Solving Intermittent Transport Stream Problems with CaptureVu™ Technology

The MTS400 - A new type of MPEG Analyzer

MTS400 and MTS430 are a new type of MPEG analyzer. Designed to enhance your personal productivity and reduce time to market for your products, the MTS400 family brings the toolset of logic analyzer to MPEG video analysis.

Additionally, the MTS400 family provides a new, highly intuitive user interface which is focused on a problem centric view of solving challenging MPEG transport stream issues.

One of the MTS400’s key tools is CaptureVu™ technology, an innovative triggering and stream capture system that allows you to find those difficult intermittent and complex problems that traditional analyzers miss during debug.

CaptureVu™ technology allows you to set an error break point on an incoming real time or stored MPEG transport stream. By setting specific conditions for CaptureVu™ technology you allow the analyzer to find intermittent problems for you, trigger a recording to memory, or stop analysis to allow you to drill down to the route cause of an issue quickly and efficiently.

CaptureVu™ technology significantly enhances MPEG system debug both for network commissioning and deployment, infrastructure equipment and consumer equipment development.
Solving Intermittent Transport Stream Problems with CaptureVu™ Technology

CaptureVu™ technology allows you to set, capture and analyze MPEG Transport Stream events during both deferred and real-time analysis. This includes real time CaptureVu™ technology analysis of live IP streams carrying MPEG data arriving at the analyzer’s Ethernet port.

To use CaptureVu™ technology you set a break point trigger on any of the MPEG measurement parameters that the MTS400 can make. When a test flagged with CaptureVu™ technology executes and fails the analyzer stops at the transport packet containing the errored data.

In real time mode the analyzer stores a record of the 200 MByte of transport stream prior to the CaptureVu™ technology trigger point.

Trigger options for CaptureVu™ technology include:
- ETSI TR 101 290 1st, 2nd, 3rd priority tests
- Multiplex occupancy outside of user defined limits
- Tests including: SFN, ISDB, ATSC PSIP, and PCR OJ, FO, and DR.

Links to the test and the packet at the point at which the test failed are available in the CaptureVu™ technology Settings dialog box.
The CaptureVu™ technology breakpoint will operate during real-time and deferred analysis. The CaptureVu™ technology Settings dialog box is displayed as soon as a breakpoint is activated (Figure 4).

In real time CaptureVu™ technology the displayed dialog box contains the following fields:

- This dialog box displays the transport packet in which the test has failed
- This dialog box displays the test at which the test has failed

Clicking either the “triggered by” or the “At packet” link will open the related view (Tests or Packets) and highlight the relevant test or packet (Figure 5).

When enabled, the CaptureVu™ technology setting dialog box is opened automatically when a breakpoint occurs. The CaptureVu™ technology Settings dialog box can also be viewed at any time by selecting the CaptureVu™ technology Settings button on the tool bar.
Solving Intermittent Transport Stream Problems with CaptureVu™ Technology

Application Note

The following example shows how to use CaptureVu™ technology to solve real world problems with a pre captured complex transport stream, and how to drill down to get graphical confirmation of the transport stream error.

To do this we set a CaptureVu™ technology break point on a TR 101 290 error defined by the DVB Measurement Guidelines for a Service Description Table Actual error (SDT Actual). This test defined in TR 101 290 as test 3.5a checks that the SDT information which describes the services contained in a particular Transport Stream is transmitted at least every 2 seconds on PID 0x0011.

The following shows how to trap a suspected infringement of SDT repetition rate which could cause a set top box operational issues.

Firstly clicking on the Test tab of the analyzer produces a list of all tests undertaken, clicking on TR 101 290 takes you down a layer to the explicit priority 1, 2 and 3 test, with SDT actual residing under priority 3 test (Figure 6).

By right clicking on the test 3.5a SDT Actual, a dialog appears which allows you to select CaptureVu™ technology by clicking on the CaptureVu™ technology icon (Figure 7).

Figure 6. MTS400 family test view.

Figure 7. Selecting CaptureVu™ technology feature trigger on test 3.5a SDT Actual.

How CaptureVu™ Technology solves your stream problems

The following example shows how to use CaptureVu™ technology to solve real world problems with a pre captured complex transport stream, and how to drill down to get graphical confirmation of the transport stream error.

To do this we set a CaptureVu™ technology break point on a TR 101 290 error defined by the DVB Measurement Guidelines for a Service Description Table Actual error (SDT Actual). This test defined in TR 101 290 as test 3.5a checks that the SDT information which describes the services contained in a particular Transport Stream is transmitted at least every 2 seconds on PID 0x0011.

The following shows how to trap a suspected infringement of SDT repetition rate which could cause a set top box operational issues.

Firstly clicking on the Test tab of the analyzer produces a list of all tests undertaken, clicking on TR 101 290 takes you down a layer to the explicit priority 1, 2 and 3 test, with SDT actual residing under priority 3 test (Figure 6).
When selected, the CaptureVu™ technology icon appears against the selected test (Figure 8).

The analysis can now be restarted to find the next occurrence of a SDT Actual timing infringement (Figure 9).

When the analyzer detects the next SDT Actual error condition is pauses analysis and captures the fault showing the fault and packet number where it occurred (Figure 10).
Clicking on the SI/PSI Tab (Figure 12) of the analyzer allows the SDT Actual timing graphs to be displayed showing the timing infringement where the table repetition rate has exceeded the 2,000mS limit (Figure 13).

Clicking on the Restart Analysis button will allow the next SDT Actual error to be quickly found, quantified and logged.
Conclusion

In conclusion, CaptureVu™ technology provides the ideal tool for rapidly finding and isolating difficult intermittent problems in Transport Streams, both in real time and deferred time, saving you time, money and improving customer satisfaction.
Contact Tektronix:
ASEAN / Australasia / Pakistan (65) 6356 3900
Austria +41 52 675 3777
Belgium 07 81 60166
Brazil & South America 55 (11) 3741-8360
Canada 1 (800) 661-5625
Central East Europe, Ukraine and Baltics +41 52 675 3777
Central Europe & Greece +41 52 675 3777
Denmark 80 88 1401
Finland +41 52 675 3777
France & North Africa +33 (3) 1 69 81 81
Germany +49 (221) 94 77 400
Hong Kong (852) 2585-6688
India (91) 80-22275577
Italy +39 (02) 25086 1
Japan 81 (3) 6714-3010
Luxembourg +44 (3) 1344 392400
Mexico, Central America & Caribbean 52 (55) 56666-333
Middle East, Asia and North Africa +41 52 675 3777
The Netherlands 090 02 021797
Norway 800 16098
People's Republic of China 86 (10) 6235 1230
Poland +41 52 675 3777
Portugal 80 08 12370
Republic of Korea 82 (2) 528-6299
Russia, CIS & The Baltics 7 095 775 1064
South Africa +27 11 254 8360
Spain +34 901 988 054
Sweden 020 06 80371
Switzerland +41 52 675 3777
Taiwan 886 (2) 2722-9622
United Kingdom & Eire +44 (3) 1344 392400
USA 1 (800) 426-2200
USA (Export Sales) 1 (503) 627-1916
For other areas contact Tektronix, Inc. at: 1 (503) 627-7111
Updated 10 February 2005

For Further Information
Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Copyright © 2005, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.

03/05 EA/WOW 2AW-18728-0