTS4EA uses the version as specified in the standard, and the MTS4EA will continue to track the standard and so will change only if the standard is changed. You can substitute your own quarter sample Plugin DLL, to use your own or emulate the one used by Microsoft.

gmc Plugin
This allows you to substitute your own GMC (Global Motion Compensation) function instead of using the one provided with the MTS4EA.

The Microsoft reference decoder software (Reference [6], see Compression standards and file types section) differs from the MPEG-4 standard (Reference [1], see Compression standards and file types section) in several respects, for example, rounding differences and differences in coordinate calculations. This means that the results of the YUV outputs from a Microsoft decoder will be different than the standard if GMC is used. (These differences are reflected in the Microsoft encoder, so that the Microsoft software is self-consistent.) There is no indication from the MPEG-4 committee of any planned change in the standard. This is simply a variance between the standard and the reference software.

(See page 15, Compression standards and file types.)

MTS4EA follows the standard. If you want to follow the Microsoft version of the implementation of GMC or use your own, you can substitute your own GMC DLL.
Appendix B: Tests of the MTS4EA

This section covers a report on the MTS4EA tests of the MPEG-4 Normative bitstreams and Donated bitstreams. (See page 15, Compression standards and file types.)

Tests with MPEG-4 Normative and Donated bitstreams

Many of the MPEG-4 Normative bitstreams and Donated bitstreams have errors: some of these errors are clear non-conformance to the standard; others are errors in the data encoded in the bitstreams.

Also, in a number of cases, the Microsoft reference decoder software will not decode these bitstreams at all or does so incorrectly.

These divergences are listed below. Many of them are recognized and documented by the MPEG committee as errors, but they have yet to be corrected in the Standard and/or bitstreams and/or Microsoft reference decoder software.

Notes on versions used:

- MTS4EA: v2.0.0.0
- Microsoft reference software: FDAM1-2.3-001213 version 2 dated July 3rd 2000 (note: this reference software has been updated since these tests, so the current reference software may behave differently)
- MPEG-4 Normative ISO bitstreams: dated 05/11/2001, see Compression standards and file types section
- MPEG-4 Donated bitstreams: referred to in section 4.5.8 in document N3067 dated 1999-03-18; streams dated 14/07/2000, see Compression standards and file types section
Bitstreams: Normative ISO

n/a = not applicable

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vcon-ge1</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge2</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge3</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge4</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge6</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge8</td>
<td>n/a</td>
<td>OBMC not allowed in Simple, Advanced Simple, or Main Profiles</td>
</tr>
<tr>
<td>vcon-ge10</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge11</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge12</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge13-L1</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>vcon-ge13-L2</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>vcon-ge13-L3</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>vcon-ge14</td>
<td>n/a</td>
<td>OBMC not allowed in Simple, Advanced Simple, or Main Profiles</td>
</tr>
<tr>
<td>vcon-ge16-L1</td>
<td>Yes</td>
<td>MS reference software cannot decode</td>
</tr>
<tr>
<td>vcon-ge16-L2</td>
<td>Yes</td>
<td>MS reference software cannot decode</td>
</tr>
<tr>
<td>vcon-ge16-L3</td>
<td>Yes</td>
<td>MS reference software cannot decode</td>
</tr>
<tr>
<td>vcon-ge18</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge19</td>
<td>n/a</td>
<td>OBMC not allowed in Simple, Advanced Simple, or Main Profiles</td>
</tr>
<tr>
<td>vcon-ge23</td>
<td>n/a</td>
<td>Interlace not allowed in Simple Profile</td>
</tr>
<tr>
<td>vcon-ge24</td>
<td>n/a</td>
<td>OBMC not allowed in Simple, Advanced Simple, or Main Profiles</td>
</tr>
<tr>
<td>vcon-ge25</td>
<td>n/a</td>
<td>OBMC not allowed in Simple, Advanced Simple, or Main Profiles</td>
</tr>
</tbody>
</table>
Bitstreams: Donated \ I-VOP

Table 8: Bitstreams: Donated \ I-VOP

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit000.m4v</td>
<td>Yes</td>
<td>Single frame. Time listed incorrectly in MPEG-4 part 4: time is actually 33 ms (vop_time_increment = 30).</td>
</tr>
<tr>
<td>jvc000.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit000.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit001.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (resynchronization)</td>
</tr>
<tr>
<td>mit002.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (resynchronization)</td>
</tr>
<tr>
<td>mit003.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (resynchronization)</td>
</tr>
<tr>
<td>mit004.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit005.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit006.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>san000.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san001.m4v</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Bitstreams: Donated \ Overall

Table 9: Bitstreams: Donated \ Overall

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit016.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit017.m4v</td>
<td>Yes</td>
<td>Visible artifacts are in bitstream (plays the same with MS software)</td>
</tr>
<tr>
<td>hit018.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit019.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit020.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit021.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit022.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit023.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit024.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit030.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit031.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
</tbody>
</table>
Bitstreams: Donated \ Short Header

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit031.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit032.m4v</td>
<td>Yes</td>
<td>Visible errors but these are encoded in the bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>hit033.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit034.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit035.m4v</td>
<td>Yes</td>
<td>MPEG committee reports that MS software fails to decode (not tested)</td>
</tr>
<tr>
<td>hit036.m4v</td>
<td>Yes</td>
<td>Not short_header compliant as Pspare is sent (H.263+ compliant)</td>
</tr>
<tr>
<td>hit037.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit038.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit039.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit040.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc022.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc023.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc024.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc025.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit020.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit021.m4v</td>
<td>Yes</td>
<td>MPEG committee reports that MS software fails to decode (not tested)</td>
</tr>
<tr>
<td>mit022.m4v</td>
<td>Yes</td>
<td>MPEG committee reports that MS software fails to decode (not tested)</td>
</tr>
<tr>
<td>mit023.m4v</td>
<td>Yes</td>
<td>MPEG committee reports that MS software fails to decode (not tested)</td>
</tr>
<tr>
<td>mit024.m4v</td>
<td>Yes</td>
<td>MPEG committee reports that MS software fails to decode (not tested)</td>
</tr>
<tr>
<td>san021.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san022.m4v</td>
<td>Yes</td>
<td>Poor frames are encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san023.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san024.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
</tbody>
</table>
Bitstreams: Donated \ P-VOP

Table 11: Bitstreams: Donated \ P-VOP

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit001.m4v</td>
<td>Yes</td>
<td>Some visible errors, for example, frame 1, GOB 2, MB 15 block Y3 but these are in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>hit002.m4v</td>
<td>Yes</td>
<td>Some visible errors, for example, in frame 2, GOB4, MB 1 and in frame 3 - several MBs down left side, for example, MB 0 at GOB 14, 15, 16 - these are errors in the encoded bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>hit003.m4v</td>
<td>Yes</td>
<td>Errors in bitstream, for example, in MB 0 GOB 6 frame 4. It seems that MVs were not correctly calculated in encoded stream. (MS software plays the same)</td>
</tr>
<tr>
<td>hit004.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit005.m4v</td>
<td>Yes</td>
<td>Some visible artifacts in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>hit006.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit007.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit008.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit009.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit010.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit011.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit012.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit013.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>hit014.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc001.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc002.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc003.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc004.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc005.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc006.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc007.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc008.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc009.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc010.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc011.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc012.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc013.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc014.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>jvc015.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc016.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc017.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc018.m4v</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Table 11: Bitstreams: Donated \ P-VOP (cont.)

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>jvc019.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc020.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>jvc021.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit007.m4v</td>
<td>Yes</td>
<td>Syntax error in bitstream: video_object_type_indicator is 0 at byte: 8. bit start=0. This is defined as a RESERVED value (MPEG-4 std. p.110 Table 6-10). Plays this stream, assuming it is Simple Profile (an Error message is given to this effect)</td>
</tr>
<tr>
<td>mit008.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>mit009.m4v</td>
<td>Yes</td>
<td>Visible artifacts are encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>mit010.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit011.m4v</td>
<td>Yes</td>
<td>Visible artifacts are in bitstream, for example, frame 4 halo above head in GOB 0 MBs 3,4,5 and poor MBs with hand movement, for example, frame 4, GOB,MB: 10,8 11,8 (MS software plays the same)</td>
</tr>
<tr>
<td>mit012.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit013.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning). Stream not decoded correctly by MS software - occasional green lines in some MBs</td>
</tr>
<tr>
<td>mit014.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit015.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit016.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit017.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit018.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit019.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san002.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san003.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san004.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san005.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san006.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san007.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san008.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san009.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san010.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san011.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san012.m4v</td>
<td>Yes</td>
<td>Non-smooth motion is encoded in bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san013.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san014.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san015.m4v</td>
<td>Yes</td>
<td>Graininess, visible artifacts, and intermediate lower resolution frames are encoded in the bitstream (MS software plays the same)</td>
</tr>
<tr>
<td>san016.m4v</td>
<td>Yes</td>
<td>Visible artifacts and intermediate lower resolution frames are encoded in the bitstream (MS software plays the same)</td>
</tr>
</tbody>
</table>
Table 11: Bitstreams: Donated \ P-VOP (cont.)

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>san017.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san018.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san019.m4v</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>san020.m4v</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Bitstreams: Donated \ Error

Table 12: Bitstreams: Donated \ Error

<table>
<thead>
<tr>
<th>Stream name</th>
<th>Decodes with ?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit025.m4v</td>
<td>Yes</td>
<td>Use of resync markers</td>
</tr>
<tr>
<td>hit026.m4v</td>
<td>Yes</td>
<td>Use of resync markers</td>
</tr>
<tr>
<td>hit027.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>hit028.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>hit029.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>hit030.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit025.m4v</td>
<td>Yes</td>
<td>Use of resync markers</td>
</tr>
<tr>
<td>mit026.m4v</td>
<td>Yes</td>
<td>Use of resync markers</td>
</tr>
<tr>
<td>mit027.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poor quality picture (MS software plays the same)</td>
</tr>
<tr>
<td>mit028.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td>mit029.m4v</td>
<td>Yes</td>
<td>Uses error resilience tool (data partitioning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artifacts in frames 5 and 6 are errors in the encoded bitstream: seems to be motion vectors incorrectly calculated when the stream was encoded (MS software plays the same)</td>
</tr>
</tbody>
</table>
Appendix C: Third party software licenses

BSD license

The copyright in this software is being made available under the BSD License, included below. This software may be subject to other third party and contributor rights, including patent rights, and no such rights are granted under this license.

Copyright (c) 2010-2013, ITU/ISO/IEC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the ITU/ISO/IEC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Glossary

AC coefficient

Any DCT coefficient for which the frequency in one or both dimensions is non-zero.

Annex

The optional methods of coding allowed in H263+.

B-VOP

A VOP that is coded using motion compensated prediction from past and/or future reference VOPs.

Backward motion vector

A motion vector that is used for motion compensation from a reference VOP at a later time in display order.

Backward prediction

Prediction from the future reference VOP.

Bitstream

A compressed data entity where each binary digit has a specific meaning that is defined by the compression standard.

Block

An 8-row by 8-column matrix of samples, or 64 DCT coefficients (source, quantized or dequantized).

Buffer analysis

Analysis of use of processor, memory and/or other resources by a particular video decoder standard.

Coded Block Pattern (cbp)

A word used in compression to identify which blocks of a MacroBlock are coded.

Coefficients

The Discrete Cosine Transform transforms data from a spatial domain (pixels or pixel differences) into the frequency domain, because it makes the data easier to compress. In the standards used here, transforms turn a block of 8x8 pixel data (or pixel differences) into a block of 8x8 transform coefficients.
CSV file
A file format which contains data separated by commas (Comma Separated Variable)

DC coefficient
The DCT coefficient for which the frequency is zero in both directions

DCT
Discrete Cosine Transform - the mathematical transform that all these compression standards use as their basis

DCT coefficient
Amplitude of the specific DCT basis function

Dequantization
Process of rescaling the quantized DCT coefficients after their representation in the bitstream has been decoded and before they are presented to the inverse DCT

Filter
A mathematical transform designed to remove certain frequencies from a signal. Here mainly used either within the coding loop to try and avoid some of the coding artifacts and reduce bit-rate, or used as a post-process to improve the subjective quality

Frame
An individual picture from a video sequence

Forward motion vector
A motion vector that is used for motion compensation from a reference frame VOP at an earlier time in the display order

Forward prediction
Prediction from a past reference VOP

Global Motion Compensation
Use of global spatial transformation to improve the efficiency of the prediction of sample values by providing offsets into the past reference VOPs containing previously decoded sample values that are used to form the prediction error

GMC
Global Motion Compensation
GOB

Group Of Blocks - an entity defined within some of the standards in order to subdivide a frame into more manageable units

Histogram

A graph of the frequency of occurrence of a variable

I-VOP, intra-coded VOP

A VOP coded using information only from itself

Intra coding

Coding of a MacroBlock or VOP using information only from that MacroBlock or VOP

MacroBlock, MB

Basic coding unit of the standards used in this program. It consists of four blocks of 8x8 luminance data (arranged in a 16x16 manner) together with the two chrominance components U and V, which are also 8x8 blocks, but which cover the same area of the picture as the 16x16 luminance pixels - part of the compression is that chrominance can be sampled at a lower frequency than luminance

MacroBlock Type

The mode, according to the Standard, in which the MacroBlock is encoded

Mode

Classification of the coding type of the MacroBlock

Motion Vector

Two-dimensional vector that points from the current MacroBlock to an area in the previous frame that is used to predict the current data

Motion compensation

Use of motion vectors to improve the efficiency of the prediction of sample values, where the motion vectors provide offsets into the past and/or future reference VOPs containing previously decoded sample values that are used to form the prediction error

Motion estimation

Process of estimating motion vectors during the encoding process
Parse Bitstream
The process of parsing a bitstream into the constituent words that are allowed within the standard

Quantizer
The discrete value that is used to reduce the amount of information present in the DCT of a block. It can vary from 1 to 31 in most standards, where 1 is the finest level (most accurate coding) and 31 is the coarsest level (least accurate coding)

Quantization matrix
Set of sixty-four 8-bit values used by the dequantizer

Quantized DCT coefficients
DCT coefficients before Dequantization, represented in variable-length coded form in the bitstream

Quantizer scale
Scale factor coded form in the bitstream and used by the decoding process to scale the dequantization

Slice
A subdivision of a picture that is used as a unit of encoding, as used in H.263 and MPEG-2

SEI
Supplemental enhancement information

VOP
Effectively a frame of video (MPEG-4)
Symbols and Numbers

3-letter codes
- H.263, 390
- H.264/AVC, 388
- H.265/HEVC, 386
- MPEG-2, 390
- MPEG-4, 390
 used in Trace debugging, 385

3GPP files, 39
 close video after opening, 72
elementary streams, 59
example files, 80
extract video, 65
opening video files, 60
save video after opening, 72
tracks within, 60

Alerts
- 3-letter codes, 385
- abort, pause, continue, 326
- alert log, 334
- configuration alert
 window, 333
description of levels, 328
during seek
 forwards/backwards, 324, 325
enable/disable specific, 331
error, 329
fatal, 328
goto, 327
info, 329
levels, 320
one/more disabled (status bar), 342
skip this/skip all, 325
summary section, 322
synchronized views, 327
top section, 321
warning, 329

Alt menu keys
- activating, 372

Analysis
- PSNR, 239

Analysis options
- frame range, 417

ASF files
- close video after opening, 72
- example files, 82
- extract video, 65
- format, 31
- opening video files, 60
- save video after opening, 72
- tracks within, 60

Audio
- Audio waveform view
 toolbar icons, 188
- audio-video
 synchronization, 88
- broken audio, 87
- file formats, 38
- standards references, 39

Audio files
- opening
 elementary streams, 59

Batch mode
- introduction, 373
- options, 377
- use of example sequences, 375
- use of YUV example sequences, 375

Buffer analysis
- alerts, 275
- controls, 277
- H.264/AVC, 278
- H.264/SVC, 278
- limits, 274
- measuring values, 272
- MPEG-2, 275
- MPEG-4, 275
- MPEG-4 & MPEG-2, 276
- scroll bar area, 275
toolbar icons, 271
- X (horizontal) scale, 274
- Y (vertical) scale, 274

Cache/tsee Step-back buffer, 324, 325

A
- A/V Delay
 - enable, 312
 - view, 312
- A/V Delay stream
 - example files, 82
- ADTS streams
 - example files, 82
- Alert log
 - address, 335
 - alert filter, 335
details, 335
display frame number, 335
filter icon, 334
highlighting in step-back buffer, 338
ID number, 61, 334
level, 334
right-click pop-up menu, 339
seeing details of alerts, 337
showing/hiding, 335
title, 335
view, 334

C
- Cache/tsee Step-back buffer, 324, 325
Index

Closed caption
 CC availability indicators, 368
 CEA608 tooltip, 137, 360
 CEA708 tooltip, 138, 362
 example files, 75
 multicaption buffer, 363
 render over video configuration, 368
 tooltips, 360
 Trace file, 254
Colors
 CTU overlays, 165
 MacroBlock overlays, 154
Command line mode
 example, 382
 introduction, 373
 options, 377
Computer prerequisites, 5
Ctrl keys
 Ctrl+Tab to switch windows, 343
 list, 371
CTU
 average bits per coded, 173
 average bits per over frame range, 173
 average fidelity, 174
 average quantiser, 173
 bits used for, 168
 fidelity, 170
 frequency of coding, 174
 frequency of Intra coding, 174
 graph, bits per CTU, 226, 228
 graph, coded frequency, 233
 graph, Intra CTU coded frequency, 235
 quantizer used, 168
 statistics, 163
 colors, 165
 numerals, 163

D
Debugging
 3-letter codes, 385
 alert pop-up, 321
 alerts, 395
 bit/bit start, explanation of, 392
 how THE MTS4EA checks syntax, 393
 main tools, 393
 Parse bitstream, 294
 tips, 394
 Trace, interpret, 398
 Trace, parse bitstream, 395
Decoder cache, 99
Decoder options
 audio, 106
 General, 98
 H.263, 27, 100, 142
 H.264/AVC, 16, 102, 140
 H.264/SVC, 21, 141
 H.265/HEVC, 16, 99
 MPEG-2, 100, 142
 MPEG-4, 101, 142
 step-back buffer, 98
 uncompressed video, 102
 video, 98
Decoder plug-ins
 gmc, 406
 idct, 406
 purpose, 403
 qs, 406
 use of, 405

E
Example file
 H.264/SVC, 77
Example files, 75
 3GPP, 80
 A/V Delay stream, 82
 ADTS streams, 82
 ASF files, 82
 closed caption, 75
 fidelity analysis using, 83
 H.261, 79
 H.263, 79
 H.264/AVC, 77
 H.265/HEVC, 76
 MP4, 31, 80
 MPEG-2 Program Streams, 81
 MPEG-2 Transport Streams, 81
 MPEG-4, 78
 MXF streams, 83
 use in batch mode, 375
Extracted closed caption, 289
Index

F

Fidelity
- analysis using example files, 83
- average per CTU, 174
- average per MacroBlock, 163
- frame Trace, 218
- MacroBlock Trace, 219
- MAD, 240
- MAD (Mean Absolute Difference), 239
- metric, 239
- MSE, 240
- MSE (Mean Square Error), 239
- overlay, 159, 170
- per CTU, 170
- per MacroBlock, 159
- PSNR (255 signal range), 240
- PSNR (255), 239
- PSNR (ITU-R BT.601), 239
- reference file, 236
- RMSE, 240
- RMSE (Root Mean Square Error), 239
- SAD, 240
- SAD (Sum Absolute Difference), 239

Fidelity analysis
- icons toolbar, 283
- metrics available, 284
- PSNR, 282
- video enable, 218, 219, 236
- view, 282

File formats
- 3GPP container files, 32
- 3GPP files, 39
- ASF container files, 31
- audio, 38
- MP4 container files, 31, 39, 80
- MPEG-2
 - PES files, 33, 38
 - Program Stream files, 33, 38
 - Transport Stream files, 38
- MPEG-2 PES, 33
- MPEG-2 Program Stream, 33
- MPEG-2 Transport Streams, 32
- RCV files, 31
- video, 31
- Final video summary, 120
- Frame range
 - Trace, 417

G

GMC
- decoder plug-in, 406
- GOP size parameters, 121

Graph
- average quantizer, 230
- bits per coded
 - MacroBlock, 227
- bits per CTU, 226, 228
- bits per MacroBlock, 225
- CTU coding frequency, 233
- Intra coded frequency, 234
- Intra CTU coded frequency, 235
- MacroBlock coding frequency, 232
- motion vectors per MacroBlock, 229
- video enable, 222

H

H.261
- example file, 79

H.263
- 3-letter codes used in Trace, 390
- decoder options, 27, 100, 142
- example files, 79
- MacroBlock types, 27, 100, 142
- segments, 157
- standards supported, 27, 100, 142

H.264/AVC
- 3-letter codes used in Trace, 388
- Buffer analysis, 278
- decoder options, 16, 102, 140
- example files, 77
- MacroBlock types, 16, 102, 140
- slices, 158
- video Byte Stream format, 35

H.264/SVC
- Buffer analysis, 278
- decoder options, 21, 141
- example file, 77
- MacroBlock types, 21, 141

H.265/HEVC
- 3-letter codes used in Trace, 386
- decoder options, 16, 99
- example files, 76
- MacroBlock types, 16
- slices, 169
- video Byte Stream format, 35

Help
- license manager, 353
- PDF tutorials, 353
- PDF user manual, 353
HexView
 bytes per line, 260
 convert hex to decimal, 264, 309
 elements of window, 258, 305
 find absolute address, 263
 find binary, hex, ASCII, 263, 308
 find next relative address, 263, 308
 find next/previous address, 263, 308
 find relative address, 263, 308
 highlighting a section, 262
 right-click pop-up menu, 261, 307
 settings in Window menu, 349, 350
 wildcard searching, 264, 309

Histograms
 audio data bit usage, 189
 frame bit usage, 190
 main payload bit usage, 191
 subsidiary payload bit usage, 192

HRD buffer analysis
 buckets, 279
 display, 280
 H.264/AVC, 278
 H.264/SVC, 278
 overflow/underflow, 281
 schedule indexes, 279

Hypothetical Reference Decoder, 278

I
 Icons
 Audio waveform view, 188
 buffer analysis toolbar, 271
 function of toolbar icons, 355

Interlace
 bottom field view, 359
 combined (frame) view, 358
 separated (fields) view, 358
 toolbar, 357
 top field view, 359

Interpret, 206, 295
 right-click pop-up menu, 295

L
 License
 remote server requirements, 7

MacroBlock
 average bits per coded, 162
 average bits per over frame range, 162
 average fidelity, 163
 average quantiser, 162
 bits used for fidelity, 157
 fidelity Trace, 219
 frequency of coding, 163
 frequency of Intra coding, 163
 graph, bits per coded MB, 227
 graph, bits per MB, 225
 graph, coded frequency, 232
 graph, Intra coded frequency, 234
 graph, motion vectors, 229
 quantizer used, 156
 statistics, 153, 347
 colors, 154
 frame range, 417
 numerals, 153
 types
 color key, 364
 H.263, 27, 100, 142
 H.264/AVC, 16, 102, 140
 H.264/SVC, 21, 141
 H.265/HEVC, 16
 MPEG-2, 100, 142
 MPEG-4, 101, 142
 VC-1, 141

MacroBlock tooltip
 AC prediction, 127
 examples for different video standards, 123
 pixel location, 125
 segment (H.263), 126
 slice (MPEG-2), 126

Motion vectors
 graph, 229

MP4 file format
 close video after opening, 72
 example files, 31, 80
 extract video, 65
 opening video files, 60
 save video after opening, 72
 tracks within, 60

MP4 files, 39

MPEG-2
 3-letter codes used in Trace, 390
 buffer analysis (VBV), 275
 buffer analysis controls, 276
 decoder options, 100, 142
 MacroBlock types, 100, 142
 opening VOBs, 67
 PES, 33
 slices, 158
 Transport Stream file format, 32

MPEG-2 PES files, 33, 38

MPEG-2 Program Stream files, 33, 38

MPEG-2 Program Streams
 close video after opening, 72
 example files, 81
 opening video files, 60
 save video after opening, 72
 tracks within, 60

MPEG-2 Transport Stream files, 38

MPEG-2 Transport Streams
 example files, 81
 extract video, 65
 opening video files, 60
 tracks within, 60
MPEG-4
3-letter codes used in Trace, 390
buffer analysis (VBV, VCV, VMV), 275
buffer analysis controls, 276
decoder options, 101, 142
example files, 78
MacroBlock types, 101, 142
MP4 container file format, 31, 80
video Elementary Stream format, 36

MTS4000 MPEG Test Systems, 6
MTS4EA
product features, 2
product models, 1
starting to use, 45
window elements, 44

MXF streams
example files, 83

N
Navigation panel
overview, 366

O
Overlay
fidelity, 159, 170
making clearer with Blank video, 179

P
PAL/NTSC
analysis with THE
MTS4EA, 37
Parse bitstream, 294
right-click pop-up menu, 206, 295

PES
MPEG-2, 33
Pixel data
Trace pixel level, 217
uncompressed video output, batch mode, 382

Play
audio decoder options, 106
continuous, 96
video decoder options, 98
Playing video
continuously in a loop, 96
keeping first frame on-screen, 97
keeping last frame on-screen, 97
mode restrictions, 49
preferences, 74
Prerequisites
audio playout, 5
computer, 5
user, 6
Windows operating system, 5
Product features, 2
Product models, 1
Program Stream
MPEG-2, 33
Projects
close, 74
default project files, 73
project files, 73
PSNR
fidelity analysis, 282
fidelity metric, 239

Q
QuarterSample
decoder plug-in, 406

R
Reference file for fidelity analysis, 236
Right-click pop-up menu
alert log, 339
HexView, 261, 307
interpret, 295
parse bitstream, 206, 295

S
Scalability level selection, 315
Shortcut keys
Alt menu, 372
Ctrl, 371
Ctrl+Tab to switch windows, 343
icon toolbar, 355

Standards
MPEG-1 Part 3 audio, 29
MPEG-2 Part 3 audio, 29
MPEG-4 Part 3 audio, 29
references, 39
3GPP, 39
MP4, 39
MPEG-1 audio, 39
references, H.264/AVC, 39
references, H.264/SVC, 39
references, H.265/HEVC, 39
references, HE AAC codecs, 39
references, MPEG-2, 39
references, MPEG-2 AAC, 39
references, MPEG-2 audio, 39
references, MPEG-4, 39
references, MPEG-4 AAC, 39
references, VC-1, 39
supported
H.263, 27, 100, 142
H.264/AVC, 16, 102, 140
H.264/SVC, 21, 141
H.265/HEVC, 16, 99
MPEG-2, 26
MPEG-4, 24
VC-1, 23

Status bar
overview, 347, 370

Step-back buffer
affect on pop-up alerts, 324, 325
alert highlighting when seeking, 338
decoder options, 98
Synchronized views
alerts Goto button, 327
highlighting in audio view, 52
highlighting in video view, 51
introduction, 50
yellow dotted box, 51

Trace
3-letter codes, 385
alerts, 210
audio data bit usage, 296
audio frame summary, 295
closed captions, 254
debugging, 395
export, 255
file format, 255
file size limit, 202, 294
find next, 253, 302
find previous, 253, 302
finding errors, warnings, data, 253, 302
finding Errors, Warnings, data, 253, 302
frame data bit usage, 297
frame fidelity, 218
frame range, 417
frame summary, 211
import, 255
interpret, 206, 295
line numbers on/off, 252, 302
lines too long (blue arrow displayed), 255, 303
MacroBlock fidelity, 219
main payload bit usage, 298
MB summary, 213
parse bitstream, 202, 294, 420
pixel level, 217
stream summary, 221
video enable, 196

Tutorials
PDF (Help menu), 353

Uncompressed video
decoder options, 102
opening video files, 67
show visual difference to encoded bitstream, 177
visual difference to encoded bitstream, 175, 346
User prerequisites, 6
W
Window
 quickly switch, 343
Window elements
 navigation panel, 366
 status bar, 347, 370
Window menu
 Audio output toolbar, 347
 audio views toolbar, 346
 closed caption toolbar, 346
 CTU statistics toolbar, 163
 differences toolbar, 175, 346
 HEVC toolbar, 346
 interlace toolbar, 346
 MB statistics toolbar, 153, 347
 video scale, 347
 video views toolbar, 346
Windows operating system
 prerequisites, 5
WMV9 files
 extract video, 65
 Profiles & Levels, 23
Y
Yellow dotted box (video view)
 synchronized view
 highlighting, 51
YUV
 example files for fidelity
 analysis, 83
 format, 67
Z
Zoom
 video window, 348