

Vantage REST API 5.5
Vantage 8.1 Update Pack 2

Table of Contents
Vantage REST API 5.5 .. 1

Introduction .. 3

Changes .. 5

Vantage Terminology .. 11

API Reference ... 14

Domain Operations: .. 15

Category Operations: .. 19

Workflow Operations:... 21

Job Operations: ... 39

Catalog Operations: .. 49

Service Operations: ... 57

Machine Operations: .. 64

Storage Operations ... 65

Examples ... 69

Submit a Job .. 69

Obtain Job Outputs ... 75

Submit In-Band Material ... 81

Exporting and Importing Workflows ... 85

Submitting Remote Files ... 88

Requesting Versioned Assets from S3 ... 93

Introduction
The Vantage REST API is a traditional REST (Representational State Transfer)

implementation which uses HTTP as the underlying transfer protocol.

Interaction with the Vantage REST API is performed via a combination of URIs and Methods.

The URI typically refers to the Vantage entity or component that is being manipulated.

For example: /Rest/Workflows refers to the URI which provides information about

Workflows in the current domain.

The Method corresponds to an HTTP Verb which represents the underlying action that is being

performed on the API. The HTTP verbs: GET, PUT, POST and DELETE are utilized in

conjunction with a URI to indicate the action that the underlying message is performing.
• GETs are typically used when obtaining or requesting information about a Vantage component

from the API.

• PUTs are generally used when modifying or updating a Vantage component.

• POSTs are generally utilized when creating new Vantage components.

• DELETE is used to indicate the removal of components from Vantage.

As a reference, the following URL can always be utilized to obtain a list of the available API

operations along with the URI, Method and a description of the operation:

http://localhost:8676/Rest/help

Note: localhost is used above; this assumes the Vantage SDK service is running on the local

server. If the Vantage SDK service is running on a different server, use the name or IP address

of that server in the above URL.

An example of the output that is presented when the help URL is entered into a browser is:

http://localhost:8676/Rest/help

This URL will always list the available list of operations that can be performed via the REST

API. This list of operations will update/change as functionality is added or updated.

Changes
The following changes were added between the 5.5 and 5.4 versions of the SDK:

A new endpoint was introduced to allow an API client to request whether a given Vantage Store

was currently in use.

The new endpoint is:

http://localhost:8676/Rest/Stores/<Store ID>/InUse

This call will return information about a Vantage Store, including a value which indicates

whether Vantage believes the Store is in-use.

For example, if the call is made with the Storage ID of: 13060a84-344a-40cf-9f75-b106b563cc25,

ie:
http://localhost:8676/Rest/Stores/13060a84-344a-40cf-9f75-b106b563cc25/InUse

and that store was currently in use by Vantage, the following would be returned:
{
2 "Store": {
3 "Identifier": "13060a84-344a-40cf-9f75-b106b563cc25",
4 "Aliases": [],
5 "AvailableSpace": 942331715584,
6 "Location": "file:///C:/VantageStore/",
7 "Name": "Local Store",
8 "Offline": false,
9 "StorageMode": 0,
10 "TotalSpace": 999677751296
11 },
12 "StoreInUse": true
13}

The new field is highlighted above.

The endpoint: http://localhost:8676/Rest/Folders/{FOLDERID}/Binders was updated to include a

optional start and end query parameter. These parameters constrain the results that are returned to

only binders created after the provided start or before the provided end.

The original query:

http://localhost:8676/Rest/Folders/{FOLDERID}/Binders

will return all binders in the folder whose id is: {FOLDERID}, eg:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders

The endpoint now supports the optional query parameters: start and end

you can specify something like:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-

11-1

http://localhost:8676/Rest/Stores/%3cStore
http://localhost:8676/Rest/Stores/13060a84-344a-40cf-9f75-b106b563cc25/InUse
http://localhost:8676/Rest/Folders/%7bFOLDERID%7d/Binders
http://localhost:8676/Rest/Folders/
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1

and this will return all BINDERS in the folder with ID: b364aeed-7089-4821-a896-ed639cb5a021

created after 2021-11-1

if you specify a start query parameter, you can also optionally specify an end query parameter:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-

11-1&end=2021-11-4

the above would return all binders in the folder with ID: b364aeed-7089-4821-a896-

ed639cb5a021 created AFTER 2021-11-1 AND BEFORE 2021-11-4

The following changes were added between the 5.4 and 5.3 versions of the SDK:

A new call was introduced to allow information about managed Stores defined within the current

Vantage domain.

The new call is:

http://localhost:8676/Rest/Stores

The result of this call will contain information about all managed stores in the Domain. NOTE:

Only managed stores (vs. Address Book entries) are returned. More information is included in

the details section of the API guide (see below).

A new entry was added to the Label definition that is obtained whenever the outputs of a Job are

requested.

The new entry shows the Category name for which the Parameter belongs.

An example of this is illustrated below:
{"Identifier":"35814967-6dd5-4809-bde8-

65c865edcf14","Category":"Category1","DefaultValue":null,"Description":null,"

Increment":null,"Maximum":null,"Minimum":null,"Name":"Param2","Options":[],"T

ypeCode":"String","Value":"Val1"}

Where the highlighted entry above corresponds to the new entry. The information above is

generated when the job output request is made:
http://localhost:8676/Rest/Jobs/{ID}/outputs

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1&end=2021-11-4
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1&end=2021-11-4

A new call was added to allow the cleanup of Folders from the Catalog which are marked as

Transient and are empty. This call is a programmatic way to invoke the same functionality that

appears in the VMC->Catalogs pane.

The new call is a POST request to:

 http://localhost:8676/Rest/Catalogs/Cleanup

The following changes were added between the 5.3 and 5.2 versions of the SDK:

The results of the GetWorkflow call (http://localhost:8676/Rest/Workflows/{ID}) now include

additional fields which detail the expiration time and the last modified date. This information is

also present in the call to retrieve all workflows (http://localhost:8676/Rest/Workflows).

An example of the new fields is displayed below:
{

 "Identifier": "16b99faa-e31e-4637-893d-093efa77f446",

 "Description": "",

 "ExpirationInHours": 24,

 "Name": "SampleWorkflow",

 "State": 2,

 "UTC_ModifiedTime": "2020-12-07T22:40:44.2700000Z"

 }

There were no specific changes to the SDK/API between the 5.2 and the 5.1 revision. A section

regarding the use of version designator when requesting assets from Amazon S3 storage was

added.

There following changes were added between the 5.1 and the 5.0 version of the SDK:

The result of the GetBinderContent call (http://localhost:8676/Rest/Binder/{ID}/Content) was

updated to include a identifier field for the Content entry associated with a Binder. The

following represents the new JSON response:

{

 "ContentIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "Created":"\/Date(928164000000-0400)\/",

 "Name":"String content",

 "Updated":"\/Date(928164000000-0400)\/"

}

Where the ‘ContentIdentifier’ is new.

http://localhost:8676/Rest/Catalogs/Cleanup
http://localhost:8676/Rest/Workflows/%7bID%7d
http://localhost:8676/Rest/Workflows
http://localhost:8676/Rest/Binder/%7bID%7d/Content

A call to retrieve all entries (Media Nicknames, Labels, Attachments) for a particular Content

entry was added: http://localhost:8676/Rest/Content/{ID}/Entries

A call was added to facilitate looking up information about the services which host actions of a

specific type: http://localhost:8676/Rest/Services/LookupHosting?Type={ACTIONTYPE}

There were no material changes between the 5.0 and the 4.0 versions.

The following changes were added between the 4.0 version and the 3.0 version (Released with

Vantage 7.1):

The following API methods were added which deal with the ability to import/export and

synchronize workflows from a location specified by a windows path:

http://localhost:8676/Rest/Workflows/Synchronize : Synchronizes a workflow with a new

definition from a specified file path.

http://localhost:8676/Rest/Workflows/ImportFromPath : Imports a workflow definition from the

specified filepath.

http://localhost:8676/Rest/Workflows/ExportToPath : Export an existing workflow definition to

the specified windows path location.

The following changes were added between the 2.0 version (Vantage 7.0 Update Pack 1) and the

3.0 version (released with Vantage 7.1):

Workflow Signature computation – a new method was included to allow the signature for a

workflow to be computed and returned to the client. This signature represents a value that

corresponds to the exact structure/configuration at the current time. So long as the workflow

remains un-modified (i.e.: no actions removed/added/updated or new connections made or other

changes of this nature); the signature shall remain constant. As soon as the workflow changes,

the associated signature shall change.

HTTP Method: Get
http://localhost:8676/Rest/Workflows/{ID}/Signature

The ability to request additional information about Categories within the Vantage domain was

added.

In particular, the ability to query whether a Category with a specific name exists in the domain or

not was added:

HTTP Method: Get
http://localhost:8676/Rest/Category/{NAME}/Exists

http://localhost:8676/Rest/Content/%7bID%7d/Entries
http://localhost:8676/Rest/Services/LookupHosting?Type=%7bACTIONTYPE%7d
http://localhost:8676/Rest/Workflows/Synchronize
http://localhost:8676/Rest/Workflows/ImportFromPath
http://localhost:8676/Rest/Workflows/ExportToPath
http://localhost:8676/Rest/Workflows/%7bID%7d
http://localhost:8676/Rest/Category/%7bNAME%7d/Exists

Additionally, the ability to create a specific category was added.

HTTP Method: Put
http://localhost:8676/Rest/Category/{NAME}/Create

The ability to request information about Vantage services was introduced.

HTTP Method: Get
http://localhost:8676/Rest/Services
http://localhost:8676/Rest/Services/{ID}/Metrics
http://localhost:8676/Rest/Services/SearchByMachine/{Machine}

HTTP Method: POST

http://localhost:8676/Rest/Services/{ID}/Preshutdown

The ability to request information about machines which host services in a Vantage domain was introduced:

HTTP Method: GET

http://localhost:8676/Rest/Machines

HTTP Method: POST

http://localhost:8676/Rest/Machines/{ID}/Preshutdown

Please see below for more information about these new methods.

Previous Changes:

The following changes were added between 1.0 (the initial release in Vantage 7.0 Update Pack

1) and version 2.0:

Introduce Catalog manipulation. Specific methods added for the ability to interact with Vantage

Catalogs:
HTTP Method: GET
http://localhost:8676/Rest/Catalogs
http://localhost:8676/Rest/Catalogs/{ID}
http://localhost:8676/Rest/Folder/{ID}
http://localhost:8676/Rest/Folders/{ID}
http://localhost:8676/Rest/Folders/{ID}/Binder/{NAME}
http://localhost:8676/Rest/Folders/{ID}/Binders
http://localhost:8676/Rest/Binder/{ID}
http://localhost:8676/Rest/Binder/{ID}/Content

Please see below for the details of each new call.

Add a call to the Workflows section allowing a Binder to be submitted:
HTTP Method: POST
http://localhost:8676/Rest/Workflows/{ID}/SubmitBinder
Please see below for the usage details.

http://localhost:8676/Rest/Category/%7bNAME%7d/Create
http://localhost:8676/Rest/Services
http://localhost:8676/Rest/Services/%7bID%7d/Metrics
http://localhost:8676/Rest/Services/SearchByMachine/%7bMachine%7d
http://localhost:8676/Rest/Services/%7bID%7d/Preshutdown
http://localhost:8676/Rest/Machines
http://localhost:8676/Rest/Catalogs
http://localhost:8676/Rest/Catalogs/%7bID%7d
http://localhost:8676/Rest/Folder/%7bID%7d
http://localhost:8676/Rest/Folders/%7bID%7d
http://localhost:8676/Rest/Folders/%7bID%7d/Binder/%7bNAME%7d
http://localhost:8676/Rest/Folders/%7bID%7d/Binders
http://localhost:8676/Rest/Binder/%7bID%7d
http://localhost:8676/Rest/Binder/%7bID%7d/Content

Introduce a Domain online indicator:
HTTP Method: GET
http://localhost:8676/Rest/Domain/Online
Please see below for the usage details.

Vantage Terminology
This API guide will make use of several different terms from Vantage. The following is a brief

overview of what Vantage components are referred to by these terms. Additional information is

available within the Vantage Users Guide.

Categories: These represent groupings which may hold Vantage Workflows. In the above

screenshot, the Demo category has been expanded to show the Workflows that it contains.

Workflows: The discrete set of steps (Actions) that a user has constructed to represent the used

to process material within Vantage.

Actions: A single instance of a task that may be performed within a Workflow.

Jobs: Jobs correspond to a running instance of a Workflow. A job is created when material is

submitted to a Workflow.

The ‘Receive’ action is a special action that must initiate any workflow that is to be the target of

a SDK/API submission. The Receive action indicates the Inputs that are required to be supplied

in order for a Job to be submitted to this workflow.

Variables
Variables are utilized within Vantage to allow values to be passed into Vantage via the API as

well as passing values from one action to another.

Variables are created/defined within the Vantage Management Console (VMC). Of particular

importance is the notion of Variable Type. The Type associated with a Variable defines the

interaction it may have with Vantage.

The most important use of Variables is their ability to be BOUND to a parameter of a compatible

Type (see below). This binding process can be performed where-ever a green binding button

appears in the user interface:

In the image above, the Frame Width parameter has been bound to the Variable ‘Video Width’.

The green outline around the parameter value indicates the binding is present.

The green box () is what allows the binding to be defined.

Once a variable is bound to a parameter, it will be advertised via the API as a value which can be

submitted as part of a job request.

Certain variable types have very specific rules about their meaning within Vantage.

In particular, Variables defined to hold a PATH have the following rules:

When utilizing a variable to hold a PATH within the API in Vantage, if the variable references a

PATH to a FILE; then the string must NOT end in a slash character. If the variable references a

PATH to a FOLDER; then the value within the variable MUST end in a trailing slash. If the

value does not end in a trailing slash, the variable shall be treated as though it is a PATH to a

FILE; where the FILE is the last fragment in the string value.

For example:

path = //myserver/myfolder/myfile123.mpg → this is a path to a file (the file being

myfile123.mpg)

path = //myserver/myfolder/myfile123 → this is a path to a file (the file being myfile123). If

this is treated as a folder path, the value is interpreted as: //myserver/myfolder/

path = //myserver/myfolder/ → this is a path to the folder myfolder located on the share

myserver

file://///myserver/myfolder/myfile123.mpg
file://///myserver/myfolder/myfile123

API Reference
The Vantage REST API uses JSON (JavaScript Object Notation) to provide a serialized

context for both request and response structures to the API. The JSON structures for each

operation can be accessed via the help URL:

http://localhost:8676/Rest/help

NOTE: The above image is a representation of the API help and is intended for illustrative

purposes only. The image above may not reflect the current methods available in the UI

(Mainly due to screen real-estate). Please view the URL http://localhost:8676/Rest within a

Browser on the machine where the SDK service is running inorder to view the most up-to-date

and complete graphic for the method listing.

http://localhost:8676/Rest/help
http://localhost:8676/Rest

Domain Operations:

These operations represent capabilities which are applicable to the entire Vantage domain. They

typically manipulate or return information about the entire domain.

http://localhost:8676/Rest/Domain/Categories

Gets all categories from this domain.

Url: http://localhost:8676/Rest/Domain/Categories

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Categories":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content",

 "Workflows":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "Description":"String content",

 "Name":"String content"

 }]

 }]

}

http://localhost:8676/Rest/Domain/Load/{CRITERIA}

Gets the load for the Vantage domain based upon the provided criteria, eg: /Domain/Load/CPU

Url: http://localhost:8676/Rest/Domain/Load/{CRITERIA}

HTTP Method: GET

Message direction Format Body

http://localhost:8676/Rest/help/operations/RestGetCategories#response-json

Request N/A The Request body is empty.

Response Json Example

{

 "Load":50

}

Additional notes about the Domain Load
Request that the domain load be computed and returned. The domain load shall correspond
to a percent value [0-100] which indicates the overall utilization of domain.

The Load may be calculated in one of two ways (based upon what is provided in the
<paramref name="criteria"/> value of the URI.

If a service name is provided, the utilization of the service is used in the load
calculation.

The utilization of the service is defined as: #Active / Capacity.

For example, a Transcode service with a capacity of 6 that is currently running 2 jobs
would have a utilization of 33% (2 / 6)

If CPU load is requested, this shall correspond to the averaged CPU load for each machine
in the domain.

The CPU load is normalized across all machines. For example, if a 32 core machine is
running at 80% utilization and a second machine is a 2 core machine running at 100%
utilization, Vantage computes the domain load as:

 (32 * 80%) + (2 * 100%) = 2760.
 Final Load = 2760 / 34 cores = ~81% utilization

Vantage would not simply aggregate each machine load (80% + 100% / 2) == 90% as this
would treat all machines as equal when they may be quite different.

The <paramref name="criteria"/> will allow the load to be constrained to a specific set
of components.

The value for criteria may be as follows:

CPU --> uses the CPU utilization on all machines as the load value. What is
returned is the aggregate value for the CPU utilizations across all machines (running
Vantage services) in the domain.

TRANSCODE --> uses the Transcode service as the service to compute a load value for.
In this scenario, the utilization of each Transcode service in the Domain is computed,
averaged and returned.

ANALYSIS --> uses the Analysis service as the service to compute the load for.
MULTISCREEN --> uses the Multiscreen service as the service to compute the load for.
EDIT --> uses the Edit service.

http://localhost:8676/Rest/help/operations/RestGetDomainLoad#response-json

IPTV VOD --> uses the IPTV VOD service.

Finally, if multiple services are desired to participate in the domain load, the query
string can contain several services in a CSV type format, eg:

TRANSCODE, ANALYSIS, EDIT -- use the Transcode, Analysis and Edit service
MULTISCREEN, IPTV VOD -- use the Multiscreen and IPTV VOD service

Example Uri: http://localhost:8676/Rest/Domain/Load/Transcode, Multiscreen

The above would return the load for the Multiscreen and Transcode Services.

NOTE: It is not legal to combine service names and CPU, eg:
TRANSCODE, CPU -- this would correspond to an illegal value which would result in a
value of 0 being returned.

If an illegal query string is provided or if an internal problem precludes the load from
being generated, the value of 0 shall be returned.

http://localhost:8676/Rest/Domain/Version

Returns a string representation of the version of the current Vantage domain (eg: 7.0.0).

Url: http://localhost:8676/Rest/Domain/Version

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Version":"7.0.0"

}

Reference for
http://localhost:8676/Rest/Domain/Online

http://localhost:8676/Rest/help/operations/RestGetDomainVersion#response-json

Returns an indication as to whether the SDK service has successfully attached to the domain database.

If the Domain database is not running, is unable to be located or is otherwise inaccessible to the SDK
service, then a value of false shall be returned.

Url: http://localhost:8676/Rest/Domain/Online

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Online":true

}

NOTE: The Online property in the JSON response shall contain the value of true if the SDK

service has successfully attached to the target Vantage Domain database. If the SDK service

was unable to attach to the target database (for any reason); the Online property shall be given

a value of false.

http://localhost:8676/Rest/help/operations/RestIsDomainOnline#response-json

Category Operations:

The following operations focus on the ability to manipulate Categories within Vantage.

Reference for
http://localhost:8676/Rest/Category/{NAME}/Exists

Returns an indication of whether the Category with the provided name exists in this domain.

Url: http://localhost:8676/Rest/Category/{NAME}/Exists

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "CategoryExists":true

}

Reference for
http://localhost:8676/Rest/Category/{NAME}/Create

Create a category with the specified name.

If a Category already exists with the provided name, then that category shall be returned in the
CreateCategoryResponse.

If a Category with the provided name does not already exist, then a new category shall be created and the
new category shall be returned in the CreateCategoryResponse.

Url: http://localhost:8676/Rest/Category/{NAME}/Create

HTTP Method: PUT

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

http://localhost:8676/Rest/help/operations/RestCategoryExists#response-json
http://localhost:8676/Rest/help/operations/RestCreateCategory#response-json

The following is an example response Json body:

{

 "Category":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content",

 "Workflows":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "Description":"String content",

 "Name":"String content"

 }]

 }

}

Workflow Operations:

These operations focus on the manipulation of Vantage workflows.

http://localhost:8676/Rest/Workflows

Gets all of the Vantage workflows for this domain.

Url: http://localhost:8676/Rest/Workflows

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Workflows":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "ExpirationInHours":2147483647,

 "Name":"String content",

 "State":0,

 "UTC_ModifiedTime":"String content"

 }]

}

NOTE: The string representation of the Identifier property returned in the collection of

Workflows in the JSON block above is used as the argument to any other Workflow based

REST query.

The value for State can correspond to the one the following:
State Value Meaning

Idle 0
The workflow is in the idle state. It is not being used nor is it being edited. The workflow may
be deleted.

Active 1
The workflow has been activated and is processing jobs. The workflow may be deactivated.
The workflow may not be deleted.

Edit 2 The workflow is currently being edited by a user. The workflow may be activated.

NOTE: The call below (Workflows/{ID}) contains additional information regarding other

fields returned.

http://localhost:8676/Rest/help/operations/RestGetWorkflows#response-json

http://localhost:8676/Rest/Workflows/{ID}

Gets the workflow with the specified identifier from this domain.

Url: http://localhost:8676/Rest/Workflows/{ID}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Workflow":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "ExpirationInHours":2147483647,

 "Name":"String content",

 "State":0,

 "UTC_ModifiedTime":"String content"

 }

}

The value for State can correspond to the one the following:
State Value Meaning

Idle 0
The workflow is in the idle state. It is not being used nor is it being edited. The workflow may
be deleted.

Active 1
The workflow has been activated and is processing jobs. The workflow may be deactivated.
The workflow may not be deleted.

Edit 2 The workflow is currently being edited by a user. The workflow may be activated.

The field: ExpirationInHours corresponds to the number of hours after a job completes (either

completes successfully, fails or is stopped); that the workflow shall be cleaned up by the

expiration process. For example, if the value of ‘ExpirationInHours’ is 24, and the job

completes at 12PM on Jan 1,2020; this implies the expiration shall be scheduled for 12PM on

Jan 2, 2020.

The field: UTC_ModifiedTime corresponds to the last modified timestamp of

the workflow (converted to UTC). The modified value of the workflow is

converted to UTC time; then this value is stored in an ISO-8601 compatible

time format, eg: "UTC_ModifiedTime": "2020-12-07T22:40:44.2700000Z"

http://localhost:8676/Rest/help/operations/RestGetWorkflow#response-json

http://localhost:8676/Rest/Workflows/{ID}/Activate

Activate the specified workflow.

Url: http://localhost:8676/Rest/Workflows/{ID}/Activate

HTTP Method: PUT

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "ActivateSuccessful":true

}

NOTE: The {ID} field in the URL corresponds to a string representation of the Workflow

identifier obtained via the /Rest/Workflows query.

The ActivateSuccessful property in the JSON response provides an indication of whether the

activation of the workflow with the provided ID was successful or not. If a non-existent

workflow is specified, a value of ‘false’ shall be returned. If the workflow is unable to be

activated, ‘false’ shall be returned.

http://localhost:8676/Rest/Workflows/{ID}/Deactivate

Deactivate the specified workflow.

Url: http://localhost:8676/Rest/Workflows/{ID}/Deactivate

HTTP Method: PUT

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

http://localhost:8676/Rest/help/operations/RestActivate#response-json
http://localhost:8676/Rest/help/operations/RestDeactivate#response-json

{

 "DeActivateSuccessful":true

}

NOTE: The {ID} field in the URL corresponds to a string representation of the Workflow

identifier obtained via the /Rest/Workflows query.

The DeActivateSuccessful property in the JSON response provides an indication of whether

the deactivation of the workflow with the provided ID was successful or not. A workflow

which is not in the active state may not be deactivated (a ‘false’ value shall be returned).

Specifying a non-existent workflow shall cause a value of ‘false’ to be returned.

http://localhost:8676/Rest/Workflows/{ID}/Export

Obtain a compressed representation of the specified workflow.

Url: http://localhost:8676/Rest/Workflows/{ID}/Export

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "CompressedWorkflow":"String content"

}

NOTE: The {ID} field in the URL corresponds to a string representation of the Workflow

identifier obtained via the /Rest/Workflows query.

The CompressedWorkflow property in the JSON response contains a compressed

representation of the desired workflow. This compressed representation is proprietary to

Vantage and the only use of such a value is to provide the string representation of the

compressed workflow as input to a subsequent Import endpoint.

http://localhost:8676/Rest/Workflows/Import

Import a workflow which had been previously exported from a Domain.

IMPORTANT: The compressed workflow that is specified as a parameter to the Import call MUST be
generated by the call: http://localhost:8676/Rest/Workflows/{ID}/Export

http://localhost:8676/Rest/help/operations/RestExportWorkflow#response-json

Url: http://localhost:8676/Rest/Workflows/Import

HTTP Method: PUT

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "AllowOverwrite":true,

 "CompressedWorkflow":"String content",

 "DestinationCategory":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "DuplicateVariables":true

}

The CompressedWorkflow property in the JSON request must contain the compressed

representation of a workflow previously obtained via the Export endpoint.

The AllowOverwrite property indicates whether the import shall allow an overwrite to be

performed. If this value is set to true, then an existing workflow which matches the workflow

being imported (a workflow with the same ID as the imported workflow) will be overwritten

by the Import. NOTE: The existing workflow must NOT be active. An active workflow may

not be overwritten.

The DestinationCategory value corresponds to the ID of the Vantage Category that should be

the target of the import. The Category Identifier may be obtained via the /Categories

endpoint. If the DestinationCategory is provided the value of Guid.Empty (00000000-0000-

0000-0000-000000000000); the default import category shall be utilized.

The DuplicateVariables property indicates whether the import shall consolidate variables with

the same name or generate duplicate variables. The default behavior is to consolidate

variables with the same name (and same type) into a single variable and then update references

in the workflow to the consolidated variable (i.e.: if the workflow contains a variable named:

MYFILE and a variable of the same name (MYFILE) and type already exists in the Domain,

when the import is performed and DuplicateVariables is FALSE, if the MYFILE variable is

identical to the existing variable MYFILE (i.e.: The underlying IDs match), the workflow is

simply imported. However, if there is a difference, then when the workflow is imported, the

references to the original MYFILE variable are updated in the newly imported workflow

(specifically the IDs). If the DuplicateVariables property is set to TRUE, then a duplicate

variable will be created if the underlying IDs differ (in this case there would be two (2)

MYFILE variables (the original one existing in the domain, and the newly created one from the

workflow import).

http://localhost:8676/Rest/help/operations/RestImportCompressedWorkflow#request-json
http://localhost:8676/Rest/help/operations/RestImportCompressedWorkflow#response-json

The following is an example response Json body:

{

 "WorkflowIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724"

}

The WorkflowIdentifier property in the JSON response represents the Identifier of the newly

imported workflow. If the workflow is unable to be imported for any reason (see constraints in

the request section); then a Guid.Empty (00000000-0000-0000-0000-000000000000) shall be

returned in this property. Any other value indicates a successful import, with the value

corresponding to the ID of the newly imported workflow.

http://localhost:8676/Rest/Workflows/{ID}/JobInputs

Gets the inputs which may be submitted to the workflow with the specified identifier.

Url: http://localhost:8676/Rest/Workflows/{ID}/JobInputs

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Attachments":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Data":"String content",

 "Description":"String content",

 "File":"String content",

 "Name":"String content"

 }],

 "JobName":"String content",

 "Labels":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Name":"String content",

 "Params":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

http://localhost:8676/Rest/help/operations/RestGetWorkflowJobRequirements#response-json

 "DefaultValue":"String content",

 "Description":"String content",

 "Increment":"String content",

 "Maximum":"String content",

 "Minimum":"String content",

 "Name":"String content",

 "Options":["String content"],

 "TypeCode":"String content",

 "Value":"String content"

 }]

 }],

 "Medias":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Data":"String content",

 "Description":"String content",

 "Files":["String content"],

 "Name":"String content"

 }],

 "Priority":2147483647,

 "Variables":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "DefaultValue":"String content",

 "Description":"String content",

 "Name":"String content",

 "TypeCode":"String content",

 "Value":"String content"

 }]

}

The response JSON body contains a representation of the input that may be provided to a

workflow via the Submit method. The Input is comprised of the following:
Property Type Description

JobName String This field contains the name that the newly created job shall contain.

Priority Int
A value which indicates the priority of the job. The value of 0 corresponds to no priority
being utilized. The greater the value, the more important the job.

Attachments []
A collection of the Attachments which will be provided to the workflow. This field may
be empty.

Labels [] A collection of Labels which will be provided to the workflow. This field may be empty.

Priority []
A collection of Media Nicknames which will be provided to the workflow. This field may
be empty.

The primary purpose/use of this endpoint is to obtain the ‘required input’ for a given workflow

in order to submit a job to the workflow.

The most general use case would be:

<workflow input> = http://localhost:8676/Rest/Workflows/{ID}/JobInputs

http://localhost:8676/Rest/Workflows/%7bID%7d/JobInputs

Populate the <workflow input> with the desired values which correspond to the input
files/metadata/jobname and priority
Submit the <workflow input> to the desired workflow via the:
http://localhost:8676/Rest/Workflows/{ID}/Submit endpoint.

NOTE: Both the Media and Attachment elements which are published as part of the Input allow for an
embedded Data representation to be specified. If this is desired (eg: you wish to submit an inline
representation of the input vs. referencing a file on disk); you would utilize the Data property in lieu of the
File property to pass this information. When using the data property, the contents of the Data property
must be a UTF8 encoded Base64 representation of the string contents of the file.
NOTE: This mechanism should NOT be used for media files. It is primarily present as a way to allow
material which is more naturally represented as in-band data (eg: CML submissions or XML metadata) to
be supplied.
Please see the example section of this document for a sample of how to send in-band data using the Data
property.

http://localhost:8676/Rest/Workflows/{ID}/Submit

Submit a job to a workflow. The request data should be obtained via the /Workflows/{ID}/JobInputs GET
query.

Url: http://localhost:8676/Rest/Workflows/{ID}/Submit

HTTP Method: POST

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "Attachments":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "File":"String content",

 "Name":"String content"

 }],

 "JobName":"String content",

 "Labels":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Name":"String content",

 "Params":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

http://localhost:8676/Rest/Workflows/%7bID%7d/Submit
http://localhost:8676/Rest/help/operations/RestSubmitToWorkflow#request-json
http://localhost:8676/Rest/help/operations/RestSubmitToWorkflow#response-json

 "DefaultValue":"String content",

 "Description":"String content",

 "Increment":"String content",

 "Maximum":"String content",

 "Minimum":"String content",

 "Name":"String content",

 "Options":["String content"],

 "TypeCode":"String content",

 "Value":"String content"

 }]

 }],

 "Medias":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Files":["String content"],

 "Name":"String content"

 }],

 "Priority":2147483647,

 "Variables":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "DefaultValue":"String content",

 "Description":"String content",

 "Name":"String content",

 "TypeCode":"String content",

 "Value":"String content"

 }]

}

 The following is an example response Json body:

{

 "JobIdentifier":"1627aea5-8e0a-4371-9022-9b504344e724"

}

The JobIdentifier property in the JSON response corresponds to the ID of the newly created

job (i.e.: the job created as a result of the submit). If a job is unable to be created (eg: The

specified workflow is not active or some other error occurs); then the value of Guid.Empty

(00000000-0000-0000-0000-000000000000) shall be returned in JobIdentifier. Any other

value indicates that a job was successfully completed and the value of JobIdentifier can be

utilized to ask for further information about the Job.

Reference for
http://localhost:8676/Rest/Workflows/{ID}/SubmitBind
er

Submit a Binder which exists in the Catalog to the workflow identified by the provided ID.

The GET URL: http://localhost:8676/Rest/Workflows/{ID}/JobInputs may be utilized to obtain the
Variables that the target workflow expects.

Url: http://localhost:8676/Rest/Workflows/{ID}/SubmitBinder

HTTP Method: POST

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "BinderIdentifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "JobName":"String content",

 "Priority":2147483647,

 "Variables":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "DefaultValue":"String content",

 "Description":"String content",

 "Name":"String content",

 "TypeCode":"String content",

 "Value":"String content"

 }]

}

Submits a new job using the binder referenced by BinderIdentifier to the workflow specified by

the ID fragment in the POST URL.

If the binder referenced by the BinderIdentifier value does not exist or if a workflow does not

exist for the provided ID; then no job shall be submitted and a value of Guid.Empty shall be

returned.

BinderIdentifier: The value which identifies the binder that is to be submitted.

Variables: The collection of variables that accompanies this job.

http://localhost:8676/Rest/Workflows/%7bID%7d/JobInputs
http://localhost:8676/Rest/help/operations/RestSubmitBinderToWorkflow#request-json
http://localhost:8676/Rest/help/operations/RestSubmitBinderToWorkflow#response-json

JobName: The user facing name by which this job shall be known (non-unique).

Priority: The relative importance of this job compared to others (higher values imply a more

important job).

The following is an example response Json body:

{

 "JobIdentifier":"1627aea5-8e0a-4371-9022-9b504344e724"

}

The JobIdentifier property in the JSON response corresponds to the ID of the newly created

job (i.e.: the job created as a result of the submit). If a job is unable to be created (eg: The

specified workflow is not active or some other error occurs); then the value of Guid.Empty

(00000000-0000-0000-0000-000000000000) shall be returned in JobIdentifier. Any other

value indicates that a job was successfully completed and the value of JobIdentifier can be

utilized to ask for further information about the Job.

http://localhost:8676/Rest/Workflows/{ID}/Rename

Renames the specified workflow to a new name.

Url: http://localhost:8676/Rest/Workflows/{ID}/Rename

HTTP Method: PUT

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Xml body:

<RenameWorkflowRequest

xmlns="http://schemas.datacontract.org/2004/07/Telestream.Soa.Co

ntract.Sdk">

 <NewWorkflowName>String content</NewWorkflowName>

</RenameWorkflowRequest>

The following is an example request Json body:

http://localhost:8676/Rest/help/operations/RestRenameWorkflow#request-json
http://localhost:8676/Rest/help/operations/RestRenameWorkflow#response-json

{

 "NewWorkflowName":"String content"

}

NOTE: The target workflow (the workflow whose ID is specified in the URL); must be in the

IDLE state in order to be renamed (a workflow that is currently Active or is being Edited may

not be renamed).

The following is an example response Json body:

{

 "RenameSuccessful":true

}

NOTE: The RenameSuccessful property in the JSON response shall contain the value of true

if the Rename operation was successfully performed. If the operation was unable to be

performed (eg: the target workflow was not idle or the specified workflow did not exist); then

RenameSuccessful shall contain a value of false.

http://localhost:8676/Rest/Workflows/{ID}/Jobs/?filter
={FILTER}

Return all jobs for a specified workflow which match the specified filter criteria. The valid values for the filter
query parameter are: 'All', 'Active', 'Failed', 'Paused' or 'Complete'

Url: http://localhost:8676/Rest/Workflows/{ID}/Jobs/?filter={FILTER}

HTTP Method: GET

Message direction Format Body

Response Json Example

The following is an example response Json body:

{

 "Jobs":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "IsMonitor":true,

 "Name":"String content",

http://localhost:8676/Rest/help/operations/RestGetJobsForWorkflow#response-json

 "Started":"\/Date(928164000000-0400)\/",

 "State":0,

 "Updated":"\/Date(928164000000-0400)\/"

 }]

}

Reference for
http://localhost:8676/Rest/Workflows/{ID}/Signature

Obtain a value representing a unique signature for a workflow. The signature shall remain constant so long
as the workflow is not modified (Actions added or removed or updated, new connections made, workflow
renamed or moved).

NOTE: Importing the same workflow multiple times will assign each new import a new unique identifier and
consequently each copy of the workflow would have a distinct (and different) Signature.

Url: http://localhost:8676/Rest/Workflows/{ID}/Signature

HTTP Method: GET

Message direction Format Body

Response Json Example

The following is an example response Json body:

{

 "Signature":"String content"

}

Reference for
http://localhost:8676/Rest/Workflows/ExportToPath

Create a new XML representation of a workflow at the specified path.

Exports the workflow identified by the WorkflowIdentifier field to the location specified
by BasePathForExport field (see JSON below).
If everything is successful, the result of this method shall be a string which
corresponds to the complete path of the newly exported file.
If the specified workflow does not exist, or if there is a problem accessing
the specified location; the export shall fail and the empty string '' shall
be returned.

http://localhost:8676/Rest/help/operations/RestGetWorkflowSignature#response-json
http://localhost:8676/Rest/Workflows/ExportToPath

NOTE: If there is a collision of names in the folder specified in BasePathForExport
then this method shall unique-ify the output name of the newly exported workflow and
return the new unique name.

Url: http://localhost:8676/Rest/Workflows/ExportToPath

HTTP Method: POST

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "BasePathForExport":"String content",

 "WorkflowIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724"

}

The following is an example response Json body:

{

 "PathToExportedFile":"String content"

}

IMPORTANT: The XML file which is created as a result of this call is NOT a compressed file

(a compressed file is generated from the API call:

http://localhost:8676/Rest/Workflows/{ID}/Export). The file generated by this API call is a

traditional, readable XML file. The output of this call MAY NOT be utilized in the API call:

http://localhost:8676/Rest/Workflows/Import. Only workflows exported with the call:

http://localhost:8676/Rest/Workflows/{ID}/Export may be utilized by the

http://localhost:8676/Rest/Workflows/Import call.

The workflows created by the call: http://localhost:8676/Rest/Workflows/ExportToPath may be utilized

in the following API calls: http://localhost:8676/Rest/Workflows/ImportFromPath AND

http://localhost:8676/Rest/Workflows/Synchronize.

The BasePathForExport property indicates the base path where the new XML file shall be

created. The API shall unique-ify outputs (i.e.: so if a file collision would occur, steps are

taken to prevent this and generate a new unique name).

The WorkflowIdentifier value corresponds to the ID of the Vantage Workflow that should be

the target of the export.

http://localhost:8676/Rest/help/operations/RestExportWorkflowToPath#request-json
http://localhost:8676/Rest/help/operations/RestExportWorkflowToPath#response-json
http://localhost:8676/Rest/Workflows/%7bID%7d/Export
http://localhost:8676/Rest/Workflows/Import
http://localhost:8676/Rest/Workflows/%7bID%7d/Export
http://localhost:8676/Rest/Workflows/Import
http://localhost:8676/Rest/Workflows/ExportToPath
http://localhost:8676/Rest/Workflows/ImportFromPath

The result of this call shall be the full path of the file that is created (including any unique-

ifying name characters).

Reference for
http://localhost:8676/Rest/Workflows/ImportFromPath

Import a workflow specified by a file path.

NOTE: The input to this workflow MUST be a traditional workflow XML document that is either:

Generated by the http://localhost:8676/Rest/Workflows/ExportToPath API call.

Created as a result of exporting a workflow from the Workflow Designer.

Url: http://localhost:8676/Rest/Workflows/ImportFromPath

HTTP Method: PUT

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "AllowOverwrite":true,

 "DestinationCategory":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "DuplicateVariables":true,

 "Path":"String content"

}

The Path property in the JSON request must contain the path to a valid workflow XML created

either via the ExportToPath endpoint or via creating a workflow XML by exporting the

workflow manually from the Workflow Designer.

The AllowOverwrite property indicates whether the import shall allow an overwrite to be

performed. If this value is set to true, then an existing workflow which matches the workflow

being imported (a workflow with the same ID as the imported workflow) will be overwritten

by the Import. NOTE: The existing workflow must NOT be active. An active workflow may

not be overwritten.

http://localhost:8676/Rest/Workflows/ExportToPath
http://localhost:8676/Rest/help/operations/RestImportWorkflowFromPath#request-json
http://localhost:8676/Rest/help/operations/RestImportWorkflowFromPath#response-json

The DestinationCategory value corresponds to the ID of the Vantage Category that should be

the target of the import. The Category Identifier may be obtained via the /Categories

endpoint. If the DestinationCategory is provided the value of Guid.Empty (00000000-0000-

0000-0000-000000000000); the default import category shall be utilized.

The DuplicateVariables property indicates whether the import shall consolidate variables with

the same name or generate duplicate variables. The default behavior is to consolidate

variables with the same name (and same type) into a single variable and then update references

in the workflow to the consolidated variable (i.e.: if the workflow contains a variable named:

MYFILE and a variable of the same name (MYFILE) and type already exists in the Domain,

when the import is performed and DuplicateVariables is FALSE, if the MYFILE variable is

identical to the existing variable MYFILE (i.e.: The underlying IDs match), the workflow is

simply imported. However, if there is a difference, then when the workflow is imported, the

references to the original MYFILE variable are updated in the newly imported workflow

(specifically the IDs). If the DuplicateVariables property is set to TRUE, then a duplicate

variable will be created if the underlying IDs differ (in this case there would be two (2)

MYFILE variables (the original one existing in the domain, and the newly created one from the

workflow import).

The following is an example response Json body:

{

 "WorkflowIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724"

}

 The WorkflowIdentifier property in the JSON response corresponds to the GUID identifier of

the workflow created as a result of this call. If the value of Guid.Empty (all 0’s) is returned,

this indicates that the workflow was unable to be imported (there may be a problem with the

workflow, the path cannot be accessed, the workflow already exists and is active).

Reference for
http://localhost:8676/Rest/Workflows/Synchronize

Attempt to resynchronize the definition of a workflow using the path to a Vantage workflow,

previously generated by the call to ExportToPath into this domain or via manually exporting a

workflow from the Workflow Designer.

This method will overwrite an existing workflow if the workflow represented by the Identifier of

the input workflow already exists in the domain.

If the existing workflow is active, the workflow shall be placed into an edit state and updated to

allow the definitions which are present in the supplied workflow to overwrite the existing

definitions.

Any in-process actions shall not be manipulated and shall continue to run with the definitions of

the actions which were present when the job was initially created.

If there is no existing workflow which corresponds to the workflow specified as input, then the

new workflow is added to the domain without any existing workflows being modified.

Url: http://localhost:8676/Rest/Workflows/Synchronize

HTTP Method: PUT

Message direction Format Body

Request Json Example

Response Json Example

The following is an example request Json body:

{

 "DestinationCategory":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "Path":"String content"

}

The Path property in the JSON request must contain the path to a valid workflow XML created

either via the ExportToPath endpoint or via creating a workflow XML by exporting the

workflow manually from the Workflow Designer.

The DestinationCategory value corresponds to the ID of the Vantage Category that should be

the target of the import. The Category Identifier may be obtained via the /Categories

endpoint. If the DestinationCategory is provided the value of Guid.Empty (00000000-0000-

0000-0000-000000000000); the default import category shall be utilized. NOTE: The

DestinationCategory value is only relevant if the workflow specified in the Path property does

not exist.

The following is an example response Json body:

{

http://localhost:8676/Rest/help/operations/RestSynchronizeWorkflowFromPath#request-json
http://localhost:8676/Rest/help/operations/RestSynchronizeWorkflowFromPath#response-json

 "WorkflowIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724"

}

The WorkflowIdentifier property in the JSON response corresponds to the GUID identifier of

the workflow created as a result of this call. If the value of Guid.Empty (all 0’s) is returned,

this indicates that the workflow was unable to be imported (there may be a problem with the

workflow, the path can not be accessed, the workflow already exists and is active).

Job Operations:

These operations focus on the manipulation of Vantage jobs.

http://localhost:8676/Rest/Jobs/{ID}

Returns information about the job with the provided identifier.

Url: http://localhost:8676/Rest/Jobs/{ID}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Job":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "IsMonitor":true,

 "Name":"String content",

 "Started":"\/Date(928164000000-0400)\/",

 "State":0,

 "Updated":"\/Date(928164000000-0400)\/"

 }

}

The JSON response shall contain the following properties:
Property

Name
Type Description

Identifier Guid The unique identifier for the job.

IsMonitor Boolean

A Boolean value which indicates whether the job corresponds to a Monitor type
transaction (i.e.: a Supervisor task which is ultimately responsible for the creation of
other jobs). A value of true indicates this is a Monitor job, while a value of false
implies that the job in question is a more traditional (normal) Vantage job.

Name String The job name (the name which appears in the Vantage Workflow Designer)

Started DateTime The timestamp of when the job was created.

State JobState The current state of the job (see below)

Updated DateTime The timestamp of when the job was last updated.

Job State Value Meaning

In Process 0
The job is currently active and in-process (it contains actions which are currently
being processed).

http://localhost:8676/Rest/help/operations/RestGetJob#response-json

Failed 4 The job has failed.

Complete 5 The job has successfully completed.

Waiting 6
The job is active, but is currently waiting for a resource. More specifically the job
contains actions which are all awaiting being allocated to a service for processing.

Stopped by
User

7 The job was stopped by a user/Administrator.

Waiting to
Retry

8
The job has entered a state where the remaining actions are waiting to be retried.
This is typically the result of a Retry rules being applied to one or more actions in a
job (eg: retry an FTP transfer after 10 minutes if the target site is not accessible).

Queued for
Submission

10
The job was received by the SDK service and has been queued for submission into
Vantage.

No Such Job 11 The job with the provided ID does not exist.

http://localhost:8676/Rest/Jobs/{ID}/Actions

Return all actions associated with a specific job.

Url: http://localhost:8676/Rest/Jobs/{ID}/Actions

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Actions":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Name":"String content",

 "Started":"\/Date(928164000000-0400)\/",

 "State":0,

 "Updated":"\/Date(928164000000-0400)\/"

 }]

}

The JSON response shall contain the following properties:
Property

Name
Type Description

Identifier Guid The unique identifier for the instance of the running action.

Description String
The description of the action. This is the string that appears on the bottom of the
action visualization on the Workflow Designer.

Name String The name of the action (eg: “Flip”)

http://localhost:8676/Rest/help/operations/RestGetActionsForJob#response-json

Started DateTime The timestamp of when the instance of the action in the job was created.

State
Action
State

The current state of the action (see below)

Updated DateTime The timestamp of when the action within the job was last updated.

Action State Value Meaning

In Process 0
The action is currently being processed by a service. (In the Workflow Designer, this
would correspond to a GREEN icon).

Ignored 1
The action has completed but was set to an Ignored state. (In the Workflow Designer,
this would correspond to a BLACK icon).

Complete 2
The action has successfully completed. (In the Workflow Designer, this would
correspond to a BLUE icon).

Failed 3
The action has failed during processing. (In the Workflow Designer, this would
correspond to a RED icon).

Waiting 4
The action has been assigned to a service (i.e.: on the Queue) and is currently waiting
for resources (waiting for an execution slot). (In the Workflow Designer, this would
correspond to a YELLOW icon).

Created 5
The action has been created, but has not been assigned to a service. (In the
Workflow Designer, this would correspond to a WHITE icon).

Paused 6
The action has been paused. (In the Workflow Designer, this would correspond to a
GREY icon).

Stopped By
User

9
The action was stopped by an Administrator. (In the Workflow Designer, this would
correspond to a MAGENTA icon).

Waiting to
Retry

10
The action had previously failed and is waiting to retry [based upon the use of Action
Retry rules]. (In the Workflow Designer, this would correspond to an ORANGE icon).

Waiting on
Service

12
The action is waiting on a service to be available for execution (this state implies that
no services are running which may currently host the action) . (In the Workflow
Designer, this would correspond to a PURPLE icon).

Waiting on
Run On Rule

13
The action is waiting on a Run On Rule. This state implies that Run On Rules are
precluding the action from running on a given service. (In the Workflow Designer,
this would correspond to a YELLOW-GREEN icon).

http://localhost:8676/Rest/Jobs/{ID}/ErrorMessage

Returns the relevant error message associated with a job which has failed.

Url: http://localhost:8676/Rest/Jobs/{ID}/ErrorMessage

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "JobErrorMessage":"String content"

}

http://localhost:8676/Rest/help/operations/RestGetJobErrorMessage#response-json

NOTE: The JobErrorMessage property in the JSON response shall contain the error message

which was generated for the job specified by the provided ID. If the provided ID does not

correspond to a valid job or the provided ID does not correspond to a job which has failed, then

an Empty string shall be returned in JobErrorMessage.

http://localhost:8676/Rest/Jobs/{ID}/Metrics

Return specific metrics (eg: total run time, total queue time) about a specified job.

Url: http://localhost:8676/Rest/Jobs/{ID}/Metrics

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "TotalQueueTimeInSeconds":2147483647,

 "TotalRunTimeInSeconds":2147483647

}

NOTE:

The TotalQueueTimeInSeconds property in the JSON response shall contain the total job

queued time (the total time the actions in the job spent queued) in Seconds.

The TotalRunTimeInSeconds property in the JSON response shall contain the total job run

time (the total amount of time the actions in the job spent performing work) in Seconds.

http://localhost:8676/Rest/Jobs/{ID}/Outputs

Return all outputs (Media Nicknames, Attachments and/or Labels) associated with a specific job.

Url: http://localhost:8676/Rest/Jobs/{ID}/Outputs

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

http://localhost:8676/Rest/help/operations/RestGetJobMetrics#response-json
http://localhost:8676/Rest/help/operations/RestGetJobOutputs#response-json

The following is an example response Json body:

{

 "Attachments":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Data":"String content",

 "Description":"String content",

 "File":"String content",

 "Name":"String content"

 }],

 "Labels":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Name":"String content",

 "Params":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "DefaultValue":"String content",

 "Description":"String content",

 "Increment":"String content",

 "Maximum":"String content",

 "Minimum":"String content",

 "Name":"String content",

 "Options":["String content"],

 "TypeCode":"String content",

 "Value":"String content"

 }]

 }],

 "Medias":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Files":["String content"],

 "Name":"String content"

 }]

}

The response JSON body contains a representation of all of the Outputs which are available

when a job has completed. Outputs correspond to any Attachment, Media or Label that is

present within the job when it has completed. :
Output Type Description

Attachments []

A collection of the Attachments which is available at the completion of the job.
Attachments typically refer to Metadata files (eg: Sidecar XML files). There will be one
attachment entry in the Attachments collection for each entry which is present
Attachments section of the Binder view of a completed job in the Vantage Workflow
designer.

NOTE: Attachments have a Data property and a File property. Attachments may be
generated internal to Vantage (and not have a representative file on disk). In such a
case, the File property will be an empty string and the Data property will contain the
string representation of the Attachment.
In all cases (whether or not a File is present for an attachment); the Data property shall
always contain the string representation of the contents of the Attachment.

Labels []

A collection of Metadata Labels which are available at the completion of a job. A Label
will contain one (1) or more Parameters which will have a specific value and type. There
will be a specific Label in the response collection for each entry in the Metadata Labels
section of the Binder view of a completed job in the Vantage Workflow designer.

Medias []

A collection of Media Nicknames which are available at the completion of a job. Medias
refer to the individual Media Nicknames present when a job completes. The entries in
the Medias collection shall correspond to the entries which are present in the Media Files
section of the Binder view of a completed job in the Vantage Workflow designer.

NOTE: Please see the Examples section at the end of this document for a more in-depth

discussion about the Outputs endpoint.

http://localhost:8676/Rest/Jobs/{ID}/Progress

Returns the progress (percent complete) for the specified job.

Url: http://localhost:8676/Rest/Jobs/{ID}/Progress

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "JobProgress":50

}

NOTE: The JobProgress property in the JSON response shall contain a value which

represents the progress of the job. The value shall fall between 0 and 100. If the supplied ID

does not correspond to a job, the value of 0 shall be returned.

http://localhost:8676/Rest/Jobs/{ID}/Remove

Removes a completed job with the specified identifier. NOTE: Only a completed job (Completed
Successfully, Failed, or a job that has been stopped by a user) may be removed.

Url: http://localhost:8676/Rest/Jobs/{ID}/Remove

http://localhost:8676/Rest/help/operations/RestGetJobProgress#response-json

HTTP Method: DELETE

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "RemoveJobSuccessful":true

}

NOTE: The RemoveJobSuccessful property in the JSON response shall contain the value of

true if the job with the specified ID was successfully removed. If the operation was unable to

be performed (for any reason); the RemoveJobSuccessful property shall be given a value of

false.

http://localhost:8676/Rest/Jobs/{ID}/Stop

Stops the job identified by the provided identifier. NOTE: Only a job that is in-process (i.e.: not complete)
may be stopped.

Url: http://localhost:8676/Rest/Jobs/{ID}/Stop

HTTP Method: PUT

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "JobStopped":true

}

NOTE: The JobStopped property in the JSON response shall contain the value of true if the

job with the specified ID was successfully stopped. If the operation was unable to be

performed (for any reason); the JobStopped property shall be given a value of false.

http://localhost:8676/Rest/Jobs/{ID}/Restart

http://localhost:8676/Rest/help/operations/RestRemoveJob#response-json
http://localhost:8676/Rest/help/operations/RestStopJob#response-json

Restarts a job which had previously been stopped. Only a job that is in the Stopped By User state may be
restarted.

Url: http://localhost:8676/Rest/Jobs/{ID}/Restart

HTTP Method: PUT

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "RestartJobSuccessful":true

}

NOTE: The RestartJobSuccessful property in the JSON response shall contain the value of

true if the job with the specified ID was successfully restarted. If the operation was unable to

be performed (for any reason); the RestartJobSuccessful property shall be given a value of

false.

http://localhost:8676/Rest/Jobs/{ID}/Forwarded

Returns a collection of jobs which were created as a result of being forwarded from the specified job.

This endpoint allows a client to receive information about new jobs which are created as a result of Forward
actions being present in a workflow. The presence of a Forward action in a workflow implies that a new job
is being created. This endpoint method provides the ability to track a new job that is created via a current
job containing one (1) or more Forward actions (each which results in a new job being created). This
method allows a reference to those newly created jobs to be returned (so that each new job may be tracked
by the client).

Url: http://localhost:8676/Rest/Jobs/{ID}/Forwarded

HTTP Method: GET

Message direction Format Body

Response Json Example

The following is an example response Json body:

{

 "Jobs":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

http://localhost:8676/Rest/help/operations/RestRestartJob#response-json
http://localhost:8676/Rest/help/operations/RestGetForwardedJobs#response-json

 "IsMonitor":true,

 "Name":"String content",

 "Started":"\/Date(928164000000-0400)\/",

 "State":0,

 "Updated":"\/Date(928164000000-0400)\/"

 }]

}

Catalog Operations:

Methods which manipulate Vantage Catalogs, the Folders which they contain and any Binders

which reside in these folders.

NOTE: A Catalog is akin to a top-level folder. API methods which provide information about

a specific folder may be provided with either a specific Folder’s identifier or a specific Catalog’s

identifier (since a Catalog is a top-level folder).

Reference for http://localhost:8676/Rest/Catalogs

Gets all of the Catalog(s) for the Domain.

Url: http://localhost:8676/Rest/Catalogs

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Catalogs":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }]

}

The Catalogs response shall contain an array of entries. Each entry shall contain an Identifier

field and a Name field. The Identifier field corresponds to the unique identifier for the catalog

with the designation indicated in the Name field. The Identifier value can be utilized in

subsequent invocations of other REST methods which accept a Catalog identifier as input.

Reference for http://localhost:8676/Rest/Catalogs/{ID}

Returns the catalog entry from the current Domain which corresponds to the provided value of ID.

NOTE: If the provided ID does not correspond to a Catalog which exists in the current Domain, a NULL
entry shall be returned in the Catalog response.

Url: http://localhost:8676/Rest/Catalogs/{ID}

HTTP Method: GET

http://localhost:8676/Rest/help/operations/RestGetCatalogs#response-json

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Catalog":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }

}

NOTE: If the value of ID in the request URL does not correspond to a Catalog which exists

within the current Vantage domain, then a null entry shall be returned.

{

 "Catalog": null

}

Reference for
http://localhost:8676/Rest/Catalogs/Cleanup

Clean up (remove from Vantage) all folders which are marked as Transient and are empty.

Url: http://localhost:8676/Rest/Catalogs/Cleanup

HTTP Method: POST

Message direction Format Body

Request N/A The Request body is empty.

Response N/A The Response body is empty.

The /Rest/Catalogs/Cleanup shall instruct Vantage to remove ALL folders from the Catalog

which have been marked as Transient and which are empty. This call is a programmatic way of

invoking the same cleanup functionality which is available in the VMC->Catalogs pane for

cleaning up empty folders in the catalog.

http://localhost:8676/Rest/help/operations/RestGetCatalog#response-json

Reference for
http://localhost:8676/Rest/Content/{ID}/Entries

Returns all outputs (Media Nicknames, Attachments and/or Labels) associated with the specified

content entry.

Url: http://localhost:8676/Rest/Content/{ID}/Entries

HTTP Method: GET

This operation supports JSONP responses. The callback function can be specified using the "callback" Url
query parameter.

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Attachments":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Data":"String content",

 "Description":"String content",

 "File":"String content",

 "Name":"String content"

 }],

 "Labels":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Description":"String content",

 "Name":"String content",

 "Params":[{

 "Identifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "DefaultValue":"String content",

 "Description":"String content",

 "Increment":"String content",

 "Maximum":"String content",

 "Minimum":"String content",

 "Name":"String content",

 "Options":["String content"],

 "TypeCode":"String content",

http://localhost:8676/Rest/Content/%7bID%7d/Entries
http://localhost:8676/Rest/help/operations/RestContentEntries#response-json

 "Value":"String content"

 }]

 }],

 "Medias":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Data":"String content",

 "Description":"String content",

 "Files":["String content"],

 "Name":"String content"

 }]

}

The intent of this call is to allow a client application to request information about what is present

in a particular content entry (the content entry may be the result of traditional submit or the

content entry associated with a Binder). All of the Attachments, Labels and Media outputs shall

be returned.

NOTE: If the provided ID does not correspond to a Content entry which exists in the domain,

the following JSON structure shall be returned:
{

 "Attachments":null,

 "Labels":null,

 "Medias":null

}

Reference for http://localhost:8676/Rest/Folders/{ID}

Returns all of the Folder entries which exist in either the Catalog or the Folder whose Identifier
corresponds to the provided ID.

Url: http://localhost:8676/Rest/Folders/{ID}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

http://localhost:8676/Rest/help/operations/RestGetFolders#response-json

 "Folders":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }]

}

NOTE: If the value of ID in the request URL does not correspond to a Folder or a Catalog

which exists within the current Vantage domain, then a null entry shall be returned.

{

 "Folder": null

}

Reference for http://localhost:8676/Rest/Folder/{ID}

Returns the specific Folder entry which is identified by the provided ID.

Url: http://localhost:8676/Rest/Folder/{ID}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Folder":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }

}

NOTE: If the value of ID in the request URL does not correspond to a Folder or a Catalog

which exists within the current Vantage domain, then a null entry shall be returned.

{

 "Folder": null

}

http://localhost:8676/Rest/help/operations/RestGetFolder#response-json

Reference for
http://localhost:8676/Rest/Folders/{ID}/Binders

Gets all of the Binder(s) for a given Catalog or Folder. This method returns all of the Binders which exist
within the Folder with the provided ID. This method does not traverse the entire Folder hierarchy to
discover all Binders which may exist in all sub-Folders of the specified Folder. It shall only return the
Binder entries which reside within the Folder with the specified ID.

Url: http://localhost:8676/Rest/Folders/{ID}/Binders

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Binders":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Content":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }]

}

NOTE: If the value of ID in the request URL does not correspond to a Folder or a Catalog

which exists within the current Vantage domain, then a null entry shall be returned.

{

 "Binders": null

}

This endpoint also supports optional start and end query parameters. These parameters constrain

the results that are returned to only binders created after the provided start or before the provided

end.

The original query:

http://localhost:8676/Rest/Folders/{FOLDERID}/Binders

will return all binders in the folder whose id is: {FOLDERID}, eg:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders

http://localhost:8676/Rest/help/operations/RestGetBinders#response-json
http://localhost:8676/Rest/Folders/
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders

The endpoint now supports the optional query parameters: start and end

you can specify something like:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-

11-1

and this will return all BINDERS in the folder with ID: b364aeed-7089-4821-a896-ed639cb5a021

created after 2021-11-1

if you specify a start query parameter, you can also optionally specify an end query parameter:

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-

11-1&end=2021-11-4

the above would return all binders in the folder with ID: b364aeed-7089-4821-a896-

ed639cb5a021 created AFTER 2021-11-1 AND BEFORE 2021-11-4

Reference for
http://localhost:8676/Rest/Folders/{ID}/Binder/{NAME}

Obtain the specified Binder object that is associated with the provided NAME and that is located

in the folder identified by ID.

NOTE: The first binder that exactly matches the specified name is returned. Since a catalog

folder may contain Binders with names that are duplicates of one another, it is advised that when

binders are registered in a catalog; that steps be taken to give them a unique name (see the

Register action for more information about this).

If a Binder with the specified name Name does not exist in the specified folder, a NULL value

shall be returned.

Url: http://localhost:8676/Rest/Folders/{ID}/Binder/{NAME}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1&end=2021-11-4
http://localhost:8676/Rest/Folders/b364aeed-7089-4821-a896-ed639cb5a021/Binders?start=2021-11-1&end=2021-11-4

Response Json Example

The following is an example response Json body:

{

 "Binder":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Content":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }

}

NOTE: If the value of ID in the request URL does not correspond to a Folder or a Catalog

which exists within the current Vantage domain OR if the provided NAME does not correspond

to a matching Binder name within this Folder, then a null entry shall be returned.

{

 "Binder": null

}

Reference for http://localhost:8676/Rest/Binder/{ID}

Gets a specific Binder for the domain.

Url: http://localhost:8676/Rest/Binder/{ID}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Binder":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Content":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content"

 }

}

NOTE: If the value of ID in the request URL does not correspond to a Binder which exists

within the current Vantage domain, then a null entry shall be returned.

http://localhost:8676/Rest/help/operations/RestGetBinderInFolderByName#response-json
http://localhost:8676/Rest/help/operations/RestGetBinder#response-json

{

 "Binder": null

}

Reference for
http://localhost:8676/Rest/Binder/{ID}/Content

Gets the content for a specific Binder.

Url: http://localhost:8676/Rest/Binder/{ID}/Content

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "ContentIdentifier":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "Created":"\/Date(928164000000-0400)\/",

 "Name":"String content",

 "Updated":"\/Date(928164000000-0400)\/"

}

NOTE: If the provided ID does not correspond to a Binder which exists within the Vantage

Domain, then a default entry shall be returned. In particular, within this entry, the Name field

shall be Null and the Created and Updated fields shall be set to DateTime.Min. The client

should use the presence of a non-null Name field as an indication of whether the result contains

valid data.

Here is an example of the result that is returned when a non-existent Binder ID is supplied:

{

"ContentIdentifier":"00000000-0000-0000-0000-000000000000",

"Created":"\/Date(-62135578800000-0500)\/",

"Name":null,

"Updated":"\/Date(-62135578800000-0500)\/"

}

 Service Operations:

Methods which allow for the retrieval of information about Vantage services.

http://localhost:8676/Rest/help/operations/RestGetBinderContent#response-json

Reference for http://localhost:8676/Rest/Services

Get all online services present in this Vantage domain. NOTE: Only online services are returned when this
call is invoked. Services which are in maintenance mode (or any other state) shall NOT be returned.

Url: http://localhost:8676/Rest/Services

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Services":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Machine":"1627aea5-8e0a-4371-9022-9b504344e724",

 "MachineType":0,

 "ServiceKind":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "ServiceTypeName":"String content",

 "State":0

 }]

}

NOTE:

The Identifier property in the JSON response corresponds to the identifier for the service. This

value would be used as the Id property for any service specific query (eg:

/Services/{Id}/Metrics)

The Machine property in the JSON response shall contain the identifier of the machine that the

service is running on.

The MachineType property in the JSON response corresponds to whether the service is a

Transient (1) or Permanent (0) service. Certain operations (eg: Preshutdown) are only

applicable to Transient services.

The ServiceKind property in the JSON response corresponds to the unique type identifier for

this service.

The ServiceTypename property in the JSON response corresponds to the friendly name of the

service type (eg: Transcode).

The State property in the JSON response corresponds to the state of the service. Since this

query only returns online services, this value shall always be 0.

http://localhost:8676/Rest/help/operations/RestGetServices#response-json

Reference for
http://localhost:8676/Rest/Services/{ID}/Metrics

Gets the metric information associated with the specified service.

Url: http://localhost:8676/Rest/Services/{ID}/Metrics

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Metric":{

 "AcceptingWork":true,

 "ActiveSessionCount":2147483647,

 "AverageQueueLength":2147483647,

 "AverageQueueWaitInSeconds":2147483647,

 "CurrentResourceUsage":2147483647,

 "FailedLicenseCount":2147483647,

 "FailedSessionCount":2147483647,

 "LightspeedFallbackCount":2147483647,

 "QueuedSessionCount":2147483647,

 "SendQueueSize":2147483647,

 "ServiceUtilization":2147483647,

 "SuccessfulSessionCount":2147483647,

 "TargetResourceUsage":2147483647,

 "TotalSessionCount":2147483647

 }

}

NOTE:

The AcceptingWork property in the JSON response shall indicate whether the service is

accepting work. (Services which have been instructed to enter the preshutdown mode shall

indicate that they are NOT accepting work (i.e.: this value would be false)).

The ActiveSessionCount property in the JSON response shall contain the current number of

running (active) actions that the service is hosting.

http://localhost:8676/Rest/help/operations/RestGetServiceMetric#response-json

The AverageQueueLength property in the JSON response shall contain the average size of the

waiting queue for this service since it entered the online state.

The AverageQueueWaitTimeInSeconds property in the JSON response shall contain the

average amount of time (in seconds) that requests have remained on the waiting queue.

The CurrentResourceUsage property in the JSON response shall contain the current cost that

the service is consuming. This value only has meaning in Cost Based Load Balancing mode.

The FailedLicenseCount property in the JSON response shall contain the total number of

times that this service has been unable to acquire a required license feature resulting in an

action failure.

The FailedSessionCount property in the JSON response shall contain the total number of

times that an action resulted in a failure (for any reason).

The LightspeedFallbackCount property in the JSON response shall contain the total number

of times that a fallback from Lightspeed GPU mode to regular mode was encountered on this

service. (This is only meaningful for services which make use of the Lightspeed technology).

The QueuedSessionCount property in the JSON response shall contain the current number

actions which are queued in the waiting queue.

The SendQueueSize property in the JSON response shall contain the current number of

requests that the service is waiting to send to another service.

The ServiceUtilization property in the JSON response shall contain the utilization percentage

which corresponds to the number of active actions (jobs) over the total number of allowable

jobs.

The SuccessfulSessionCount property in the JSON response shall contain the total number of

successful actions (jobs) which were run on this service.

The TargetResourceUsage property in the JSON response shall contains the resource usage

defined for this service with respect to Cost Based Load Balancing. This value only has

meaning when in Cost Based Load Balancing mode.

The TotalSessionCount property in the JSON response shall contain the total number of

sessions (actions) which have been hosted on this service.

Reference for
http://localhost:8676/Rest/Services/SearchByMachine/{
MACHINE}

Gets all online services in the domain which reside on the specified machine. Note: Only Online services are
returned. Services in maintenance mode (or any other state besides Online) shall not be returned.

Url: http://localhost:8676/Rest/Services/SearchByMachine/{MACHINE}

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Services":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Machine":"1627aea5-8e0a-4371-9022-9b504344e724",

 "MachineType":0,

 "ServiceKind":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "ServiceTypeName":"String content",

 "State":0

 }]

}

NOTE:

The Identifier property in the JSON response corresponds to the identifier for the service. This

value would be used as the Id property for any service specific query (eg:

/Services/{Id}/Metrics)

The Machine property in the JSON response shall contain the identifier of the machine that the

service is running on.

The MachineType property in the JSON response corresponds to whether the service is a

Transient (1) or Permanent (0) service. Certain operations (eg: Preshutdown) are only

applicable to Transient services.

The ServiceKind property in the JSON response corresponds to the unique type identifier for

this service.

The ServiceTypename property in the JSON response corresponds to the friendly name of the

service type (eg: Transcode).

The State property in the JSON response corresponds to the state of the service. Since this

query only returns online services, this value shall always be 0.

Reference for
http://localhost:8676/Rest/Services/LookupHosting?Type={ACTION
TYPE}

Returns information about services hosting a specific type of action.

Url: http://localhost:8676/Rest/Services/LookupHosting?Type={ACTIONTYPE}

http://localhost:8676/Rest/help/operations/RestGetServicesByMachine#response-json

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Services":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Machine":"1627aea5-8e0a-4371-9022-9b504344e724",

 "MachineType":0,

 "ServiceKind":"1627aea5-8e0a-4371-9022-

9b504344e724",

 "ServiceTypeName":"String content",

 "State":0,

 "Endpoint":"String content"

 }]

}

The primary intent of this call is to allow client applications who wish to interact with specific

Vantage services (primarily the Capture service) to obtain information about all of the services

hosting specific action types. Calling this method with the actionType of ‘Capture’ would

result in information about all of the services currently hosting an in process instance of the

Capture action (allowing the client application to interact with the Capture service for

additional capability regarding the capture actions – see the Capture API guide for details

about this specific capability).

Reference for
http://localhost:8676/Rest/Services/{ID}/Preshutdown

Request that the specified service enter the preshutdown state. This is only applicable to services of the
Transient type. When this request is made, the service shall enter a state where it shall no longer accept
new work. The service shall complete all active and queued work. Once this has completed, the service
shall shutdown. This call is an asynchronous call. The invoking entity will have no indication that the
service has completed this request other than to monitor the service, noting that the service will eventually
no longer be available (due to the shutdown).

Url: http://localhost:8676/Rest/Services/{ID}/Preshutdown

HTTP Method: POST

http://localhost:8676/Rest/help/operations/RestLookupHostingService#response-json

Message direction Format Body

Request N/A The Request body is empty.

Response N/A The Response body is empty.

Machine Operations:

Methods which allow for the retrieval of information about machines in the Vantage domain.

Reference for http://localhost:8676/Rest/Machines

Return all machines, which host services, in the domain.

Url: http://localhost:8676/Rest/Machines

HTTP Method: GET

Message direction Format Body

Request N/A The Request body is empty.

Response Json Example

The following is an example response Json body:

{

 "Machines":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Name":"String content",

 "Processors":2147483647,

 "MachineType":0

 }]

}

NOTE:

The Identifier property in the JSON response corresponds to the identifier for the machine.

The Name property in the JSON response shall contain the name of the machine.

The Processors property in the JSON response corresponds to the number of detected

processors on this machine.

The MachineType property in the JSON response corresponds to whether this machine is a

Transient (a Virtual node) or a Permanent (physical) node. Note: Certain operations

(Preshutdown) are only applicable to Transient machines.

Reference for
http://localhost:8676/Rest/Machines/{ID}/Preshutdown

Instruct all services on the specified machine to begin the preshutdown state. This is only applicable to
machines of the Transient type. When this request is made, all onlines services on the machine with the

http://localhost:8676/Rest/help/operations/RestGetMachines#response-json

specified identifier (assuming this is a Transient machine) shall enter a state where it shall no longer accept
new work. The services shall complete all active and queued work. Once this has completed, the services
shall shutdown. This call is an asynchronous call. The invoking entity will have no indication that the
services have completed this request other than to monitor the service, noting that the service will
eventually no longer be available (due to the shutdown).

Url: http://localhost:8676/Rest/Machines/{ID}/Preshutdown

HTTP Method: POST

Message direction Format Body

Request N/A The Request body is empty.

Response N/A The Response body is empty.

Storage Operations

The following calls are associated with obtaining information about Managed Stores within a

Vantage domain. See the Vantage Domain Administrators guide for more information about

creating and utilizing Managed Stores.

Reference for
http://localhost:8676/Rest/Stores?IncludeOffline={O
FFLINE}

Returns information about Vantage Managed Stores. An optional qualifier which indicates whether to include
offline Stores is available as well.

Url: http://localhost:8676/Rest/Stores?IncludeOffline={OFFLINE}

HTTP Method: GET

The following is an example response Json body:

{

 "Stores":[{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Aliases":["String content"],

 "AvailableSpace":9223372036854775807,

 "Location":"String content",

 "Name":"String content",

 "Offline":true,

 "StorageMode":0,

 "TotalSpace":9223372036854775807

 }]

}

This call will return a list of all Managed Stores currently defined within the Vantage domain.

The OPTIONAL qualifier ?IncludeOffline (which accepts a TRUE/FALSE value) can be used

to indicate whether stores which are currently marked as being offline are returned.

For example:

http://localhost:8676/Rest/Stores?IncludeOffline=True

would return information about ALL Managed Stores (which include BOTH Online and Offline

stores).

The call:
http://localhost:8676/Rest/Stores?IncludeOffline=False

would ONLY return information about Managed Stores which are currently in the Online state.

Reference for http://localhost:8676/Rest/Stores/{ID}

Return information about the specified Vantage Managed Store.

Url: http://localhost:8676/Rest/Stores/{ID}

HTTP Method: GET

The following is an example response Json body:

{

 "Store":{

 "Identifier":"1627aea5-8e0a-4371-9022-9b504344e724",

 "Aliases":["String content"],

 "AvailableSpace":9223372036854775807,

 "Location":"String content",

 "Name":"String content",

 "Offline":true,

 "StorageMode":0,

 "TotalSpace":9223372036854775807

 }

}

This method returns information about the Vantage Managed Store with the specified ID. An

example invocation would be:

http://localhost:8676/Rest/Stores/41FA638D-FEC6-432E-8841-13B5CAEEDCC4

NOTE: If the ID that is provided to this call does not exist within the Vantage domain, the

following shall be returned:

{"Store":null}

This call will return the store regardless of the state of the store being Online or Offline.

An optional query exists to allow an API client to request whether a given Vantage Store was

currently in use.

The new endpoint is:

http://localhost:8676/Rest/Stores/<Store ID>/InUse

This call will return information about a Vantage Store, including a value which indicates

whether Vantage believes the Store is in-use.

For example, if the call is made with the Storage ID of: 13060a84-344a-40cf-9f75-b106b563cc25,

ie:
http://localhost:8676/Rest/Stores/13060a84-344a-40cf-9f75-b106b563cc25/InUse

and that store was currently in use by Vantage, the following would be returned:
{
2 "Store": {
3 "Identifier": "13060a84-344a-40cf-9f75-b106b563cc25",
4 "Aliases": [],
5 "AvailableSpace": 942331715584,
6 "Location": "file:///C:/VantageStore/",
7 "Name": "Local Store",
8 "Offline": false,
9 "StorageMode": 0,
10 "TotalSpace": 999677751296
11 },

http://localhost:8676/Rest/Stores/41FA638D-FEC6-432E-8841-13B5CAEEDCC4
http://localhost:8676/Rest/Stores/%3cStore
http://localhost:8676/Rest/Stores/13060a84-344a-40cf-9f75-b106b563cc25/InUse

12 "StoreInUse": true
13}

The new field is highlighted above.

Examples
The postman utility () is utilized as the primary mechanism for exercising the Rest API. The

sample below uses postman to obtain information about a workflow and submit a job to a

workflow.

As mentioned in the introduction, workflows in Vantage are comprised of different Actions.

Workflows may have many different actions depending upon the desire of the workflow

creator. Each action is comprised of different Parameters. Parameters hold values for

individual properties within an action. A Parameter may contain a static value (entered directly

via the Vantage workflow designer) or a Parameter may be bound to a Vantage variable. If a

Parameter is bound to a Variable, then the value of that Parameter may be supplied at runtime

(via an API submit for example).

See the Vantage User’s Guide for more information about binding variables within a Vantage

Action.

The Vantage workflow designer makes it easy to visual inspect a workflow to determine what

it will indicate may be provided as input.

For a given workflow within the Workflow Designer, the Properties view may be used to

obtain specific pieces of information:

Of particular interest for this example is the workflow ID: a4a999db-338c-4e91-aa2f-

3a9e228f3411

This is the workflow that will be utilized within this example.

Submit a Job

Using postman, the first task is to ask for information about the workflow:

The screen above represents what is observed in postman when the endpoint:

http://localhost:8676/Rest/Workflows/a4a999db-338c-4e91-aa2f-3a9e228f3411 is used to

obtain information about the workflow.

NOTE: The ‘State’ of the workflow is 2. From the information in the /Workflows endpoint in

the previous section, the value of 2 corresponds to:
Edit 2 The workflow is currently being edited by a user. The workflow may be activated.

Since a workflow in the Edit state must be ‘Activated’ before it may be ‘Submitted to’;

postman is used to activate this workflow:

NOTE: The ‘ActivateSuccessful’ property above has returned a true value.

http://localhost:8676/Rest/Workflows/a4a999db-338c-4e91-aa2f-3a9e228f3411

NOTE: Within the workflow designer, the workflow is now activate as well:

At this point, the endpoint: http://localhost:8676/Rest/Workflows/a4a999db-338c-4e91-aa2f-

3a9e228f3411/JobInputs is used to obtain the Inputs that must be supplied to start a job within

this workflow:

Postman is now used to generate a POST request to the /Submit endpoint. The JSON data

from the JobInputs GET output above is cut/paste into the new postman tab, select information

is then updated (to correspond to the new information that is desired to be included as part of

the new job):

http://localhost:8676/Rest/Workflows/a4a999db-338c-4e91-aa2f-3a9e228f3411/JobInputs
http://localhost:8676/Rest/Workflows/a4a999db-338c-4e91-aa2f-3a9e228f3411/JobInputs

NOTE: JobName was set to ‘My New Job’

Scrolling down in the data that defines the new job, the desired input files

(C:\Media\demo.mpg and C:\Media\demo1.mpg) are specified:

Additionally, a value of 2,000,000 was used to specify the desired Bitrate (via the Video

Bitrate Variable):

Once the remaining data is updated to reflect the desired values for this submit; the ‘Send’

button on postman is pressed (to POST the new job):

The response in postman can then be viewed:

This corresponds to the identifier for the new job: 5190c5ac-8424-446f-8745-06d866d23a59

This value can then be utilized to query information about the newly created job:

http://localhost:8676/Rest/Jobs/5190c5ac-8424-446f-8745-06d866d23a59

NOTE: The ‘Name’ of the job corresponds to the value specified in the preceding postman

screen ‘My New Job’.

http://localhost:8676/Rest/Jobs/5190c5ac-8424-446f-8745-06d866d23a59

The new job can also be examined in the workflow designer:

NOTE: The name of the Job is: ‘My New Job’.

Finally, the Vantage Management Console will also contain a LOG of the input for this job.

The Log which is accessible via the VMC shall contain all inputs that were provided to the job.

The following contains a focus on the information about this specific job:

NOTE: the Job Name: ‘My New Job’, the value of 2,000,000 as part of the variables, and the

two (2) inputs: C:/Media/demo.mpg and C:/Media/demo1.mpg (which had previously been

specified as inputs during the submit).

Obtain Job Outputs

This example describes what is entailed with respect to collecting job Outputs following a

successful job. In this example, a job has been previously submitted to Vantage and has

successfully completed. The intent of the example is to illustrate how a completed job appears

in Vantage and how the API may obtain information about it.

As a reference, here is a completed job within the Vantage Workflow Designer:

NOTE: The ‘View Binder…’ context menu option allows the View Binder dialog to be

displayed for this job.

The Binder details dialog allows a user to examine the Outputs of a job. In particular, the

Binder details view allows for the display of Medias, Labels and Attachments.

Here is the Binder details view for the job above:

This screen illustrates the three (3) Media Nicknames present in this job.

The second tab allows an examination of the Metadata Labels associated with this job:

NOTE: There is a single Metadata Label (‘Broadcast Inventory Label’) that is present in this

job. The right side of the view allows a user to inspect the various Parameters that are present

in the selected Label.

Finally, the Attachment view allows a user to view any Sidecar XML or other Metadata files:

In this case, there are two (2) metadata attachments (Spot XML and a Web VTT script).

These attachments each have a distinct file on disk that is referenced.

When the postman utility is utilized to ask for the Output for this job (the job id is:

141CDA3A-BDFF-4D0B-9F82-0EDEB8C65289 -- this is assumed to be known ahead of

time), the expectations (based upon what was present in the Binder view of the workflow

designer); is to receive three (3) Medias, 1 Metadata label and 2 Attachments.

Here is the postman generated output when the http://localhost:8676/Rest/Jobs/141CDA3A-

BDFF-4D0B-9F82-0EDEB8C65289/Outputs :

The above screen illustrates the outputs (focused on the attachments).

NOTE: Each attachment includes the path to the attachment and the data that is present in the

file that is referred to (The ‘Data’ property contains the information within the file that is

pointed to).

This screenshot provides a larger view of one of the attachments to illustrate this:

The Labels section of the output in postman corresponds to the Metadata Labels which are

available in the output:

http://localhost:8676/Rest/Jobs/141CDA3A-BDFF-4D0B-9F82-0EDEB8C65289/Outputs
http://localhost:8676/Rest/Jobs/141CDA3A-BDFF-4D0B-9F82-0EDEB8C65289/Outputs

NOTE: The parameters that are present in the Label above (Broadcast Inventory Label),

correspond to the value of the parameters listed in the Metadata Label section of the binder

view:

Finally, the output of postman includes references to the three (3) Medias which are present:

These correspond to the three Medias present in the Binder View:

Submit In-Band Material

This example illustrates how to transmit in-band data vs. referencing a file which resides on a

filesystem during a submission.

In this example, the desire is to submit a CML content representation to a workflow for

processing. The CML data is desired to be send in-band so that an on-disk file need not be

created.

The sample CML file is very simple:

<Composition created="2013-06-25T11:06:59.0960428-07:00"

xmlns="Telestream.Soa.Facility.Playlist">

 <Source identifier="1">

 <File location="D:\\Watchmen.mov" />

 <Subtitle>

 </Subtitle>

 </Source>

 <Sequence layer="0">

 <Segment>

 <Video align="head" adjust="edge" fill="none" source="1" layer="0" >

 </Video >

 </Segment>

 </Sequence>

</Composition>

The workflow that is the target of this submission is a very simple workflow that is set to

receive a single input:

When this workflow is asked for its input requirements, the following is observed:

The response to the http://localhost:8676/Rest/Workflows/c79ec36f-4deb-4d8e-a48c-

25d5e3f4e098/JobInputs endpoint indicates the structure of the input that this workflow

expects.

The ‘Data’ property for the single Media Input expected by this workflow (the Original

nickname) is how the embedded CML shall be submitted.

The first step to transmit the CML as in-band data is to convert the String representation of the

CML into a UTF8 Base64 encoded string.

This was done via the website: https://www.base64encode.org/

The following allows an easy transformation from the original CML string to a base64 encoded

representation:

http://localhost:8676/Rest/Workflows/c79ec36f-4deb-4d8e-a48c-25d5e3f4e098/JobInputs
http://localhost:8676/Rest/Workflows/c79ec36f-4deb-4d8e-a48c-25d5e3f4e098/JobInputs
https://www.base64encode.org/

The Encoded representation is then cut/paste from the website above into the job input data in

postman:

At this point, the ‘Send’ option is pressed and the new job is posted to the workflow.

Exporting and Importing Workflows

Methods have been introduced in the Rest API to facilitate exporting workflows to specified file

paths or importing standard workflow XML files from a file path.

These methods are intended to work with the traditional Vantage workflow format vs. the

compressed representation that is generated via the call to the ExportToCompressed (available in

the API).

A given workflow can be exported via the API by providing a root path for the export and the

identifier of the workflow that is the target of the export.

In the following screenshot, a workflow with the Identifier: 7617c605-7154-4658-8190-

dc2a7f53c9e7 is exported to the path: C:\Temp\

The result of this POST command is a JSON response which indicates the complete path of the

XML file created as a result of the Export. NOTE: The filename includes characters required to

ensure a unique name on the filesystem.

The corresponding ImportFromPath call allows a workflow which was previously exported via
the mechanism above (ExportToPath) OR via a manual export of a workflow from the Workflow

Designer.

The ImportFromPath call is illustrated below:

In this scenario; the source of the Import was the workflow at the path:

C:\Temp\ImportSource1.xml

NOTE: This path must be accessible to the SDK service that is the target of this method. If the

path is not accessible; the import shall NOT succeed.

Additional parameters may be specified which govern the ability to overwrite an existing

workflow, whether variables should be duplicated or not and if a specific category should be

used (in the event that the specified workflow does not already exist in the domain). See the

documentation for this method for more information regarding these parameters.

The result of this call (the JSON response) shall contain a value which corresponds to the

Identifier of the newly imported workflow. If the value that is returned is Guid.Empty (i.e.: all

0’s); this implies an error. Otherwise the GUID value shall correspond to the identifier of the

newly imported workflow (which may be used in subsequent calls).

NOTE: The state of newly imported workflows shall be the Edit state.

Submitting Remote Files

This section details changes introduced in Vantage 7.2 which facilitate the submission of files

which reside on remote locations (e.g.: S3 filesystems, FTP sites, etc..). The challenge with

submitting files from these locations has always been centered around the construction of the

properly formatted URL that Vantage can understand. Vantage expects very specific URL

schemes and formats for references to material which exist on remote location. This section

discusses a new feature introduced in Vantage 7.2 which greatly simplifies this process.

In this example, a complete job submission shall be examined starting with the specification of a

target workflow. The sample workflow is illustrated below:

This workflow will take any file it receives, it will copy it to a local Vantage store and then

transcode the local version into a new format.

The challenge for most API users is how to properly specify the syntax to the source file, when

the source file resides on a remote (non-windows) filesystem (e.g.: FTP, S3, etc.)

The new capability which has been introduced in Vantage 7.2, allows an Administrative user to

request the full Vantage URL for a given file reference. (NOTE: Administrative privileges are

required within Vantage since this capability will display any passwords/keys associated with the

remote file).

The easiest way to get a starting file is to simply use Vantage to perform a manual submit of a

file which is representative of files you ultimately wish to submit via the API. For example, if

you have a large collection of files in an S3 bucket that you with to submit via the API, we will

perform a manual submission of one of these files to test the Vantage interaction with the S3

location (i.e.: verify that Vantage can reach the location with the specified credentials).

In the manual submission dialog, the S3 filesystem is selected and the appropriate credentials are

entered:

The Next> button is pressed to allow the specification of the desired input file:

Once the job has been submitted and completed, the Binder Details view may be opened, and the

new feature is exposed when the context menu is displayed for the desired media file (in this

case, the media file which resides on the S3 storage location):

Again, the new option: View Full URL… , is ONLY available to an account logged into the

workflow designer which has Administrator privileges. If the account does not have

Administrator privileges, this option shall be disabled, and the feature will not be accessible.

Further, if user administration is disabled, the feature is not enabled. User Administration must

be enabled, and the account must be an Administrator in order to access this capability.

Once the option is selected, the full URL is displayed in a new dialog window:

NOTE: The keys above are obscured in this graphic only, on your system they would be visible.

This value can then be copied and pasted into a REST submission query. It represents the full

URL to the file on the specified storage. Further, any custom parameters which were controlled

by the user interface are also present (in this case the timeout value was specified. Other

scenarios may be passive mode for an FTP file transfer. All of these parameters would be

visible in the full URL above.)

This URL would represent that structure that Vantage expects to receive for any material located

in the selected bucket for this S3 endpoint. If a different file is desired to be selected, the API

client simply needs to replace the filename in the text above, with the new filename.

For example, a manual submission of the file named: NatureHDQT-low64-s3.mp4 was

performed above.

If an API submission of a 2nd file located in this bucket (NTSC_TC_CC.mpg) was desired; this

could be accomplished by copying and pasting the URL above into an API submission query

(after replacing the old name with the new name).

This is illustrated below (using PostMan to send a new job to this same workflow):

Once this request is sent to Vantage, a new job is started in which the specified file

(NTSC_TC_CC.mpg) is processed:

Using this mechanism should make it much simpler to obtain a starting URL which represents

the input to Vantage for remote files when submitting via the API.

Requesting Versioned Assets from S3

The Amazon S3 cloud storage allows multiple versions of a given asset to be maintained.

Vantage supports requesting specific revisions of a given asset IF AND ONLY IF a version

designator is supplied during an API submission.

As a reference, within a Particular S3 bucket, the Versioning property for that bucket may be set:

See the following page for more information/restrictions of S3 versioning:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

Once versioning is enabled for a BUCKET, any NEW material placed into that BUCKET will

have a unique VERSION tag associated with it.

Vantage will support requesting a specific VERSION of the material by supplying this TAG in

the S3 URL that is constructed and supplied to Vantage.

For example, consider the following BUCKET with the file: SampleTextFile.text present.

If VERSIONING is enabled, and the option to Show versions is turned on, the following is

displayed:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

The screenshot above shows that the file: SampleTextFile.txt has two (2) distinct versions:

The ID after the upload date for each entry is the Version TAG.

For example, the file: SampleTextFile.txt was originally uploaded on Aug 13 at 1:37:41PM.
The ID of this version is: vCeRB9w1lFohmm1BcmZSjjeJE1zflFFa

When a URL to this file is constructed, Vantage supports the use of the query parameter:
versionId

This allows the API user the ability to specify a distinct version of the file.

If a user wishes to submit the original version uploaded to S3 (ie: the file uploaded at

1:37:41PM); the following URL would be supplied as part of the SDK submission to Vantage:

s3://AKIXXXXXXXXXXXXXX:XtfRZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ@s3.amazonaws.com/apitest-

john/Test1/SampleTextFile.txt?versionId=vCeRB9w1lFohmm1BcmZSjjeJE1zflFFa

NOTE: The ID and Secret Key for the account in question have been obscured above.

NOTE: If the most recent (Latest Version) is desired, this is what is retrieved if NO version

information is supplied, ie:

s3://AKIXXXXXXXXXXXXXX:XtfRZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ@s3.amazonaws.com/apitest-

john/Test1/SampleTextFile.txt

Would refer to the LATEST version (ie: no version designator was specified).

A complete JSON submit message would be similar to:

{

 "Attachments": [],

 "JobName": "Populate with your job name",

 "Labels": [],

 "Medias": [

 {

 "Identifier": "abb3f7e5-8d7e-49ba-84c5-674a55edb700",

 "Data": "If sending in-

band data (eg: CML); place a UTF8 BASE64 encoded version of the data in this field and

 do not send a file path.",

 "Description": "The original version of content encountered or created by

Vantage.",

 "Files": [

 "s3://AKIXXXXXXXXXXXXXX:XtfRZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

@s3.amazonaws.com/apitest-

john/Test1/SampleTextFile.txt?versionId=vCeRB9w1lFohmm1BcmZSjjeJE1zflFFa"

],

 "Name": "Original"

 }

],

 "Priority": 0,

 "Variables": []

}

Where the highlighted text above illustrates the use of the versionId query parameter.

