
Page 1

Application Note
Vantage

Vantage SDK REST
Integration Guide for Java

Synopsis ... 2

Vantage Version and Licensing Requirements 3

Obtaining the Vantage SDK .. 3

Example Java Rest Program and Workflow 4

Using the Vantage REST Utility .. 5

Getting Started With the Vantage SDK ... 7

Creating a Simple Job Submission Program 8

Submitting a Job with Input Variables ... 13

Setting the Job Priority During Job Submission.......................... 19

Obtaining the Workflows in a Domain... 20

Obtaining the Job GUID.. 20

Determining Job Status... 21

Retrieving Variable Values From Jobs .. 22

Accessing Variable Values from Labels in Jobs.......................... 26

Accessing Media Files from Jobs ... 29

Common Vantage REST Methods.. 31

Vantage Terms and Concepts... 36

Copyright and Trademark Notice .. 37

For use with
Vantage 6.3

or later

Version 1.1

160924 May 2015

Synopsis
The Vantage SDK is designed to enable third-party programs to submit jobs to Vantage
workflows, monitor and manage jobs, and access job’s metadata and their files. The Vantage
SDK is language independent and can be implemented using REST, SOAP or WCF protocols.
SDK examples are provided in Java and C#.

This application note describes how to integrate a Java program with Vantage, using a RESTful
Web Service API—via HTTP Get and Post protocols. How to perform common Vantage tasks are
described.

Telestream suggests that you use this app note in the following manner:

1. Read the first four topics, meeting all of the pre-requisites.

– Vantage Version and Licensing Requirements

– Obtaining the Vantage SDK

– Example Java Rest Program and Workflow

– Using the Vantage REST Utility

2. Next, read Getting Started With the Vantage SDK—create your first job submission
program and get it working.

3. Use the remaining topics to learn how to perform other common Vantage tasks.

Note: This guide is written for software engineers who have a working knowledge of Java
development, their development environment, and XML. You should also be familiar with
using Vantage or have access to someone who is. To use Vantage effectively via the Vantage
SDK, you should know how to create and manage workflows and submit jobs using Vantage
Workflow Designer. If you aren’t familiar with Vantage, we suggest that you review the
Vantage User’s Guide.
Synopsis Page 2

Vantage Version and Licensing Requirements
This app note is written for Vantage customers using Vantage version 6.3 or later. You should
have Vantage 6.3 or later installed and operational before implementing programs using the
Vantage SDK.

There are no special licensing requirements when integrating third-party programs with
Vantage via the Vantage SDK. You can programmatically perform any task permitted by the
Vantage license you have installed.

Please contact your Telestream representative or Telestream Customer Service if you have
Vantage licensing questions.

Obtaining the Vantage SDK
To obtain the Vantage SDK, follow these steps:

1. Log in to the Telestream Web site (www.telestream.net).

2. Navigate to the Vantage Customer Center to download the Vantage SDK zip file.

3. On the Customer Center page, locate the Software Development Kit (SDK) link in the left
column, near the bottom of the page.

4. Click the Software Development Kit (SDK) link.

5. Acknowledge agreement to the SDK End User License agreement.

6. Select the Vantage SDK.

7. Answer the remaining questions regarding your relationship with Telestream, and your
interest in a support contract.

8. Click Download Now.

9. Expand the zip file on your computer.

Note: There are no installations required to utilize the SDK.

What’s in the SDK
The Vantage SDK contains code examples, a Vantage SDK REST utility, and SDK documents.

1. Samples—The SDK contains several example programs in C# and in Java, using WCF, SOAP
and REST. Telestream recommends that you study the examples, and use them as the basis
for custom programs you plan to develop.

• Vantage SDK REST Utility—This utility is a developer tool which enables you to execute Get
and Post methods interactively and view the XML results. It is also the definitive list of all
REST methods in the Vantage API. It speeds development by enabling you to work with
Vantage dynamically, walking through a series of methods to accomplish a task.

• Vantage 6 SDK Overview—Telestream recommends that you read this PDF to understand
the goals of the SDK, the architecture of Vantage, and the Vantage class structure. You’ll
also learn about which classes in the Vantage namespace are used to work with actions,
jobs, variables, and binders.

• Vantage Action SDK PDF—The Action SDK is an extension of the Vantage SDK. It is designed
to provide maximum capability and flexibility for clients interested in using the Vantage
Flip Transcoder without having to construct or manage a typical Vantage workflow. The
Vantage Version and Licensing Requirements Page 3

http://www.telestream.net

Action SDK, like the traditional Vantage SDK may be accessed using a variety of client pro-
tocols: WCF, Soap Web Services, or REST.

• Vantage SDK Documentation—This CHM identifies and describes each of the classes in the
Vantage SDK namespace. These classes are built on WCF; SOAP implementations are fully-
described. For REST, the Get methods are described, but the Post methods are not.

Note: For a complete list of all REST methods in the Vantage API, use the Vantage REST utility.

Example Java Rest Program and Workflow
The Vantage SDK also contains a sample Java REST program which illustrates each of the tasks
described in this app note. The program file is named VantageJobComplete.java, and you can
find it in the \Samples\RestSamples\JavaRestAppNoteSample folder.

The accompanying Java Rest App Note Sample workflow is located in the
\Samples\JavaRestAppNoteWorkflow folder.

This sample program uses a specific workflow, Before you can run the sample Java program,
you should import the workflow into your Vantage domain and make any configuration
changes required (such as changing storage locations) to use it. Make sure the target workflow
is activated when running SDK programs.
Example Java Rest Program and Workflow Page 4

Using the Vantage REST Utility
The Vantage REST Utility is a Windows program that enables you to use the Get and Post
methods in the Vantage SDK interactively.

The REST Utility improves REST development by enabling you to dynamically select and
execute REST methods in your Vantage domain. It displays all of the methods in the API, and
provides a user interface for entering parameter values and reviewing the XML results returned.

Starting and Configuring the REST Utility
To start the Vantage REST Utility, double-click the RestUtility.exe file.

When it starts, the utility displays this window:

Figure 1. Vantage REST Utility Window

To configure the utility for use in your environment, you update the computer name and port
as needed.

If you installed the client on a computer other than the Vantage domain sever, enter the
computer name of your Vantage domain server (or Vantage database server in an array) in the
computer name field.

If you have altered the port number that the Vantage SDK service uses, enter it in the port field.

Using the Utility to Execute Methods
For each command you want to execute, follow these steps:

1. Select Get | Post from the menu.

2. Select the method to execute from the Method menu. When you select a method, the
method’s parameter fields are displayed.

3. Fill out the required parameter values.

4. Click the Send button.

Here’s an example of the window with the SubmitFile method selected, showing the four
parameters you need to supply for this particular method:

Computer Field Port Field

Get/Post Menu Method Menu Send Button
Using the Vantage REST Utility Page 5

Figure 2. REST Utility Method Selection and Parameter Entry

When you execute a method, the query string and results (or error) are displayed:

Figure 3. REST Utility Method Execution Results

The Results field displays the XML returned from the method. You can review the XML, and
browse through it to identify GUIDs (or other values) you need to execute the next call in a
logical sequence. For example, you can execute GetWorkflows, and then browse the
ArrayOfProcedure XML to identify the workflow you want to use, and copy its GUID for the
SubmitFile method.
Using the Vantage REST Utility Page 6

Getting Started With the Vantage SDK
With your Vantage domain operational and the Vantage SDK downloaded, you’re ready to get
started.

Preliminary tasks include making sure you have a set of Java programming tools, reviewing the
SDK overview, and creating a simple workflow or importing the sample workflow provided.

1. If you don’t have a Java source code editor or IDE installed, select one and install it (for
example, Eclipse Kepler, Net Beans, IntelliJ IDEA, etc.).

2. Make sure that a Java Development Kit (for example, Java Standard Edition (SE)) is installed.

3. Read the Vantage 6 SDK Overview in the Vantage SDK folder.

4. In Vantage Workflow Designer, create a simple workflow—a Receive action and a Flip
action—for initial testing and development. Or, import the sample workflow provided in
the Vantage SDK. See Example Java Rest Program and Workflow.

5. Configure the actions as necessary, and activate the workflow.

Note: All workflows intended for processing media being submitted from a Vantage SDK-
based program must start with a Receive action.

6. Proceed to Creating a Simple Job Submission Program to create your first integration
program.
Getting Started With the Vantage SDK Page 7

Creating a Simple Job Submission Program
The simple Java program included here provides a basic framework for interacting with
Vantage and submitting a job to a workflow in Vantage.

This sample program performs the following functions:

• Configures a URI to communicate with a specific workflow in a Vantage domain

• Creates an HTTP Client connection

• Executes an HTTP Post to submit the job, as specified in the URI

• Receives the HTTP response

• Closes the connection.

Here are steps to create a Java project that submits a job to Vantage:

1. Creating a Sample Job Submit Program and Project

2. Updating the Program for Your Domain

3. Submitting the Job to Your Vantage Workflow

Creating a Sample Job Submit Program and Project
To create a sample Vantage job submit project, follow these steps:

1. Create a new Java project.

2. Copy the example Java program code below, and add it to your project.
//package org.vantage.RestfulClient.webservices;
//Classes for exception processing
import java.io.IOException;
import java.net.URISyntaxException;
import org.apache.http.client.ClientProtocolException;
//Class for HTTP processing
import java.net.URI;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.utils.URIBuilder;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;

//Main Job Submit class
public class VantageJobSubmit {
String result = null;
public static void main(String[] args) throws ClientProtocolException,

IOException, URISyntaxException {
/* Create a Job Submit URI for the Post -
 * host name of Vantage domain server (or database server if array)

as IP address|HostName|'localhost' + SDK Service port (default 8676)
 * Path for SubmitFile method
 * Workflow Identifier GUID
 * Source media - full path to input media. Must be accessible to

Vantage service executing the workflow's Receive action
 * Context - input variables for the job, if any
 * Job name
 */
Creating a Simple Job Submission Program Page 8

 // Use URIBuilder to generate the URI for Submit File Rest method
 // Example URI: http://VantageServer:8676/SubmitRest/SubmitFile

 ?workflowIdentifier=2234955-4b36-b5fe-c508-e8294312
 &sourceFilename=%5C%5CShare%5Cmedia.mpg&jobName=Job+Submit

URI uri = new URIBuilder()
.setScheme("http")
.setHost("<VantageServer>:8676")
.setPath("/SubmitRest/SubmitFile")
.setParameter("workflowIdentifier", "xxxxx-xxxx-xxx-xxxx-xxxxxxxxx")
.setParameter("sourceFilename","full path to media with double \\")
.setParameter("jobName","name of this job")
.build();
 System.out.println("submitJob URI: " + uri);
//Execute the job submit method
submitJob(uri);

}
private static String submitJob(URI uri) throws IOException {
String result = null;
// create an HTTP client
CloseableHttpClient httpClient = HttpClients.createDefault();
try { // set up a Post
 HttpPost httpPost = new HttpPost(uri);
 // execute the post
 CloseableHttpResponse response = httpClient.execute(httpPost);

}
catch(Exception e) {}
//release the connection and return
httpClient.close();
return result;

}
}

The Vantage SubmitFile method submits a new job using the file referenced by sourceFilename
to the workflow specified by workflowIdentifier.

Exceptions for this method:

• WorkflowDoesNotExistException—a workflow with the specified identifier does not exist.

• WorkflowInvalidStateException—the workflow with the specified identifier is not running.

The submitJob method creates an HTTP client connection, executes an HTTP Post, receives the
response, and closes the connection.

Note: In this sample program and others in the Vantage SDK—other than the Vantage SDK
methods—all code is just an example. The code in these programs is often the simplest, but
not the best, safest, or most efficient way to perform a given task, all issues being considered.
These programs are provided for tutorial purposes only; you should never use these programs
in production, and Telestream disclaims any responsibility in doing so.
Creating a Simple Job Submission Program Page 9

Updating the Program for Your Domain
To update the sample program to work with your domain, you should modify the URI code to
identify your Vantage domain, identify a short media file, and specify a Vantage workflow
you’ve imported or created.

The main class constructs the URI using URIBuilder, and then executes the submitJob method.
URI uri = new URIBuilder()
.setScheme("http")
.setHost("VantageDomainServer:8676")
.setPath("/SubmitRest/SubmitFile")
.setParameter("workflowIdentifier", "295045-4b76-b5fe-c508-e83012")
.setParameter("sourceFilename","\\\\VantageServer\\src\\media.mpg")
.setParameter("jobName","Job Submit Test")
.build();

The result of URIBuilder is a properly formed, UTF-8-encoded URI:
http://VantageDomainServer:8676/SubmitRest/SubmitFile
?workflowIdentifier=295045-4b76-b5fe-c508-e83012
&sourceFilename=%5C%5CVantageServer%5Csrc%media.mpg
&jobName=Job+Submit+Test

To update the URIBuilder method to submit a job to your domain, specify the following
information in the URI:

• The name of the host Vantage domain server—see Specifying the Vantage Domain Server.

• The workflow that you are submitting the job to—see Providing the Workflow Identifier.

• The full path to the media to process—see Specifying the Fully-qualified Path to Media.

• The name of the job you are submitting—see Providing a Job Name.

Specifying the Vantage Domain Server
The Vantage domain server identity can be the computer name, the IP address of the computer,
or localhost when your program is running on the same computer (which probably is not the
norm or the ideal situation).

In an All-in-One domain, the host name of the server on which Vantage is running. However, in
a Vantage Array (multiple servers, each running various Vantage services and a Microsoft SQL
Server database), the Vantage server to target is the one running the SDK Service.

The host name is specified as a URL, including the Vantage SDK Service port (default 8676).

Examples:
http://localhost:8676
http://Vantage_Domain_Seven:8676
http://017.121.001:8676
Creating a Simple Job Submission Program Page 10

Providing the Workflow Identifier
The workflow identifier is a GUID. When you import or create a workflow (workflows are always
created in Workflow Designer), Workflow Designer automatically assigns a GUID. You can
obtain a workflow’s GUID using the Vantage SDK REST method /DomainRest/GetWorkflows. You
can also obtain it directly in Workflow Designer.

To obtain a workflow’s GUID for use in your program, follow these steps:

1. Open Workflow Designer.

2. Display the workflow you are targeting, as shown in the figure following:

Figure 4. Workflow in Workflow Designer

3. Click the details arrow just to the left of the workflow’s title, to display the workflow details
panel, as shown in the figure following:

Figure 5. Displaying Workflow Details (Including GUID)

4. Copy the GUID, and paste it into your code.

Click the Details arrow
to display information
about this workflow.
Creating a Simple Job Submission Program Page 11

Specifying the Fully-qualified Path to Media
The path to the media being submitted must be fully-qualified (and accessible to Vantage
services). If the media is on the same server as all of the services that must access it, you can use
a drive-letter path. However, in almost all circumstances, it is always safer to place the media on
a share, which is accessible by every server in the Vantage domain.

Note: Back-slashes are doubled—they are escape characters in the context of a Java string.

Examples:
C:\\Media\\Ginger_Ale_Project\\Sierra_snow.mpg
\\\\Medusa_Server\\Ginger_Ale_Project\\Sierra_snow.mpg

Providing a Job Name
Create a practical job name, which should be unique for every job. The job name is displayed in
the job status tabs in Workflow Designer, during and after job execution.

Submitting the Job to Your Vantage Workflow
To submit a job using your program, follow these steps:

1. In Workflow Designer, make sure that your workflow is active.

2. Run your Job Submit program (determining that it executed successfully).

3. In Workflow Designer, select the target workflow and display the Job Status tab to view
your job running to completion.
Creating a Simple Job Submission Program Page 12

Submitting a Job with Input Variables
When you submit a job to a workflow, you can optionally provide values for variables defined in
the workflow actions, to control the job at run time.

Note: Only variables that are already bound to a parameter in an action can be provided with
a value during job submission. If you don’t supply bind a variable to a parameter, the variable
will not be included in the context XML file.

Note: This task is implemented in the JavaRestAppNoteSample program directly in main. It
executes the submitJob method as well.

The general process for submitting variables with runtime values involves these tasks:

 Adding Variables to a Workflow

 Obtaining the Input Variables in a Workflow

 Updating the Variable Values

 Including Variables When You Submit a Job

 Verifying that Variables were Submitted Properly

Adding Variables to a Workflow
To add a variable to a workflow and bind it to an action’s parameter, follow these steps:

1. Open Workflow Designer and select (or create) the workflow.

2. In the action where you want to use the variable, display the Inspector.

3. Identify the parameter and click the green Browse button, as shown in the image below
(shown completed—the value field (in this example, Video Bit Rate) is bordered in green).
Submitting a Job with Input Variables Page 13

Figure 6. Binding a Variable to a Parameter

Workflow Designer displays the Select Variable dialog where you can browse and select a
variable or create a new one to use.

Figure 7. Selecting a Variable

1. Select (creating, if necessary) the variable (BitRate in this example) you want to bind to the
action’s parameter and click OK to bind the variable to the parameter.
Submitting a Job with Input Variables Page 14

Figure 8. Expected Variables in this Workflow

2. Now, click the details arrow just to the left of the workflow’s title to display the workflow
details panel, as shown in the figure above.

Note: Notice that Workflow Designer lists the variable (in this case, BitRate) as an expected
variable, and the same variable is listed in the list of variables, in the topic immediately
following.
Submitting a Job with Input Variables Page 15

Obtaining the Input Variables in a Workflow
To obtain the list of variables defined in a workflow, execute GET /WorkflowRest/
GetWorkflowVariableRequirements. You’ll need to supply the workflow GUID (Providing the
Workflow Identifier).

Here’s an example URI:
http://VantageServer:8676/WorkflowRest/GetWorkflowVariableRequirements
?identifier=914fdeac-1121-42fd-bce0-2f377cd1b382

GetWorkflowVariableRequirements returns a Context XML. In the context of the Vantage SDK,
variables are referred to as conditions. The Context XML is comprised of each variable defined in
the workflow and bound to a parameter in some action.

Updating the Variable Values
To update a variable’s value, you’ll parse the Context XML to identify the variable, and provide
the run-time value you want. Here is a snippet of the Context XML, showing one variable
(presented as a Condition element). The variable is BitRate, with a default value of 10000:
<Context...>
...
<a:Condition>
<Identifier>5b795b51-7c32-4e3e-aa8c-0018ca59d7e0</Identifier>
<Name>BitRate</Name>
<ParameterSelections/>
<ParameterSetCollections/>
<Parameters/>
<Summary i:nil="true"/>
<Instance>70d675c0-166c-4097-846c-b37e821e6abe</Instance>
<ConditionValue>
<ComplexValue i:nil="true"/>
<Text i:nil="true" xmlns:b="..."/>
<Default>
<ComplexValue i:nil="true"/>
<Text xmlns:b=...>
<b:string>10000</b:string>

</Text>
</Default>

</ConditionValue>
<TypeCode>Int32</TypeCode>

</a:Condition>
...

Best practice suggests some form of XML parsing method to identify the variable, then update
the value of the variable’s default value, in the <b:string> element. When you are developing
the program, you can execute GetWorkflowVariableRequirements and copy the returned Context
XML into a text editor to view the results. Then, write your code to modify each variable’s value
as required.

Note: There is no guarantee that the Context XML will present the variables in the same order
each time.
Submitting a Job with Input Variables Page 16

Including Variables When You Submit a Job
To submit a job to a workflow with run-time variables values, you add the optional context
parameter and supply the Context XML in the job submit method. For example, POST /
SubmitRest/SubmitFile.

Here is an example URI with the context parameter highlighted in bold—the bulk of the Context
XML object is deleted for brevity.
http://VantageServer:8676/SubmitRest/SubmitFile
?workflowIdentifier=914fdeac-1121-42fd-bce0-2f377cd1b382
&sourceFilename=%5C%5CVantage_Media%5Cmedia%5C720x480.mpg
&context=%3CContext+xmlns%3D%22http%3A%2F%2FTelestream.Vantage.Sdk...
&jobName=Job+Submit+Test

SubmitFile (and the other job submit methods) returns a job guid XML. Here’s an example:
<guid xmlns="http://schemas.microsoft.com/2003/10/Serialization/
">ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3</guid>

You should extract the job GUID and save it in a variable, for use when you access the same job
to perform other tasks.

Note: To review other job submission methods, refer to the Vantage SDK library
documentation CHM file (see What’s in the SDK) and search with submit. Or refer to the
Vantage REST Utility.

Verifying that Variables were Submitted Properly
To verify that the variables and runtime values were supplied correctly in your job, follow these
steps:

1. Submit a job by running your program.

2. In the Workflow Designer’s Job Status panel, select the job and watch it execute to
completion.

3. Double-click on the 2nd action (the action immediately following the Receive action) in
your workflow, to display the Status inspector. (This action is the first action to gain access
to your input variables.)

Figure 9. Viewing the Action Inspector in Complete Jobs
Submitting a Job with Input Variables Page 17

Select the second line (where the session is created), and click Session Log.

Figure 10. Viewing the Action’s Session Log to Verify Runtime Variable Values

Note the two variable events in this example: The BitRate and Priority variables were received,
with runtime values of 24000 and 50, respectively.

Note: If the variables and their values do not correspond with the functionality implemented
in your program, it needs to be resolved.
Submitting a Job with Input Variables Page 18

Setting the Job Priority During Job Submission
Note: This task is implemented in the JavaRestAppNoteSample program directly in main.

You can set the job priority (which is really setting action (session) priority on the first action in
the job) when you submit a job. Include the optional context parameter in the job submission
URI, and insert the Priority condition element into the context XML.

Note: In the context of the Vantage SDK, a session is the execution of an action. Actions exist
in the context of a workflow; sessions exist in the context of a job. This is an important
distinction.

For details, see Submitting a Job with Input Variables.

Note: Actions which have a Priority variable set in Workflow Designer (you right-click on an
action and set the Priority) will always use the explicitly-specified value, whether an upstream
Priority is passed from an earlier action in the workflow, or from an SDK submission. The only
way to guarantee that the Priority value will be used is to insure that no Priority values are
explicitly set.

Insert the following Condition element into the Context XML, specifying the Priority value you
want for the job in the <a:Condition><ConditionValue><Default><Text><b:string> element
(set as 50 in this example):
<a:Condition>
<a:xmlns.../>
<Identifier>FF261686-8408-46b9-B6E7-D447BD5BCD82</Identifier>
<Name>Priority</Name>
<ParameterSelections/>
<ParameterSetCollections/>
<Parameters/>
<Summary i:nil="true"/>
<ConditionValue>
<ComplexValue i:nil="true"/>
<Text xmlns:.../>
<Default>
<ComplexValue i:nil="true"/>
<Text xmlns:...>
<b:string>50</b:string>

</Text>
</Default>

</ConditionValue>
<TypeCode>Priority</TypeCode>

</a:Condition>

One method of inserting this element in the Context XML string is to assign this element to a
string (escaping the double quote marks), and then replace the end </Conditions> tag with
the Priority variable string concatenated with the </Conditions> tag. Another is to use X
Path processing.

Note: You can also explicitly set the session priority (via SetSessionPriority) of a running action;
this will set or override the priority of the session. This is similar to setting the priority on a
running or waiting to run action directly in Workflow Designer.
Setting the Job Priority During Job Submission Page 19

Obtaining the Workflows in a Domain
You may want to design a program that provides a list of workflows in a Vantage domain, so
that a user can select which workflow they want to work with.

To obtain the list of workflows in a given Vantage domain, execute GET /DomainRest/
GetWorkflows. Here’s an example URI:

http://VantageServer:8676/DomainRest/GetWorkflows

There are no parameters. Just provide the name of your Vantage domain server (Specifying the
Vantage Domain Server).

GetWorkflows returns a Procedures XML. In the context of the SDK, workflows are referred to as
procedures. When the Procedures XML is returned, Typically, you’ll design the method to parse
it and dynamically build a list of workflows (each identified as a Procedure element in the XML)
from which the user can select.

Here’s a snippet from a Procedures XML to illustrate the instance of a workflow:
<Procedure>
<xmlns.../>

...
<Identifier>b552d26e-fb18-464a-be8a-02ce12da2ead</Identifier>
<Conditions xmlns:a=... />
<Description />
<LockState>Unlocked</LockState>
<Name>workorder conform proxy</Name>

</Procedure>
...

Obtaining the Job GUID
When you submit a file for processing, SubmitFile (and other job submission methods) returns
the guid XML. Here’s an example:
<guid xmlns="http://schemas.microsoft.com/2003/10/Serialization/">
ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3</guid>

You’ll need to extract the job GUID as a string, for use when you access this job in your
programs for any reason. You can use XML parsing or string processing on this simple XML.
Obtaining the Workflows in a Domain Page 20

Determining Job Status
Note: This task is implemented in the JavaRestAppNoteSample program in
waitForJobToComplete.

A common requirement of job submission programs is to determine the status of the job.

You’ll need to know when the job is complete to retrieve end-of-job variable values, or access
job media or metadata labels. Or, you may be reporting job status on one or more jobs to
another monitoring system or a job management database.

To obtain the status of a job, you execute GET /JobRest/GetJobState. You’ll need to supply the
job GUID, as explained below. Here’s an example of the URI:
http://VantageServer:8676/JobRest/GetJobState
?identifier=99632a8e-d719-400e-8cf8-7a7ca2cd2f1b

Typically, you’ll design the method that executes GetJobState with a do-while loop until it
determines that the job is complete, as specified by the reserved string Complete. Then, you can
continue your final job processing.

Obtaining the Job State
To obtain the transaction state of the job, execute GET /JobRest/GetJobState, supplying the
job’s GUID in the identifier parameter.

Here is an example of the URI:
http://VantageDomain:8676/JobRest/GetJobState
?identifier=ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3

Here is the WorkflowJobState XML returned from GetJobState. These three examples illustrate
various job states: Waiting, Active, and Complete.
<WorkflowJobState xmlns="http://Telestream.Vantage.Sdk/2010/
07">Waiting</WorkflowJobState>
<WorkflowJobState xmlns="http://Telestream.Vantage.Sdk/2010/07">Active</
WorkflowJobState>
<WorkflowJobState xmlns="http://Telestream.Vantage.Sdk/2010/
07">Complete</WorkflowJobState>

This the list of job state values that can be returned: Active | Failed | StoppedByUser | Complete |
WaitingToRetry.
Determining Job Status Page 21

Retrieving Variable Values From Jobs
Note: This task is implemented in the JavaRestAppNoteSample program in
retrieveTimeCodeVariable.

When a job is complete, you can obtain the final value of variables that were used in the job.
The most effective strategy is to target a specific target that you know—by workflow design—
will have the correct value at job’s end, and extract the target variable’s value from it.

Note: This is only one method of accessing runtime values from a job. The other method is to
use labels, which are generated in a workflow by using a Populate action, where you assign
variables to a given parameter in the label you specify (see Accessing Variable Values from
Labels in Jobs).

In straight-line (non-branching) workflows, you can obtain all variables from the last session
that executes. However, in branching workflows, the last session that executes is non-
determinant. Its best to target a specific action that you know will always execute last.

To process variables, you need to know the action and the variables you want to obtain values
from. In Workflow Designer, collect these two pieces of information:

• The name or definition of the target action.

• The name variable that you are targeting. You can view the variables that comprise a work-
flow by displaying the workflow in Workflow Designer and selecting the Variables display
option (at the bottom right corner of the workflow design panel).

Here’s how to identify the action in Workflow Designer. The name and description are displayed
directly on the action in a workflow:

Figure 11. Identifying the Name and Description of Actions in a Workflow

The name of the action is displayed at the top of each action. The description of the action is
displayed at the bottom of the action. To modify the default description, double-click the text
and type in the new description to make it unique. To make it easy to use, keep it short.

Note: In the context of the Vantage SDK, a session is the execution of an action. Actions exist
in the context of a workflow; sessions exist in the context of a job. This is an important
distinction.

The name of the action.

The description of the action—
it should be unique in actions
of the same type.
Retrieving Variable Values From Jobs Page 22

Extracting variable values from a job involves these general tasks, which are described in detail
in the topics following:

1. Using the job GUID (see Obtaining the Job GUID, described previously), obtain the list of
sessions—action execution instances—that comprise the job. See Obtaining the Sessions
List.

2. Using the action’s name or description, extract it’s session GUID from the list of sessions.
See Extracting the Target Session’s GUID.

3. Using the session GUID, obtain the session details. See Obtaining the Session Details.

4. Extract the variable’s value (and other information you need) from the session details. See
Obtaining the Variable’s Value.

Obtaining the Sessions List
To obtain the list of sessions in a job, execute GET /WorkflowRest/GetSessionsForJob. You need
to provide the GUID of the particular job (see Obtaining the Job GUID).

Here’s an example:
http://VantageServer:8676/JobRest/GetSessionsForJob
?identifier=ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3

The returned XML document is an ArrayOfSessionType. It is comprised of a series of SessionType
elements—one for the execution of each action in the workflow. You can parse it to identify the
target session and extract its GUID.

Here’s a snippet from an ArrayOfSessionType XML with only a single SessionType (instance of
action execution) to illustrate what GetSessionsForJob returns:
<ArrayOfSessionType xmlns=...>
<SessionType>
<Identifier>32ab0163-fb11-4aab-8f78-647f2c90c6a4</Identifier>
<Description>DurationVal</Description>
<Name>Copy</Name>
<Started>2015-01-27T07:36:16.49</Started>
<State>Complete</State>
<Updated>2015-01-27T07:36:47.55</Updated>

</SessionType>
...
<ArrayOfSessionType>

Bear in mind that all jobs will have at least two sessions, because a valid workflow must contain
at least 2 actions. Jobs will have a session for every action that executed in the job.

Extracting the Target Session’s GUID
Using the name or description of the target action, you can identify its session in the
ArrayOfSessionType XML that was returned and extract it for use in the next task. The session
name is specified in the Name element; the description is in the Description element.

Parse the ArrayOfSessionType XML to identify the target session and extract its GUID from the
Identifier element.

Here is a sample X Path expression that selects the target session’s Description node by the
string value of its Description element:
Retrieving Variable Values From Jobs Page 23

//Identifier[ancestor::SessionType/Description[text()='DurationVal']].

Obtaining the Session Details
Using the session’s GUID, you can obtain the context—the details of a given session—by
executing GET /JobRest/GetContentsForJob, using the session GUID.

Here’s an example:
http://VantageServer:8676/SessionRest/GetSessionContext
?identifier=32ab0163-fb11-4aab-8f78-647f2c90c6a4

This returns a Context XML—the same XML returned when you execute GET /WorkflowRest/
GetWorkflowVariableRequirements for submitting input variable values.

The Context XML is comprised of a series of Condition elements—one for each variable in the
session. You can parse it to identify each variable and extract the required value or other data.

Here’s a snippet with two Condition (elements) to illustrate how variables are represented:
<Context... >
<a:Condition>
<a:xmlns... />
<Identifier>4949b7da-3253-490d-96b2-d0409ac406ad</Identifier>
<CustomEditorType i:nil="true" />
<Name>Content Duration</Name>
<ParameterSelections />
<ParameterSetCollections />
<Parameters />
<Summary i:nil="true" />
<Instance>247afdf9-e243-4ead-be1d-7317aecc9273</Instance>
<ConditionValue>
<ComplexValue i:nil="true" />
<Text xmlns:b=...>
<b:string>00:00:30:00@29.97</b:string>

</Text>
<Default>
<ComplexValue i:nil="true" />
<Text xmlns:b=...>
<b:string>00:00:00:00@29.97</b:string>

</Text>
</Default>

</ConditionValue>
<TypeCode>TimeCode</TypeCode>

</a:Condition>
<a:Condition>
<a:xmlns i:nil="true" xmlns:b=... />
<Identifier>432820a7-d6f2-42f0-877e-f5b6b16c6081</Identifier>
<CustomEditorType i:nil="true" />
<Name>SdkBitRate</Name>
<ParameterSelections />
<ParameterSetCollections />
<Parameters />
<Summary i:nil="true" />
Retrieving Variable Values From Jobs Page 24

<Instance>5b41dbd5-5d91-4c6a-9d00-a5c92411397a</Instance>
<ConditionValue>
<ComplexValue i:nil="true" />
<Text xmlns:b=...>
<b:string>9943</b:string>

</Text>
<Default>
<ComplexValue i:nil="true" />
<Text xmlns:b=...>
<b:string>0</b:string>

</Text>
</Default>
</ConditionValue>
<TypeCode>Int32</TypeCode>

...

Obtaining the Variable’s Value
Using the variable’s name, you can extract its value. The name of the variable is in the
<Condition><Name> element; its value is in the
<Condition><ConditionValue><Text><String> element.

This X Path expression selects the text string of the text node of the Content Duration variable:

/Context/Conditions/Condition[Name='Content Duration']/ConditionValue/Text/
string/text()

The duration of the encoded media in this example is 00:00:30:00@29.97.

This sample X Path expression selects the text string of the text node of the SDKBitRate variable:

/Context/Conditions/Condition[Name='SDKBitRate']/ConditionValue/Text/string/
text()

The bit rate of the encoded media in this example is 9943 bits per second.
Retrieving Variable Values From Jobs Page 25

Accessing Variable Values from Labels in Jobs
Note: This task is implemented in the JavaRestAppNoteSample program in retrieveLabel.

You typically access a metadata label to gain access to individual metadata, identified as a
parameter in the label. When a job is complete, metadata labels specified in the workflow are
saved with the job.

Note: Metadata label processing is a specially-licensed feature. Contact Telestream Customer
Service or your Telestream representative for more information.

Metadata labels are generated in a workflow by using a Populate action, where you assign a
variable’s value to a specified parameter in the label you specify. This is one method of
accessing runtime values from a job. The other method is to use variables (see Retrieving
Variable Values From Jobs).

Figure 12. Binding Variables to Label Parameters in the Populate Action

To process parameters in a label, you need to know the label and the parameter you want to
obtain values from. In Workflow Designer, collect the label’s name and the parameters you
need. You can view the label by displaying the workflow in Workflow Designer and displaying
the Populate action’s inspector.

Extracting variable values stored in parameters in metadata labels involves these general tasks,
which are described in the topics following:

1. Using the job GUID (see Obtaining the Job GUID, described previously), obtain the list of
contents of the job. See Obtaining the Contents for a Job.

2. Extract the job’s content GUID from the contents list. See Extracting the Content GUID.

3. Using the content GUID, obtain the job’s labels. See Obtaining Labels.

4. Extract each target variable’s value from the label’s parameter. See Extracting the
Parameter’s Value.

Use the Populate action
to assign a variable’s value
to a parameter in the
selected label.
Accessing Variable Values from Labels in Jobs Page 26

Obtaining the Contents for a Job
To obtain the content generated from a job, execute a GET /JobRest/GetContentsForJob
method. You need to provide the GUID of the target job.

Here’s an example:
http://VantageServer:8676/JobRest/GetContentsForJob
?identifier=ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3

The returned XML document is named ArrayOfContentType.An ArrayOfContentType XML
contains the ContentType element.

Here’s an ArrayOfContentType XML to illustrate what GetContentsForJob returns:
<ArrayOfContentType...">
<ContentType>
<Identifier>478b3e6d-eb5e-4dfc-8d70-ce5cce0b008d</Identifier>
<Created>2015-02-11T15:51:25.917</Created>
<Name>720x480.422</Name>
<Updated>2015-02-11T15:51:50.843</Updated>

</ContentType>
</ArrayOfContentType>

Extracting the Content GUID
Parse the ArrayOfContentType to extract the ContentType GUID (in the Identifier element) for use
in accessing the content.

Here is a sample X Path expression that selects the Identifier node:

//Identifier[ancestor::ContentType]

Now that you have the content GUID, you can obtain its items, and extract parameter values.

Obtaining Labels
To obtain a job’s labels, execute Get /ContentRest/GetContentLabels, using the content GUID.

Here’s an example:
http://VantageServer:8676/ContentRest/GetContentLabels
?identifier=478b3e6d-eb6e-4dfc-8d70-ce5cce0b008d

The returned XML document is ArrayOfItemType with a set of Label item types—one for each
label in the content of the job. You can parse a label to identify each parameter and extract the
required data.

Here’s a snippet to illustrate how labels and their parameters are represented. This example
illustrates the Move Rate variable, whose value is 18931, an Int32:

<ArrayOfItemType...>
<ItemType>
<Identifier>9d319fc9-0e4a-0098-3bbe-ce70c8ad3613</Identifier>
<Item i:type="Label">
...
<Parameters>
<Parameter>
Accessing Variable Values from Labels in Jobs Page 27

<Text... >
<a:string>18931</a:string>

</Text>
<Identifier>2a8a4996-65bb-4d0a-9d8a-74aee2959409</Identifier>
<TypeCode>Int32</TypeCode>
...
<Name>Movie Rate</Name>
...

</Parameter>
...

You can parse each parameter in a label to identify and extract its value.

Extracting the Parameter’s Value
Using the parameter’s name, you can extract its value from the ArrayOfItemType.

The name of the parameter is in the
<ArrayOfItemType><ItemType><Item><Parameters><Parameter><Name> element.

The value of the parameter is in the child <Text><String> element.

This sample X Path expression selects the text string of the text node of the Content Duration
variable:

Here is a sample X Path expression that selects the text of the parameter’s string node:

/ArrayOfItemType/ItemType/Item/Parameters/Parameter[Name='Movie Rate']/Text/
string/text()
Accessing Variable Values from Labels in Jobs Page 28

Accessing Media Files from Jobs
Note: This task is implemented in the JavaRestAppNoteSample program in retrieveMedia.

When a job is complete, the fully-qualified path to all media created in the workflow is saved in
the job records.

To obtain the path to the media, you need to know the nickname of the file you want to access.
In Workflow Designer, select the workflow and identify the nickname on the action that creates
or operates on the file.

1. Using the job GUID (see Obtaining the Job GUID, described previously), obtain the list of
contents of the job. See Obtaining the Contents of a Job.

2. Extract the job’s content GUID from the contents list. See Extracting the Content GUID.

3. Using the content GUID, obtain its list of media. See Obtaining the List of Media Items.

4. Extract the media item’s GUID from the list of media. See Extracting the Media Item’s GUID.

5. Using the media item’s GUID, obtain the fully-qualified path to the media file. See Obtaining
the Media Item’s Fully-qualified Path.

Obtaining the Contents of a Job
To obtain the content generated by a job (labels, media, etc.), execute a GET /JobRest/
GetContentsForJob method. You need to provide the GUID of the target job.

Here’s an example:
http://VantageServer:8676/JobRest/GetContentsForJob
?identifier=ccb1ef3c-15e6-43ea-ac89-c39ea8bf63c3

The returned XML document is named ArrayOfContentType.An ArrayOfContentType XML
contains the ContentType element. You can parse it to obtain the GUID of the content you want
to access.

Here’s an ArrayOfContentType XML to illustrate what GetContentsForJob returns:
<ArrayOfContentType...>
<ContentType>
<Identifier>478b3e6d-ebbe-4dfc-8d70-ce5cce0b008d</Identifier>
<Created>2015-02-11T15:51:25.917</Created>
<Name>720x480.422</Name>
<Updated>2015-02-11T15:51:50.843</Updated>

</ContentType>
</ArrayOfContentType>

Extracting the Content GUID
Parse the ArrayOfContentType to extract the ContentType GUID (in the Identifier element) for use
in accessing the content.

Here is a sample X Path expression that selects the Identifier node:

/ArrayOfContentType/ContentType/Identifier

Now that you have the content GUID, you can obtain its items, and extract the file path.
Accessing Media Files from Jobs Page 29

Obtaining the List of Media Items
Once you have the GUID of the content, you can obtain the media items in the content. Execute
Get /ContentRest/GetContentMedia, using the content GUID.

Here’s an example:
http://VantageServer:8676/ContentRest/GetContentMedia?
identifier=32a61634-5f12-4916-8f69-5bb0eff061cf

The returned XML document is ArrayOfItemType. This XML is comprised of a series of Item
elements of type Media—one for each media file in the job. Each is uniquely identified by its
nickname. For example, a Flip action configured to generate a media file nicknamed Output.

Here’s a snippet of an ItemType element, to illustrate how each item is represented:
<ItemType>
<Identifier>fb181780-5501-051f-123e-1f5a36154b62</Identifier>
<Item i:type="Media">
<xmlns i:nil="true" xmlns=... />
<Identifier>c9be01b4-0a13-4c09-9d57-44ead9e52aad</Identifier>
<CustomEditorType i:nil="true" />
<Name>Output</Name>

There are dozens of detail elements (including parts of path and filenames).

Extracting the Media Item’s GUID
Parse the ArrayOfContentType to identify the target media file by its nickname (the Name
element in the Item element) and then extract the ContentType’s Identifier GUID to use in
identifying the path.

Here is a sample X Path expression that selects the Identifier node of the item with the
nickname Output:

/ArrayOfItemType/ItemType[Item/Name = 'Output']/Identifier

Now that you have the item’s GUID, you can obtain its details and extract the file path.

Obtaining the Media Item’s Fully-qualified Path
Once you have the GUID of the media item, you can obtain the fully-qualified path to the file.
Execute Get /ContentRest/GetItemFilePaths, using the ItemType’s GUID for the target file, as
identified by the file’s nickname.

Here’s an example:
http://VantageServer:8676/ItemRest/GetItemFilePaths?
identifier=fb181780-5501-051f-123e-1f5a36154b62

Here’s the returned ArrayOfString element, to illustrate how the file’s path is presented:
<ArrayOfstring xmlns="http://schemas.microsoft.com/2003/10/
Serialization/Arrays" xmlns:i=...>
 <string>C:\SDKTestOut\720x480.422.27.m4v</string>
</ArrayOfstring>

Parse the ArrayOfString element with the X Path //string to extract the fully-qualified path to
the target media file.
Accessing Media Files from Jobs Page 30

Common Vantage REST Methods
This topic describes how to use many of the commonly-used REST methods. Most are Get
methods; others are Post methods. All parameters are strings.

Note: For a complete list of all REST methods in the Vantage API, use the Vantage REST utility.

 POST /SubmitRest/SubmitFile

 GET /DomainRest/GetWorkflows

 GET /WorkflowRest/GetWorkflowVariableRequirements

 GET /JobRest/GetJobState

 GET /WorkflowRest/GetSessionsForJob

 GET /JobRest/GetContentsForJob

 Get /ContentRest/GetContentLabels

 Get /ContentRest/GetContentMedia

 Get /ContentRest/GetItemFilePaths

Specifying the Host Name in a URI
The Vantage domain host name is the Vantage domain server identity: computer name | IP
address | localhost, plus the SDK Service port (default 8676), separated by a colon.

In an All-in-One domain, use the host name of the server on which Vantage is running. In an
array, use the server running the SDK Service. When a Vantage SDK client is running on the
same server, you can use localhost.

Examples
http://localhost:8676/SubmitRest/SubmitFile

http://Vantage_Domain_Seven:8676/SubmitRest/SubmitFile

http://192.168.1.1:8676/SubmitRest/SubmitFile
Common Vantage REST Methods Page 31

POST /SubmitRest/SubmitFile
Submits a job to the specified workflow, in the specified domain.

Requires the workflow identifier, the source file, and a job name. Context (input variables) is
optional.

Returns the guid in XML format.

Parameters

workflowIdentifier (required)
A GUID assigned to the workflow, generated automatically you create a workflow in
Workflow Designer.

To obtain a workflow’s GUID, open Workflow Designer, select the workflow and display
the workflow details panel. You can also access workflows and their GUID by executing
/DomainRest/GetWorkflows.

sourceFilename (required)

The fully-qualified path to the media being submitted. If on the same server as all of the
services that must access it, you can use a drive-letter path. Otherwise, reference the media as a
share.

Note: Each back-slash in the path string must be doubled up, because the back-slash is an
escape character in the context of a Java string.

Examples (a drive-letter path, and a share):

C:\\Media\\Ginger_Ale_Project\\Sierra_snow.mpg

\\\\Medusa_Server\\Ginger_Ale_Project\\Sierra_snow.mpg

context (optional)

The context XML file with runtime values for each variable defined in the workflow.

jobName (required)
A text string identifying the user-facing name of the job, displayed in the job status tabs
in Workflow Designer during and after job execution.

URI Example (Without Variables)
http://VantageDomainServer:8676/SubmitRest/SubmitFile?
workflowIdentifier=29504355-6190-4b76-b5fe-c5082e830122
&sourceFilename=%5C%5CVantageServer%5Cmedia%5C720x480.mpg
&jobName=This+Is+My+Job
Common Vantage REST Methods Page 32

GET /DomainRest/GetWorkflows
Obtains the list of workflows (referred to as Procedures) in XML format that are present in the
domain.

There are no parameters.

URI Example
http://VantageServer:8676/DomainRest/GetWorkflows

GET /WorkflowRest/GetWorkflowVariableRequirements
Obtains the list of input variables (known as the Context) in XML format defined in the
workflow. This is a list of all variables, each of which have a default value and have been bound
to a parameter in an action in the workflow. If these conditions are not met, the variable is not
present in the Context.

Requires the workflow identifier GUID.

Parameters

identifier (required)
A workflow GUID, generated automatically you create a workflow in Workflow Designer.

To obtain a workflow’s GUID, open Workflow Designer, select the workflow and display
the workflow details panel. OR, execute /DomainRest/GetWorkflows.

URI Example
http://VantageServer:8676/WorkflowRest/GetWorkflowVariableRequirements?
identifier=29504355-6190-4b76-b5fe-c5082e830122

GET /JobRest/GetJobState
Obtains the current state of the target job. Returns the WorkflowJobState XML. The
WorkflowJobState provides a set of reserved keywords to represent the state of the job:

Active | Failed | StoppedByUser | Complete | WaitingToRetry.

Requires the job identifier GUID.

Parameters

identifier (required)
A job GUID, generated when a job is executed in Vantage.

You can obtain a job GUID when you submit a job, or by executing /JobRest/GetJobsFor-
Workflow.

Full URI Example
http://Vantage_Domain_Seven:8676/JobRest/GetJobState?
identifier=29504355-6190-4b76-b5fe-c5082e830122
Common Vantage REST Methods Page 33

GET /WorkflowRest/GetSessionsForJob
Obtains the sessions in the job. Returns Context in XML format. This is a list of all sessions that
executed in the job. (A session is an execution of an action instance.)

Requires the job identifier GUID.

Parameters

identifier (required)
A job GUID, generated when a job is executed in Vantage.

You can obtain a job GUID when you submit a job, or by executing /JobRest/GetJobsFor-
Workflow.

URI Example
http://localhost:8676/WorkflowRest/GetSessionsForJob?
identifier=29504355-6190-4b76-b5fe-c5082e830122

GET /JobRest/GetContentsForJob
Obtains the contents of the target job. Returns an ArrayOfContentType in XML format, with
details about the job’s content object. You can use the content’s GUID to access the job’s
content.

Requires the job GUID.

Parameters

identifier (required)
A job GUID, generated when a job is executed in Vantage.

You can obtain a job GUID when you submit a job, or by executing /JobRest/GetJobsFor-
Workflow.

URI Example
http://192.168.1.1:8676/WorkflowRest/GetSessionContext?
identifier=29504355-6190-4b76-b5fe-c5082e830122

Get /ContentRest/GetContentLabels
Obtains the ArrayOfItemType XML from the specified Content. This ArrayOfItemType is a list of
labels and their parameters and all details.

Parameters

identifier (required)
The Content GUID. To obtain the GUID, execute GET /JobRest/GetContentsForJob.
Common Vantage REST Methods Page 34

Get /ContentRest/GetContentMedia
Obtains the ArrayOfItemType XML from the specified Content. This ArrayOfItemType is a list of
media (the ItemType element) in the contents of the job, plus related details.

Parameters

identifier (required)
The Content GUID. To obtain the GUID, execute GET /JobRest/GetContentsForJob.

Get /ContentRest/GetItemFilePaths
Obtains the ArrayOfItemType XML from the specified Content. This ArrayOfItemType is a list of
media and all details.

Parameters

identifier (required)
The Content GUID. To obtain the GUID, execute GET /JobRest/GetContentsForJob.
Common Vantage REST Methods Page 35

Vantage Terms and Concepts
context

The set of variables defined in the various actions that comprise the target workflow, presented
in XML format.

condition

The definition of a variable including its value, in the context XML object.

Procedures

The set of workflows (including their name and GUID) defined in the target domain, presented
in XML format.

session

An action execution instance in the context of a job.

Sessions

The set of session (action) instances in a given job, presented in XML format.
Vantage Terms and Concepts Page 36

Copyright and Trademark Notice
Copyright © 2015 Telestream®, LLC. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, altered, or translated into any languages without written
permission of Telestream, Inc. Information and specifications in this document are subject to
change without notice and do not represent a commitment on the part of Telestream.

Telestream, CaptionMaker, Episode, Flip4Mac, FlipFactory, Flip Player, Lightspeed, ScreenFlow,
Switch, Vantage, Wirecast, GraphicsFactory, MetaFlip, and Split-and-Stitch are registered
trademarks and Pipeline, MacCaption, e-Captioning, and Switch are trademarks of Telestream,
LLC. All other trademarks are the property of their respective owners.
Copyright and Trademark Notice Page 37

	Vantage SDK REST Integration Guide for Java
	Synopsis
	Vantage Version and Licensing Requirements
	Obtaining the Vantage SDK
	What’s in the SDK

	Example Java Rest Program and Workflow
	Using the Vantage REST Utility
	Starting and Configuring the REST Utility
	Using the Utility to Execute Methods

	Getting Started With the Vantage SDK
	Creating a Simple Job Submission Program
	Creating a Sample Job Submit Program and Project
	Updating the Program for Your Domain
	Specifying the Vantage Domain Server
	Providing the Workflow Identifier
	Specifying the Fully-qualified Path to Media
	Providing a Job Name

	Submitting the Job to Your Vantage Workflow

	Submitting a Job with Input Variables
	Adding Variables to a Workflow
	Obtaining the Input Variables in a Workflow
	Updating the Variable Values
	Including Variables When You Submit a Job
	Verifying that Variables were Submitted Properly

	Setting the Job Priority During Job Submission
	Obtaining the Workflows in a Domain
	Obtaining the Job GUID
	Determining Job Status
	Obtaining the Job State

	Retrieving Variable Values From Jobs
	Obtaining the Sessions List
	Extracting the Target Session’s GUID
	Obtaining the Session Details
	Obtaining the Variable’s Value

	Accessing Variable Values from Labels in Jobs
	Obtaining the Contents for a Job
	Extracting the Content GUID
	Obtaining Labels
	Extracting the Parameter’s Value

	Accessing Media Files from Jobs
	Obtaining the Contents of a Job
	Extracting the Content GUID
	Obtaining the List of Media Items
	Extracting the Media Item’s GUID
	Obtaining the Media Item’s Fully-qualified Path

	Common Vantage REST Methods
	Specifying the Host Name in a URI
	Examples

	POST /SubmitRest/SubmitFile
	Parameters
	workflowIdentifier (required)
	sourceFilename (required)
	context (optional)
	jobName (required)

	URI Example (Without Variables)

	GET /DomainRest/GetWorkflows
	URI Example

	GET /WorkflowRest/GetWorkflowVariableRequirements
	Parameters
	identifier (required)

	URI Example

	GET /JobRest/GetJobState
	Parameters
	identifier (required)

	Full URI Example

	GET /WorkflowRest/GetSessionsForJob
	Parameters
	identifier (required)

	URI Example

	GET /JobRest/GetContentsForJob
	Parameters
	identifier (required)

	URI Example

	Get /ContentRest/GetContentLabels
	Parameters
	identifier (required)

	Get /ContentRest/GetContentMedia
	Parameters
	identifier (required)

	Get /ContentRest/GetItemFilePaths
	Parameters
	identifier (required)

	Vantage Terms and Concepts
	Copyright and Trademark Notice

