
Advanced User Guide
 Episode 6.5 Advanced User Guide
161789 May 19, 2015

Copyrights and Trademark Notices
Copyright © 2015 Telestream, LLC. All rights reserved worldwide. No part of this
publication may be reproduced, transmitted, transcribed, altered, or translated into any
languages without the written permission of Telestream. Information and
specifications in this document are subject to change without notice and do not
represent a commitment on the part of Telestream.

Telestream, CaptionMaker, Episode, Flip4Mac, FlipFactory, Flip Player, Lightspeed,
ScreenFlow, Switch, Vantage, Wirecast, GraphicsFactory, MetaFlip, and Split-and-Stitch
are registered trademarks and Pipeline, MacCaption, e-Captioning, and Switch are
trademarks of Telestream, LLC All other trademarks are the property of their respective
owners.

QuickTime, MacOS X, and Safari are trademarks of Apple, Inc. Bonjour, the Bonjour logo,
and the Bonjour symbol are trademarks of Apple, Inc.

MainConcept is a registered trademark of MainConcept LLC and MainConcept AG.
Copyright 2004 MainConcept Multimedia Technologies.

Microsoft, Windows 7 | 8 | Server 2008 | Server 2012, Media Player, Media Encoder, .Net,
Internet Explorer, SQL Server 2005 Express Edition, and Windows Media Technologies
are trademarks of Microsoft Corporation.

This product is manufactured by Telestream under license from Avid to pending patent
applications.

This product is manufactured by Telestream under license from VoiceAge Corporation

Dolby and the double-D symbol are registered trademarks of Dolby Laboratories.

Other brands, product names, and company names are trademarks of their respective
holders, and are used for identification purpose only.

Episode 6.5 Advanced User Guide
Third Party Library Notices

3

Third Party Library Notices
The following notices are required by third party software and libraries used in Episode.
The software may have been modified by Telestream as permitted by the license or
permission to use the software.

X264

Episode includes software whose copyright is owned by, or licensed from, x264 LLC.

SharpSSH2

SharpSSH2 Copyright (c) 2008, Ryan Faircloth. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Diversified Sales and Service, Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SQLite

The SQLite website includes the following copyright notice: http://www.sqlite.org/
copyright.html. In part, this notice states:

Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original
SQLite code, either in source code form or as a compiled binary, for any purpose, com-
mercial or non-commercial, and by any means.

Libxml2

Libxml2 by xmlsoft.org is the XML C parser and toolkit developed for the Gnome
project. The website refers to the Open Source Initiative website for the following
Episode 6.5

http://www.sqlite.org/copyright.html
http://www.sqlite.org/copyright.html

Episode 6.5 Advanced User Guide
Third Party Library Notices

4

licensing notice for Libxml2: http://www.opensource.org/licenses/mit-license.html.
This notice states:

Copyright (c) 2011 xmlsoft.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

PCRE

The PCRE software library supplied by pcre.org includes the following license
statement:

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and seman-
tics are as close as possible to those of the Perl 5 language. Release 8 of PCRE is distrib-
uted under the terms of the “BSD” licence, as specified below. The documentation for
PCRE, supplied in the “doc” directory, is distributed under the same terms as the soft-
ware itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge. All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc. All rights reserved.
Episode 6.5

http://www.opensource.org/licenses/mit-license.html

Episode 6.5 Advanced User Guide
Third Party Library Notices

5

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the University of Cambridge nor the name of Google Inc. nor the
names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

Boost C++ Libraries

The Boost C++ Libraries supplied by boost.org are licensed at the following Web site:
http://www.boost.org/users/license.html. The license reads as follows:

Boost Software License—Version 1.0—August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a
copy of the software and accompanying documentation covered by this license (the
“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all cop-
ies of the Software, in whole or in part, and all derivative works of the Software, unless
such copies or derivative works are solely in the form of machine-executable object
code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
Episode 6.5

http://www.boost.org/users/license.html

Episode 6.5 Advanced User Guide
Third Party Library Notices

6

Libevent

The libevent software library supplied by monkey.org is licensed at the following
website: http://monkey.org/~provos/libevent/LICENSE. The license reads as follows:

Libevent is covered by a 3-clause BSD license. Below is an example. Individual files may
have different authors.

Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The FreeType Project

The FreeType Project libraries supplied by freetype.org are licensed at the following
website: http://www.freetype.org/FTL.TXT. The license reads in part as follows:

Copyright 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg

We specifically permit and encourage the inclusion of this software, with or without
modifications, in commercial products. We disclaim all warranties covering The Free-
Type Project and assume no liability related to The FreeType Project.

 Finally, many people asked us for a preferred form for a credit/disclaimer to use in com-
pliance with this license. We thus encourage you to use the following text:

Portions of this software are copyright © 2011 The FreeType Project (www.free-
type.org). All rights reserved.
Episode 6.5

http://monkey.org/~provos/libevent/LICENSE
http://www.freetype.org/FTL.TXT
http://www.freetype.org
http://www.freetype.org

Episode 6.5 Advanced User Guide
Third Party Library Notices

7

Samba

Samba code supplied by samba.org is licensed at the following website: http://
samba.org/samba/docs/GPL.html. The license is a GNU General Public License as
published by the Free Software Foundation and is also listed at this website: http://
www.gnu.org/licenses/. Because of the length of the license statement, the license
agreement is not repeated here.

Ogg Vorbis

The Ogg Vorbis software supplied by Xiph.org is licensed at the following website:
http://www.xiph.org/licenses/bsd/. The license reads as follows:

© 2011, Xiph.Org Foundation

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

•Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

•Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

•Neither the name of the Xiph.org Foundation nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

This software is provided by the copyright holders and contributors “as is” and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall the
foundation or contributors be liable for any direct, indirect, incidental, special, exem-
plary, or consequential damages (including, but not limited to, procurement of substi-
tute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (includ-
ing negligence or otherwise) arising in any way out of the use of this software, even if
advised of the possibility of such damage.

LibTIFF

The LibTIFF software library provided by libtiff.org is licensed at the following website:
www.libtiff.org/misc.html. The copyright and use permission statement reads as follows:

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation
for any purpose is hereby granted without fee, provided that (i) the above copyright
notices and this permission notice appear in all copies of the software and related doc-
umentation, and (ii) the names of Sam Leffler and Silicon Graphics may not be used in
any advertising or publicity relating to the software without the specific, prior written
permission of Sam Leffler and Silicon Graphics.
Episode 6.5

http://www.libtiff.org/misc.html
http://samba.org/samba/docs/GPL.html
http://samba.org/samba/docs/GPL.html
http://www.xiph.org/licenses/bsd/

Episode 6.5 Advanced User Guide
Third Party Library Notices

8

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT
ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

zlib

The zlib.h general purpose compression library provided zlib.net is licensed at the
following website: http://www.zlib.net/zlib_license.html. The license reads as follows:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including com-
mercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepre-
sented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly, Mark Adler

LAME

The LAME MPEG Audio Layer III (MP3) encoder software available at
lame.sourceforge.net is licensed under the GNU Lesser Public License (LGPL) at this
website www.gnu.org/copyleft/lesser.html and summarized by the LAME developers at
this website: lame.sourceforge.net/license.txt. The summary reads as follows:

Can I use LAME in my commercial program?

Yes, you can, under the restrictions of the LGPL. The easiest way to do this is to:

1. Link to LAME as separate library (libmp3lame.a on unix or lame_enc.dll on windows).

2. Fully acknowledge that you are using LAME, and give a link to our web site,
www.mp3dev.org.

3. If you make modifications to LAME, you *must* release these modifications back to
the LAME project, under the LGPL.

*** IMPORTANT NOTE ***

The decoding functions provided in LAME use a version of the mpglib decoding engine
which is under the GPL. They may not be used by any program not released under the
GPL unless you obtain such permission from the MPG123 project (www.mpg123.de).
(yes, we know MPG123 is currently under the LGPL, but we use an older version that
Episode 6.5

http://www.mpg123.de
http://www.gnu.org/copyleft/lesser.html
http://lame.sourceforge.net/license.txt
http://www.mp3dev.org

Episode 6.5 Advanced User Guide
Third Party Library Notices

9

was released under the former license and, until someone tweaks the current MPG123
to suit some of LAME's specific needs, it'll continue being licensed under the GPL).

MPEG Disclaimers
MPEGLA MPEG2 Patent

ANY USE OF THIS PRODUCT IN ANY MANNER OTHER THAN PERSONAL USE THAT
COMPLIES WITH THE MPEG-2 STANDARD FOR ENCODING VIDEO INFORMATION FOR
PACKAGED MEDIA IS EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE
PATENTS IN THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM
MPEG LA, LLC, 6312 S. Fiddlers Green circle, Suite 400E, Greenwood Village, Colorado
80111 U.S.A.

MPEGLA MPEG4 VISUAL

THIS PRODUCT IS LICENSED UNDER THE MPEG-4 VISUAL PATENT PORTFOLIO LICENSE
FOR THE PERSONAL AND NON-COMMERCIAL USE OF A CONSUMER FOR (i) ENCODING
VIDEO IN COMPLIANCE WITH THE MPEG-4 VISUAL STANDARD (“MPEG-4 VIDEO”) AND/
OR (ii) DECODING MPEG-4 VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A
PERSONAL AND NON-COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO
PROVIDER LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION INCLUDING THAT RELATING TO PROMOTIONAL, INTERNAL
AND COMMERCIAL USES AND LICENSING MAY BE OBTAINED FROM MPEG LA, LLC. SEE
HTTP://WWW.MPEGLA.COM.

MPEGLA AVC

THIS PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE
PERSONAL AND NON-COMMERCIAL USE OF A CONSUMER TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO
THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL AND NON-
COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED
TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY
OTHER USE. ADDITIONAL INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE
HTTP://WWW.MPEGLA.COM.

MPEG4 SYSTEMS

THIS PRODUCT IS LICENSED UNDER THE MPEG-4 SYSTEMS PATENT PORTFOLIO LICENSE
FOR ENCODING IN COMPLIANCE WITH THE MPEG-4 SYSTEMS STANDARD, EXCEPT THAT
AN ADDITIONAL LICENSE AND PAYMENT OF ROYALTIES ARE NECESSARY FOR
ENCODING IN CONNECTION WITH (i) DATA STORED OR REPLICATED IN PHYSICAL MEDIA
WHICH IS PAID FOR ON A TITLE BY TITLE BASIS AND/OR (ii) DATA WHICH IS PAID FOR ON
A TITLE BY TITLE BASIS AND IS TRANSMITTED TO AN END USER FOR PERMANENT
STORAGE AND/OR USE. SUCH ADDITIONAL LICENSE MAY BE OBTAINED FROM MPEG LA,
LLC. SEE <HTTP://WWW.MPEGLA.COM> FOR ADDITIONAL DETAILS.
Episode 6.5

HTTP://WWW.MPEGLA.COM
HTTP://WWW.MPEGLA.COM
HTTP://WWW.MPEGLA.COM

Episode 6.5 Advanced User Guide
Limited Warranty and Disclaimers

10
Limited Warranty and Disclaimers
Telestream, LLC (the Company) warrants to the original registered end user that the
product will perform as stated below for a period of one (1) year from the date of
shipment from factory:

Hardware and Media. The Product hardware components, if any, including equipment
supplied but not manufactured by the Company but NOT including any third party
equipment that has been substituted by the Distributor for such equipment (the
“Hardware”), is free from defects in materials and workmanship under normal
operating conditions and use.

Warranty Remedies
Your sole remedies under this limited warranty are as follows:

Hardware and Media. The Company will either repair or replace (at its option) any
defective Hardware component or part, or Software Media, with new or like new
Hardware components or Software Media. Components may not be necessarily the
same, but will be of equivalent operation and quality.

Software. If software is supplied as part of the product and it fails to substantially
confirm to its specifications as stated in the product user's guide, the Company shall, at
its own expense, use its best efforts to correct (with due allowance made for the nature
and complexity of the problem) such defect, error or nonconformity.

Software Updates. If software is supplied as part of the product, the Company will
supply the registered purchaser/licensee with maintenance releases of the Company’s
proprietary Software Version Release in manufacture at the time of license for a period
of one year from the date of license or until such time as the Company issues a new
Version Release of the Software, whichever first occurs. To clarify the difference
between a Software Version Release and a maintenance release, a maintenance release
generally corrects minor operational deficiencies (previously non-implemented
features and software errors) contained in the Software, whereas a Software Version
Release adds new features and functionality. The Company shall have no obligation to
supply you with any new Software Version Release of Telestream software or third party
software during the warranty period, other than maintenance releases.

Restrictions and Conditions of Limited Warranty
This Limited Warranty will be void and of no force and effect if (i) Product Hardware or
Software Media, or any part thereof, is damaged due to abuse, misuse, alteration,
neglect, or shipping, or as a result of service or modification by a party other than the
Company, or (ii) Software is modified without the written consent of the Company.

Limitations of Warranties
THE EXPRESS WARRANTIES SET FORTH IN THIS AGREEMENT ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No oral
Episode 6.5

Episode 6.5 Advanced User Guide
Limited Warranty and Disclaimers

11
or written information or advice given by the Company, its distributors, dealers or
agents, shall increase the scope of this Limited Warranty or create any new warranties.

Geographical Limitation of Warranty. This limited warranty is valid only within the
country in which the Product is purchased/licensed.

Limitations on Remedies. YOUR EXCLUSIVE REMEDIES, AND THE ENTIRE LIABILITY OF
TELESTREAM, LLC WITH RESPECT TO THE PRODUCT, SHALL BE AS STATED IN THIS
LIMITED WARRANTY. Your sole and exclusive remedy for any and all breaches of any
Limited Warranty by the Company shall be the recovery of reasonable damages which,
in the aggregate, shall not exceed the total amount of the combined license fee and
purchase price paid by you for the Product.

Damages
TELESTREAM, LLC SHALL NOT BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF YOUR USE OR INABILITY TO USE THE PRODUCT, OR THE BREACH OF
ANY EXPRESS OR IMPLIED WARRANTY, EVEN IF THE COMPANY HAS BEEN ADVISED OF
THE POSSIBILITY OF THOSE DAMAGES, OR ANY REMEDY PROVIDED FAILS OF ITS
ESSENTIAL PURPOSE.

Further information regarding this limited warranty may be obtained by writing:
Telestream
848 Gold Flat Road
Nevada City, CA 95959

You can call Telestream at (530) 470-1300.

Part number: 161789

Publication Date: May 19, 2015
Episode 6.5

Episode 6.5 Advanced User Guide
Limited Warranty and Disclaimers

12
Episode 6.5

13
Contents
Episode 6.5 Advanced User Guide 1
Copyrights and Trademark Notices 2
Third Party Library Notices 3
Limited Warranty and Disclaimers 10

Preface 17
Support | Information | Assistance 17

Company and Product Information 17
Mail 17
International Telestream Distributors 17
We'd Like to Hear From You! 17

Audience and Assumptions 18
How this Guide is Organized 19

Episode Overview 19

Episode Overview 21
XML-RPC and CLI License Requirements 22
Episode Interfaces 23

Watch Folder and Deployment Interface 23
XML-RPC and CLI Interfaces 23

XML-RPC Interface 24
Command Line Interface 24

Episode Architecture 25
Node 26
Worker 26
Watch 26
IOServer 27
Assistant 27
ClientProxy 27

Episode Processes 28
Managing Back-end Processes (MacOS) 28
Managing Back-end Processes (Windows) 28
Episode 6.5

Contents14
Back-end Process Configuration 29
Episode Concepts and Components 30

Workflows, Tasks, and Sources 30
Workflows 30
Tasks 31
Sources 32
Post-deployment Processing Tasks 33

Variables 34
Episode Tags 35

Creating Tasks, Sources, Workflows & Submissions 37
Creating Tasks 38
Setting Task Priority 40

XML-RPC and CLI Priority Commands 40
Creating Sources 41
Creating Workflows and Submissions 42

Using Advanced Features 45
Advanced Features 46

Advanced Sources 46
Advanced Encoding 46
Advanced Post-Deployment Tasks 46

Advanced Clustering 50
Clustering Configuration 51
Avoiding Bonjour 53
Using a Specific Ethernet Interface 53
Setting Bonjour IP Lookup to No 54

Shared Storage 54
Named Storage 55

Named Storage Simple Example 55
Named Storage Cluster Example 55

Using the Command Line Interface 57
Starting the CLI Interpreter [Windows] 58

Starting Episode Services 58
Other Alternatives 58

Starting Episode Control 59
Starting the CLI Interpreter [MacOS] 60

Starting Episode Services 60
Other Alternatives 60

Starting Episode Control 60
Determining if Episode is Running 61
Using the CLI Interpreter 62

Executing Commands 62
Return Codes 62

Displaying Episode Variables 62
Episode 6.5

Contents 15
Displaying Episode Tags 62
Executing Commands to a Cluster 63
Displaying CLI Help 63

Help Command Syntax 63
Writing Help to a Text File 63
Episode 6.5 CLI Listing 64

Using the XML-RPC Interface 177
Overview 178
Restart the XML-RPC Service 179
Communicating with Episode via the XML-RPC API 179
Overview of XML-RPC File Structure 180

Example 180
High-level Element Definitions 181
Commands and Constraints 182
Tag Name Mappings 184
Data Types 185
Primitive Data Types 186
In-place Complex Data Structure Definitions 186
Complex Data Structure Compacts 188
Inherited Complex Data Structures 189

Using the JSON-RPC Interface 191
Overview 192

JSON Basics 192
Programming Languages and Libraries 193

JSON-RPC File Structure 193
High-level Element Definitions 193

Request Elements 193
JSON Request Message Structure 193
Response Elements 194
JSON Response Message Structure 194

Example Requests with HTTP Headers and Responses 195
Example getVersion 195
Example statusTasks2 with params 195

Program Examples 196
Example Class for HTTP Calls—jsonrpc.rb file 196
Example Test Version—jsonTestVersion.rb file 197
Example Test Status Tasks2—jsonTestStatusTasks2.rb file 198

Demo Web Page with Job Monitoring 199
Episode 6.5

Contents16
Episode 6.5

17
Preface
Support | Information | Assistance
Web Site. www.telestream.net/telestream-support/episode-6/support.htm

Support Web Mail. www.telestream.net/telestream-support/episode-6/contact-
support.htm

Company and Product Information
For information about Telestream or its products, please contact us via:

Web Site. www.telestream.net

Sales and Marketing Email. info@telestream.net

Mail
Telestream
848 Gold Flat Road
Nevada City, CA. USA 95959

International Telestream Distributors
See the Telestream Web site at www.telestream.net for your regional authorized
Telestream distributor.

We'd Like to Hear From You!
If you have comments or suggestions about improving this document, or other
Telestream documents - or if you've discovered an error or omission, please email
us at techwriter@telestream.net.
Episode 6.5

http://www.telestream.net/telestream-support/episode-6/support.htm
http://www.telestream.net/telestream-support/episode-6/contact-support.htm
http://www.telestream.net/telestream-support/episode-6/contact-support.htm
http://www.telestream.net
mailto:info@telestream.net
http://www.telestream.net
mailto:techwriter@telestream.net

Preface
Audience and Assumptions

18
Audience and Assumptions
This guide is intended as a source of information for those who are planning,
developing, or implementing automated digital media transcoding and integration
solutions with Episode.

This guide is written with the assumption that you possess a general working
knowledge of digital media processing, and of Episode. This guide also assumes
you have a general knowledge of how to use command line and XML-RPC
interfaces, and computer programming, as appropriate.

This guide does not describe how to use Episode in detail from Episode, the graphic
user interface program. For information, see the Episode User’s Guide.
Episode 6.5

Preface
How this Guide is Organized

19
How this Guide is Organized
This guide is organized into several high-level topics. Click on a heading below to
jump to the topic:

Episode Overview
This topic introduces you to Episode’s capabilities and its architecture and
components, which are important to determining how best to approach a given
automation or integration project; as well as concepts upon which Episode is built.

Creating Tasks, Sources, Workflows & Submissions
This topic describes how to create tasks and sources in the various interfaces.
Likewise, the topic of creating workflows and submissions is described from a high-
level perspective, taking into account the various interface distinctions.

Using Advanced Features
This topic describes Episode’s advanced features, which are not available in the
Episode GUI program, and can only be used with the CLI or XML-RPC API.

Using the Command Line Interface
This topic describes Episode’s Command Line Interface (CLI). The CLI can be used to
control Episode in an interactive command line environment, and also for
lightweight automation of simple Episode tasks which can be accomplished
without traditional programming, using batch files or scripting languages.

Using the XML-RPC Interface
This topic introduces you to Episode’s XML-RPC interface—you’ll learn how to
access the XML-RPC documentation and the constraint XML files.
Episode 6.5

Preface
How this Guide is Organized

20
Episode 6.5

21
Episode Overview

This chapter describes the architecture, components, and major features of
Episode, from a system integrator/developer’s perspective.

These topics are covered:

■ XML-RPC and CLI License Requirements

■ Episode Interfaces

■ Episode Architecture

■ Episode Processes

■ Episode Concepts and Components

■ Variables

■ Episode Tags
Episode 6.5

Episode Overview
XML-RPC and CLI License Requirements

22
XML-RPC and CLI License Requirements
You can use the Episode XML-RPC and CLI interface without special licensing, but
you need the appropriate license for the Episode features you are accessing. See
the Episode Format Support document on the Telestream.net web site for details.

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well.

If you don’t have the required licenses as described below, please contact your
Telestream representative or contact Telestream directly—see Company and
Product Information.

Note: You cannot execute an MBR task (Multi-bitrate) in the CLI unless no Episode
license is active (you’re using it in demo mode), or the Episode Engine license is
active. In demo mode, MBR tasks watermark the output.

If you have any license activated other than the required ones, the MBR task halts
with the error: Queued: No available license feature. De-activate the license, then
use MBR in demo mode.
Episode 6.5

http://www.telestream.net/pdfs/datasheets/Episode6_Format_Support.pdf

Episode Overview
Episode Interfaces

23
Episode Interfaces
There are several ways you can use Episode, by utilizing different interfaces. Each
interface provides distinct advantages, exposes certain features, and is best-suited
to certain applications.

• Graphic User Interface

• Watch Folder and Deployment Interface

• XML-RPC Interface

• Command Line Interface

The Episode graphic user interface program, implemented for both MacOS X and
Windows, is described in detail in the Episode User’s Guide.

Topics
■ Watch Folder and Deployment Interface

■ XML-RPC and CLI Interfaces

■ Command Line Interface

Watch Folder and Deployment Interface
The watch folder and deployment interface is a file-based interface. This interface
offers easy, file-based integration—no development is required.

You typically use the Episode GUI program to create your workflows with watch
folders (for input file integration) and deployments (for output file integration) and
then drop files into the watch folder for processing, and fetch output files from the
watch folder for utilization.

XML-RPC and CLI Interfaces
The XML-RPC and CLI interfaces are available for both MacOS X and Windows. This
guide provides an overview of these interfaces.

Note: For detailed information on the XML-RPC interface or the CLI, refer to the
XMLRPC.html file or the CLI.html file on the Telestream.net web site. Links to these
documents are also provided in the Episode Online Help, which can be accessed
from the Episode Help menu.
Episode 6.5

Episode Overview
Episode Interfaces

24
XML-RPC Interface
The XML-RPC interface is a standard, language-agnostic, HTTP interface intended
for use by integrating it into computer programs.

Note: For information about the XML-RPC standard, see www.xmlrpc.com.

The programmatic interface enables the most robust and flexible integration
opportunities, and Telestream recommends that you utilize the XML-RPC interface
when creating program-based integration solutions.

Command Line Interface
The Command Line Interface is primarily a user-driven method, for interacting with
Episode by typing commands to perform specific tasks. The CLI can also be
implemented in scripts and batch files—typically for lightweight automation tasks,
where traditional programming is overkill.

The CLI can be used interactively in the Command program in Windows and the
Terminal application in MacOS.
Episode 6.5

http://www.xmlrpc.com

Episode Overview
Episode Architecture

25
Episode Architecture
Episode consists of a number of processes. These processes are divided into two
groups: front-end and back-end processes. Front-end processes consist of user/
integration interfaces, graphic user interface (GUI), and the Command Line
Interface (CLI) and XML-RPC interface.

Back-end processes consist of those background processes which perform the
work in Episode, depending on the usage and configuration of the Episode node(s)
and cluster.

Figure 1. Episode front-end and back-end processes.

The background processes are always running by default on Windows, and started
and stopped by default when the GUI (Episode.app) is started or quit on MacOS. In
Episode for Windows, a number of Windows services are installed which are
responsible for starting and stopping background processes. On MacOS, Episode
uses launchd to run the processes.

Note: You can configure background services in the Episode GUI program. For
details, see the User’s Guide: Using Episode > Setting Preferences > Advanced.
Episode 6.5

Episode Overview
Episode Architecture

26
Topics
■ Node

■ Worker

■ Watch

■ IOServer

■ Assistant

■ ClientProxy

Node
A node is the main background process in an Episode system. Its main functions are
to schedule, distribute and execute jobs, serve the front-end submissions and
requests, and maintain both the history database and the active database of jobs.

In a cluster, the node can take on the role as a master node, in which case it is
responsible for communicating with and distributing jobs to other nodes in the
cluster.

Worker
A worker is a process which is designed to execute one task, such as encoding a file,
uploading a file to an FTP server, etc. It is a temporal process which executes exactly
one task and terminates. A worker is always spawned by a node, and exits when the
task is done.

Although a worker is not a background process, it is still a part of the Episode back-
end. In a cluster, workers are spawned by the local node on command from the
master node, and the worker always connects to the master node to receive its
work description. It also receives key information about other nodes in the cluster,
such as information on how to access files used in the task, files that may reside on
other machines or shared storage. The worker also reports progress, logs messages
and status back to the master node, which broadcasts them to all monitoring
(connected) front-end processes.

Watch
The watch process (formerly called monitor process, now deprecated) is responsible
for running one watch folder source configuration. It is, like a worker, a temporal
process spawned by a node. Watch processes are not distributed in a cluster so all
watches run on the master node. The watch reports file URLs back to the master
node which takes appropriate actions, typically to spawn a new started workflow
instance from the associated template workflow. The watch's logging messages are
reported to the master node, which broadcasts them to all front-end processes.
Episode 6.5

Episode Overview
Episode Architecture

27
IOServer
The IOServer process is used to enable file transfers and remote encoding, without
requiring shared storage. See Shared Storage for how to optimize a clustered setup
with shared storage.

Assistant
The Assistant process performs common internal tasks for the Episode front-end
such as browsing. It has no significant role in the system from the perspective of the
end user.

ClientProxy
The ClientProxy process is the front-end’s gateway to a node (or a cluster). It assists
the front-end to create/read/write configuration files, build workflows, and prepare
it all for submission to a node (local or remote). The ClientProxy is always the
gateway for the local computer’s front-end only, but can contact any remote public
node—for example another node in cluster-mode.

Figure 2. Episode ClientProxy connections.

The ClientProxy keeps any connection alive after the first connection request by the
front-end. ClientProxy gets status updates from the node it is connected to and
caches history for a configurable time period (default: 6 hours). This is mainly for
the purpose of integration status polling. For example, a finished job (successful or
failed) is accessible for a reasonable time after it is finished without sending history
requests to the node.
Episode 6.5

Episode Overview
Episode Processes

28
Episode Processes
This topic describes how to manage back-end processes on both MacOS and
Windows, and how to configure them.

Topics
■ Managing Back-end Processes (MacOS)

■ Managing Back-end Processes (Windows)

■ Back-end Process Configuration

Managing Back-end Processes (MacOS)
On MacOS, Episode’s background processes include:

• EpisodeNode

• EpisodeClientProxy

• EpisodeIOServer

• EpisodeAssistant

• EpisodeXMLRPCServer

These processes are launched by using launchd (man launchd, man
launchd.plist, man launchctl). When you start these processes via the CLI
(and the Episode GUI client starts them), they generate plist files in the directory
~/Library/Application Support/Episode/ and start up. When you shut down these
processes you (or the Episode GUI program does so automatically on exit), remove
the launchd job by label.

Note: Be sure to supply the path to the command, and enclose it in quotes to
permit spaces in the path. For example, from the root: ‘/Applications/Episode.app/
Contents/Resources/engine/bin/Episodectl’ launch start.

If the processes are installed—that is, symbolic links are created in ~/Library/
LaunchAgents/—the back-end processes are started when the user logs in. If you
want the processes to launch when you start the computer, you have to manually
copy or link the files into /Library/LaunchAgents/.

 It is a good idea to copy the files so a new launchd setting can be added to the
plist file, the UserName directive that tells launchd which user to run the processes
as, see man launchd.plist for more information.

Managing Back-end Processes (Windows)
On Windows, Episode’s background processes include:

• EpisodeNode.exe

• EpisodeClientProxy.exe

• EpisodeIOServer.exe
Episode 6.5

Episode Overview
Episode Processes

29
• EpisodeAssistant.exe

• EpisodeXMLRPCServer.exe.

Each process has a corresponding Windows service installed. The processes are
started and stopped via this service, either through the Windows Services control
panel or through the Episode CLI, using these commands:

Note: Be sure to supply the path to the command, and enclose it in double
quotes to permit spaces in the path. For example, from the root: “C:\Program
Files\Telestream\Episode 6\bin\episodectl.exe’ launch start.

• episodectl.exe launch start

• episodectl.exe launch stop

• episodectl.exe launch list

• episodectl.exe launch restart

Note: On a computer with UAC enabled, when attempting to start, restart, stop,
or list services, Windows may display an error: “Failed to open service (access is
denied”. To resolve the problem, disable UAC.

Back-end Process Configuration
All back-end processes have a configuration file in XML format, except the temporal
worker and watch processes. Some configuration options are either available in the
Episode GUI program or configurable through the CLI, but most are not.

If a configuration setting is edited manually, the affected process has to be
restarted in order for the change to take effect.

The processes that you may need to configure are the Node and the ClientProxy
services, and in some cases the IOServer process.

Documentation for most settings is located directly inside the configuration files.

Documentation for CLI-configurable settings is available using these commands:

• episodectl node -h

• episodectl proxy -h

• episodectl ioserver -h

Note: Be sure to provide a fully-qualified path to the episodectl command, and
use quotes (Mac OS X) or double quotes (Windows) if there are spaces in the path.

See the Episode User’s Guide for information regarding configuration settings
available in the Episode GUI program.

Table 1. Configuration File Directory by Operating System

Operating System Configuration File Directory

MacOS ~/Library/Application Support/Episode/

Windows 7 & 8, Windows
Server 2008 & 2012 C:\ProgramData\Telestream\Episode 6\
Episode 6.5

Episode Overview
Episode Concepts and Components

30
Episode Concepts and Components
To the user of the Episode graphic user interface program, Episode acts like a single
application. This is a convenient ruse—Episode is functionally a collection of
services and servers, utilized by Episode (the graphic user interface client program),
to configure and operate Episode. As you can see, the term Episode refers not only
to the graphic user interface client, but also the entire collection of services that
comprise the Episode system.

In addition to Episode, you can utilize Episode system via other clients—programs
that utilize the XML-RPC interface, plus the command line interpreter client.
Understanding Episode concepts and components, along with an architectural
understanding of how they relate, helps you get the most out of Episode.

Workflows, Tasks, and Sources
These components are the building blocks of Episode.

Topics
■ Workflows

■ Tasks

■ Sources

■ Post-deployment Processing Tasks

Workflows
An Episode workflow is a collection of Episode tasks and task interdependencies.

Workflows, as described (and displayed) in the Episode User’s Guide, are always
comprised of a Source, Encode, and a Deployment task—this is the pattern always
used in every workflow.

Figure 3. Episode workflow pattern as shown in the GUI.

From a system perspective, this is a bit of a misnomer. In actuality, the Source task is
not actually a part of the workflow—it is a separate template (as defined) and
process (when executing) that resolves the input dependency for the Encode task,
and submits jobs to the actual workflow: the Encoder, Deployment task, and
optional Post-deployment task, as defined in the target workflow.
Episode 6.5

Episode Overview
Episode Concepts and Components

31
Figure 4. Episode actual workflow pattern as used in an API.

Tasks
A task in Episode is a specific unit of work to perform—for example, encode a file, or
copy a file. Tasks exist in the context of a workflow, and have two states: a template
(or definition), and a process, when executing.

A task can range from complex, such as encoding a file, to very simple, such as
deleting a file. There are nine types of Episode tasks:

– Encode

– Transfer (Deploy in GUI)

– YouTube

– Execute

– Mail

– MBR

– Move

– Delete

– Localize

All tasks have a configuration, which describes how to perform the work. A Delete
task, for example, must be provided a valid string, which identifies which file it
should delete, while an Encoder task must be provided the format it should use to
encode a file.

Tasks are always one of four types: Source, Encoder, Deployment, and Post-
deployment Processing. Post-deployment Processing tasks are not exposed in the
Episode GUI program; they can only be configured and used in an API.

Tasks may be independent of other tasks, or they may depend on other tasks.

Figure 5. Tasks are the building blocks of a workflow.

Note: This distinction is important to understand and take into consideration
when utilizing the APIs to implement Episode solutions and utilize them.
Episode 6.5

Episode Overview
Episode Concepts and Components

32
As an illustration, this example workflow is comprised of three tasks—a file localize
task, an encode task, and a deployment task. Each of these tasks has a
configuration specific to its task type.

The encoder task has a configuration dependency—the URL of the localized input
file. Similarly, the deployment task also has a dependency - the URL of the file
created by the encode task. The encode and deployment tasks also have task
dependencies - the previous task executing and exiting successfully.

Tasks that are not connected downstream of another task (such as this example’s
file task), may have unconnected run-time dependencies, which must be set and
supplied externally. For example, if you have a watch folder source task, it creates a
run-time dependency of a file for input. When the file is supplied (dropped into a
folder), that dependency is resolved and a job is submitted.

The file task requires a fully-qualified path to the input file which it should localize.
To supply this path, you could use an external monitor system via the XML-RPC
interface, or you could call the file task from the command line interface to supply
the required path, or the path could be supplied by Episode itself.

The order of task execution is controlled by task interdependencies. These can be
the result of another task (for example, success or failure), or by a delivered value
from another task—the URL of a produced file, for example. In the following figure,
the Encode task delivers the URL of the encoded output file to the Transfer task.

Figure 6. Simplest Episode workflow.

When Episode is directed to process a workflow (for example, the user clicks the
Submit button in the Episode client application) there is always an Episode Source
accompanying it (this combination of source and workflow is referred to as an
Episode Submission).

Sources
There are four types of Episode Sources:

– File List

– Watch Folder

– EDL

– Image Sequence

Ultimately, an Episode source specifies which file(s) the workflow should operate
on and how it should interpret the files. For example, an Image Sequence source
specifies that the files should be interpreted as frames in a movie, whereas a File
List source specifies separate movies.
Episode 6.5

Episode Overview
Episode Concepts and Components

33
Episode sources always operate on template workflows. Template workflows can
not run by themselves, because they have no source file to operate on. When an
Episode Source operates on a template workflow, a started workflow (which
contains the information about the source-file to work on), is created from the
template workflow.

Figure 7. Episode template workflow spawning started workflows.

The tasks in the started workflow are then executed. Template workflows are
displayed in the left panel of the Episode client application’s Status window. Started
workflows are displayed in the right panel of the Status window.

For most types of submissions, the template workflow exists only temporarily. For
example, when an Episode Submission with a File List source is submitted:

1. The template workflow in the submission is created

2. For each file in the file list a started workflow is spawned

3. The template workflow is discarded

4. The tasks in the started workflows are executed.

For submissions containing watch sources, the template workflow exists as long as
the watch folder exists. For each file the watch picks up, a started workflow is
created.

Post-deployment Processing Tasks
Post-deployment tasks are also part of a workflow. These are optional, advanced
feature tasks (such as email notification and execute tasks) that you can only define
and execute via one of the APIs.
Episode 6.5

Episode Overview
Variables

34
Variables
Sometimes it's desirable (or necessary) to add dynamic elements to a workflow. A
basic dynamic example—and one which is part of every workflow by default—is to
create an output name that is based on the name of the source file and the type of
Encoder task used to encode the file.

The file-naming pattern in this example is a configuration in the Transfer task,
which specifies how to construct the output file name. Variables may be used in a
wide range of other task configurations. Examples include mail message
construction, execute task environment variables and arguments, YouTube
descriptions etc.

Execute episodectl variables for a description of all variables.
Episode 6.5

Episode Overview
Episode Tags

35
Episode Tags
The concept of tags in Episode is used to enable an easy way of controlling
execution of tasks in a cluster. For example, you can use a tag to control which
node, computer, or even group of computers a certain task should run on.

Tags are used primarily by the Execute task (or Script task), an advanced feature
which is often dependent on the operating system, scripting software, or
languages that are on the platform where the node is installed.

Figure 8. Tags are used to control workflow execution.

Nodes can only be configured using the CLI, directly on the target node; they can
be configured on one or more machines in a cluster. Workflows (or tasks in a
workflow) are then configured to only run on machines with a certain tag, or to not
run on a machine with a certain tag (in both CLI and XML-RPC interfaces).

Execute episodectl tags for configuration directives and examples.
Episode 6.5

Episode Overview
Episode Tags

36
Episode 6.5

37
Creating Tasks, Sources,
Workflows & Submissions
The purpose of this chapter is to functionally describe how to create tasks and
sources in the various interfaces. Likewise, the topic of creating workflows and
submissions is described from a high-level perspective, taking into account the
various interface distinctions.

These topics are covered:

■ Creating Tasks

■ Setting Task Priority

■ Creating Sources

■ Creating Workflows and Submissions

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, from the root: ‘Applications/Episode.app/Contents/
Resources/engine/bin/episodectl’ launch start.

On Windows, from the root: “C:\Program Files\Telestream\Episode
6\bin\episodectl.exe” launch start.

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Tasks

38
Creating Tasks
To create a task, you create a task configuration file. This file specifies what the task
should do when it is executed. These configuration files are saved as .epitask files (a
file with an epitask extension).

Note: Beginning with Episode 6.4, the Uploader task has been renamed Transfer
in both the CLI and the XML-RPC interfaces, although the term Uploader still can
be used, and remains backward-compatible.

These task files can be created in all interfaces with a few exceptions—see the
tables below:

Table 2. Creating Tasks in the Episode GUI Program

Tasks Command Default Save Location

Encoder New Task > New Encoder OS X:
~/Library/Application Support/
Episode/User Tasks/Encoders/

File > New > Encoder Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Encoders\

Drag Encoder template into
drop area

Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Encoders\

Transfer New Task > New
Deployment

OS X:
~/Library/Application Support/
Episode/User Tasks/Deployments/

File > New > Deployment Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Deployments\

Drag folder into drop area Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Deployments\

YouTube—Drag in YouTube
template

Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Deployments\
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Tasks

39
For detailed information about these tasks, see the CLI documentation using the
CLI command episodectl task -h.

Task configuration files are saved in XML format so they can be easily edited,
although manual editing is not recommended unless necessary.

Some tasks can be created on-the-fly when performing a submission through the
CLI or XML-RPC interfaces. For example, a destination (output) directory can be
specified instead of a Transfer task file, in which case a default configuration will be
created automatically for that destination directory.

Certain common configuration values, such as naming convention for the output
file, have specific options in the submission commands. For example, the
--naming option in the CLI and the naming property in the XML-RPC interface.
These configuration names and values are also referred to as variables. See
Variables for more information.

Table 3. Creating Tasks using the Episode CLI

Tasks CLI Command Default Save Location

Transfer episodectl task transfer Current working directory

YouTube episodectl task youtube

Execute episodectl task execute

Mail episodectl task mail

MBR episodectl task mbr

Table 4. Creating Tasks using the Episode XML-RPC Interface

Tasks XML-RPC Method Default Save Location

Transfer taskCreateTransfer File content returned in response

YouTube taskCreateYouTube

Execute taskCreateExecute

Mail taskCreateMail

MBR taskCreateMBR
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Setting Task Priority

40
Setting Task Priority
Priority is only one of the parameters considered when the Node schedules tasks
for execution. Other parameters are license requirements, platform requirements,
user defined Tags, and a sequential number given to each workflow when it is
submitted—that acts as a tie-breaker when everything else is equal. When priority
and other requirements are equal, the sequence number makes it like a workflow
queue: the first submitted workflow is the first to be distributed for execution.

Two different priorities can be configured prior to workflow submission: a task
priority and a (template) workflow priority. The workflow priority is used as an
initial task priority adjustment when the workflow is spawned (when the workflow
and its tasks are created). It is possible to change the (template) workflow priority
for a persistent workflow. That is, for a workflow attached to a watch folder source,
but for spawned (started) workflows, the priority is a read-only constant value. After
a workflow is spawned, the task(s) priority is the only priority that can be altered
and it is the priority used when scheduling tasks for execution.

Two different priorities are implemented because it enables the user to decide
which is more important—individual tasks (for example, a certain Encode task) or
the source file, or where the source file came from. For example, a certain customer
or a certain watch process.

XML-RPC and CLI Priority Commands
For workflows, priority is always set/configured at the time of submission. In the
GUI you use the priority control.

In XML-RPC the priority option is available in the submitBuildSubmission and
submitSubmission commands.

In the CLI, --priority is used. All creatable tasks (taskCreateTransfer |
taskCreateYouTube | taskCreateExecute | taskCreatemMail |
taskCreateMBR) have the --priority option.

Since there currently is no way to create Encode tasks using the CLI and not
changeable via XML-RPC, there is a command for setting priority in an existing
Encode epitask file: episodectl.exe task set <path to existing task
file> --priority <priority>.

During run-time (after submission time/workflow spawning), the task(s) priority
may be changed with the XML-RPC command jobSetPriority, and the CLI
command episodectl.exe job set-priority, The initial task priority
adjustment can be set on workflows attached to watch processes with the XML-RPC
command monitorSetPriority and the CLI command episodectl.exe
watch-folder set-priority (formerly episodectl.exe monitor set-
priority, now deprecated).
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Sources

41
Creating Sources
Episode supports several types of sources: File List, Watch Folder, EDL and Image
Sequence. Except for EDL and Image Sequence sources, which are not available in
the Episode GUI program, all sources can be created in all interfaces.

Note: Sources are saved in the Episode GUI program as .epitask files, although
they are not strictly tasks by definition. In the CLI, sources are saved as files with
the .episource file extension.

Some sources can be created on-the-fly when performing a submission through
the CLI or XMLRPC interfaces. For example, a list of source files will automatically
create a File List source, and a directory could automatically create a default Watch
Folder configuration for that directory.

Table 5. Creating Sources using the Episode GUI Program

Sources Command Default Save Location

File List Drag files into source
drop area

MacOS X:
~/Library/Application Support/Episode/
User Tasks/Sources/

Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Sources\

Watch
Folder

Drag folder into source
drop area

Windows 7, 8, Server 2008, 2012:
C:\ProgramData\Telestream\Episode
6\User Tasks\Sources\

Table 6. Creating Sources using the Episode CLI

Sources Command Default Save Location

File List episodectl source filelist Current working directory

Watch Folder episodectl source watch-folder

EDL episodectl source edl

Image
Sequence episodectl source iseq

Table 7. Creating Sources using the Episode XML-RPC Interface

Sources Command Default Save Location

File List sourceCreateFileList File content returned in response

Watch Folder sourceCreateMonitor

EDL sourceCreateEDL

Image
Sequence sourceCreateISEQ
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

42
Creating Workflows and Submissions
Workflows are created interactively in the Episode GUI program. Using the CLI and
XML-RPC interface, they are created on-the-fly – that is, the workflow configuration
is part of the submission command. The command in the CLI is episodectl
workflow submit; in XMLRPC, it is submitBuildSubmission.

Note: When submitting a submission with submitSubmission (XMLRPC) or
episodectl ws -s... (CLI), you can optionally override the source in the prebuilt
submission with another provided source. The overriding source must be the
same source type as the source in the prebuilt submission.

For example, if the prebuilt submission (the submission specified after -s in the
CLI) has a file-source, it can only be replaced by another file-source (not a watch-,
edl-, nor iseq-source).

Episode has three distinct groups of (user-specifiable) tasks: Encoders,
Deployments, and Post-deployment tasks.

Figure 9. Encoder, Deployment, and Post-Deployment tasks

A workflow is built as a tree, branching out from Encoder actions to Deployment to
Post-deployment actions. In the Episode GUI program, you specify a Deployment
for each Encoder task. However, in CLI and XML-RPC, the default behavior is that
you specify a Deployment for all Encoders.

During task execution, Deployments that are specified in the submit command are
only executed after every Encoder in the submission has executed. Likewise, Post-
deployment tasks in the submit only run after every Deployment in the submission
has executed. Thus, depending on the number of Encoders or Deployments in the
submit, the Deployments and Post-deployment tasks might be automatically
replicated to the empty branches, for the workflow to execute correctly.
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

43
This effect of copying tasks should be taken into consideration when polling for
status.

Figure 10. Workflows use a tree structure in CLI and XML-RPC.

The execution of Post-deployment tasks are always controlled by the success or
failure of a Deployment task. A Deployment task is passed a failure status if either
the deployment fails or if the preceding Encode task fails. It is passed the success
status only if both the preceding Encode task succeeds and the Deployment
succeeds. In other words, a Post-deployment configured to run on success will only
run if all preceding tasks succeeds and a Post-deployment configured to run on
failure will run if any preceding task fails.

Below is an example CLI submission command (with options on separate lines for
clarity only) with a typical workflow – two Encoders, a single Deployment task, and
one Execute task that runs in case of failure and one in case of success. It also has a
Mail task that sends an email in case of failure. The submission is accompanied by a
single source file. Also, notice the copying/branching of the Deployment task and
the Post-deployment tasks.

episodectl workflow submit
--file source.mov
--encoder H264.epitask Flash.epitask
--destination MySAN.epitask
--execute SuccessScript.epitask success FailureScript.epitask
failure
--mail EMail.epitask failure

This command produces a workflow like this in the Episode GUI program:
Episode 6.5

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

44
Figure 11. Example workflow.

After workflows are submitted, two kinds of IDs can be retrieved. One ID is the
template workflow ID – the parent ID of the whole submission – from which any
number of started workflows may be spawned. The other IDs are the individual
started workflow IDs. The IDs can be used to obtain status about the submission's
components, a group of workflows (parent-ID/template ID) individual workflows
(started workflow ID) or the individual tasks within those workflows. The IDs may
also be used to stop workflows.
Episode 6.5

45
Using Advanced
Features
This chapter describes Episode’s advanced features.

These topics are covered:

■ Advanced Features

■ Advanced Clustering

■ Shared Storage

■ Named Storage

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, from the root: ‘Applications/Episode.app/Contents/
Resources/engine/bin/episodectl’ launch start.

On Windows, from the root: “C:\Program Files\Telestream\Episode
6\bin\episodectl.exe” launch start.

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).
Episode 6.5

Using Advanced Features
Advanced Features

46
Advanced Features
Certain Episode features are termed advanced features and may be available only in
the CLI or API, or may require the Episode Pro or Engine license. If you don’t have
the required license, please contact your Telestream representative, or contact
Telestream directly—see Company and Product Information.

Workflow jobs using advanced features available only in the XML/RCP or CLI
interface are displayed in the Episode graphic user interface’s status window, but
they cannot be displayed in the workflow editor—if you attempt to display them,
Episode displays a dialog indicating they cannot be displayed.

For detailed information about the XML-RPC interface or the CLI, refer to the
XMLRPC HTML or CLI HTML descriptions on the Telestream.net web site.

Advanced Sources
• Image Sequence Input. Enables you to submit image sequences, including

DPX, TGA, TIFF, JPEG and PNG formats, or create watch folders to watch for image
sequences and submit them to a workflow for transcoding.

Note: For a detailed list of supported image sequence formats, see the published
Episode Format Support sheet at Telestream.net.

• Edit Decision List (EDL) Conforming. Enables you to create and submit an Epi-
sode EDL source which identifies a set of source files to be combined into a sin-
gle output file. Each file in the EDL can be trimmed based on time-code or time.

When using EDL’s as a source, your workflow must observe these constraints:

• You can’t add intro/outro to encoders

• Both video and audio tracks must be present

• Encoder can not copy tracks

• Encoders must not have streaming enabled.

Advanced Encoding
• Microsoft Smooth Streaming. Enables you to create multi-bitrate Microsoft

Smooth-Streaming packages for Web and Microsoft-compatible devices.

• Apple HLS Streaming. Enables you to create multi-bitrate segmented stream-
ing packages for Web and Apple devices.

Advanced Post-Deployment Tasks
The following tasks can be executed from the Mac or Windows command line using
the Episode command line interface. When entries contain spaces, remember to
enclose them in single quotes for Mac (‘), double quotes for Windows (“). Also recall
that Windows uses backslashes, Mac forward slashes. For details of CLI operation,
please see Using the Command Line Interface (page 57).
Episode 6.5

Using Advanced Features
Advanced Features

47
• Email Notification Task. Enables you to send custom email notifications as part
of your workflow, after the deployment task executes. See Table 8.

• Execute Task. Trigger user-written or 3rd party scripts (or programs) as part of
your workflow to expand the functionality available in your workflow, after the
deployment task executes.

Note: On Windows, Execute tasks sometimes do not function as expected. These
failures may occur because of incorrect permissions, file extensions associated
with the wrong application, or the task being run in a process spawned by a
service running under the local system user. Using a variable such as
%USERNAME% may also cause a failure. Lastly, the --parse-progress
argument is not supported on Windows.

Table 8. Mail Notification Example CLI Commands

Mail Tasks Enter these commands

E-mail on Job Success

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
6\bin\

Create mail task ./episodectl task mail

User name for outgoing mail -u username@domain.com

Password for outgoing mail -p PASSWORD

Server for outgoing mail -s mailservername.domain.com

From mail sender address -f username@domain.com

To mail address -t username@domain.com

Mail subject (can use $variables) --subject ‘$source.file$ encoded successfully’

Mail message --message ‘Task completed successfully’

(Windows: use double quotes--” “.)

Name the epitask --name ENCODE_SUCCESS

Save the epitask in... -o /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/

E-mail on Job Failure

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
6\bin\

Create mail task ./episodectl task mail
Episode 6.5

Using Advanced Features
Advanced Features

48
User name for outgoing mail -u username@domain.com

Password for outgoing mail -p PASSWORD

Server for outgoing mail -s mailservername.domain.com

From mail sender address -f username@domain.com

To mail address -t username@domain.com

Mail subject (can use $variables) --subject ‘ERROR: $source.file$ encode failed’

(Windows: use double quotes--” “)

Mail message --message ‘Task failed and needs attention’

(Windows: use double quotes--” “)

Name the epitask --name ENCODE_FAILED

Save the epitask in... -o /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/

Table 8. Mail Notification Example CLI Commands (continued)

Mail Tasks Enter these commands
Episode 6.5

Using Advanced Features
Advanced Features

49
CLI Workflow Commands

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
6\bin\

Submit a workflow ./episodectl ws

Choose an episubmission file
(which includes source, encoder,
and destination)...OR...

Choose a source file

-s /Users/myuser/Desktop/CLI/MailTask/
myworkflow.episubmission

-f /Users/myuser/Desktop/CLI/MailTask/
filename.mov

Choose a previously saved
encode epitask

-e /Users/myuser/Desktop/CLI/MailTask/
EncodeOP1a.epitask

Select destination directory for
encoded file

-d /Users/myuser/Desktop/CLI/MailTask/
output/

Select previously created epitask
to send email when workflow is
successful

-x /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/ENCODE_SUCCESS.epitask success

Select epitask to send email when
workflow has failed

-x /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/ENCODE_FAIL.epitask failure

To see progress in the CLI -wv

List available mail task options ./episodectl task mail -h

Table 8. Mail Notification Example CLI Commands (continued)

Mail Tasks Enter these commands
Episode 6.5

Using Advanced Features
Advanced Clustering

50
Advanced Clustering
A cluster consists of nodes (EpisodeNode process). A node is considered private
when it is in default mode, and public when it is in cluster mode. When the node is
public, it is remotely accessible for clients and other nodes that may be part of the
same cluster. A cluster consists of one or many nodes, but clients can only
communicate with the master node. In a low-volume implementation, even a one
node cluster (on a dedicated computer) can be used to encode files for multiple
clients running on desktop computers.

A cluster can be created either by using Bonjour or by specifying IP addresses or
host names. The choice of method is mostly dependent on how dynamic a cluster
should be. If computers are joined ad-hoc where participating computer can easily
come and go, we suggest using Bonjour. If a cluster is mostly static—the cluster is
made up of dedicated computers that are considered permanent over time, it's
usually better to join them together by address.

Topics
■ Clustering Configuration

■ Avoiding Bonjour

■ Using a Specific Ethernet Interface
Episode 6.5

Using Advanced Features
Advanced Clustering

51
Clustering Configuration
The node's configuration identifies it as a master or participant. It also specifies if it
should use Bonjour to find a cluster master, publish itself on Bonjour (that is, be
visible on the network), or contact a master node by address. You can manually edit
the node's configuration file or use the CLI to configure the node at run-time. If the
configuration is edited, the node process has to be restarted to pick up the new
configuration.

There are six main clustering configuration settings in a node:

– Active—If the node is in cluster mode, i.e. public mode.

– Backup—If the node should be the master.

– Name—The name of the cluster to be a part of.

– Search—If Bonjour should search for the master of the cluster.

– Publish—If the node should publish itself on Bonjour.

– Hosts—The address of the master node of the cluster.

These configuration values are in the <cluster> element in the Node.xml file. For
details, see Back-end Process Configuration.

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">
...

<cluster>
<active>no</active>
<name>Episode Cluster</name>
<backup>no</backup>
<search>yes</search>
<publish>yes</publish>
<listen-port>40420</listen-port>
<listen-interface>All</listen-interface>
<listen-version>All</listen-version>
<hosts>

<host></host>
</hosts>
<dead-host-time>60000</dead-host-time>
<stale-host-time>6000</stale-host-time>

</cluster>
...

</node-configuration>
...

To set up a cluster with the CLI, create a new cluster on the node you’re using as
master, with the command:

episodectl node create MyCluster
Episode 6.5

Using Advanced Features
Advanced Clustering

52
Now the configuration settings should look like this, and the node is ready to serve
client requests:

<active>yes</active>
<name>MyCluster</name>
<backup>yes</backup>
<search>yes</search>
<publish>yes</publish>
<hosts>

<host></host>
</hosts>

To determine what is published on Bonjour, execute episodectl status
clusters.

To view the status of an individual node, execute episodectl node info
[address] where address is the IP address or hostname of the node to contact
(default: local).

To view the overall status of a cluster: Execute
 episodectl status nodes --cluster MyCluster

or
episodectl status nodes [address]

where address is the IP or hostname of a node in the cluster.

If you want to join another node to the cluster, go to that computer and execute
one of the following commands:

To use Bonjour to find the master, execute episodectl node join MyCluster

To specify the address to the master node, execute episodectl node join
--connect [address] where address is the IP or hostname of the master node.

Use the configuration option use-bonjour-IP-lookup to control how IP
addresses for Bonjour Episode nodes are resolved. If false (default), Episode expects
the operating system to resolve the IP address using the hostname of the
EpisodeNode found on Bonjour. If true, Episode resolves the IP address using the
Bonjour service.

Setting use-bonjour-IP-lookup to true can resolve some connectivity issues, in
particular ones where the user has restricted the EpisodeNode to only listen on
specific network interfaces.
Episode 6.5

Using Advanced Features
Advanced Clustering

53
Avoiding Bonjour
When creating a cluster, execute the CLI episodectl command with these options:
episodectl node create MyCluster --search no --publish no
- or -
edit the configuration files manually to specify the Ethernet interface you want to
use, and turn off Bonjour Lookup (see below.)

Then, restart the node using: episodectl launch restart - node.

When joining other nodes, add these options in the join command as well:
episodectl node join --connect [master address] --search no
--publish no.

Note: In order to use the Episode graphic interface program on a node that does
not employ Bonjour, the node has to be part of the cluster since you cannot
connect by IP address.

Using a Specific Ethernet Interface
Enter the address of desired interface when joining nodes to the cluster. If you want
the node to only accept incoming connections on a specific interface, you need to
change the <listen-interface> setting in the Node.xml file. Since the node
should always listen on the loopback interface too, that interface should be
specified—separating them by a semicolon:

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<cluster>

...
<listen-interface>lo0;en0</listen-interface>
...

</cluster>
...
</node-configuration>

It is also possible to specify an IP address (which must be done on Windows):

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<cluster>

...
<listen-interface>127.0.0.1;10.0.0.1</listen-interface>
...

</cluster>
...
</node-configuration>

If the IOServer is used (instead of configuring a shared storage), you may do the
same in its configuration file—IOServer.xml (see Back-end Process Configuration.)
Episode 6.5

Using Advanced Features
Shared Storage

54
Setting Bonjour IP Lookup to No
Finally, set the Bonjour IP lookup option to No, in the assistant.xml and node.xml
files:

...
<use-bonjour-IP-lookup>no</use-bonjour-IP-lookup>
...

Shared Storage
If you are planning to use shared storage, you should configure the File Cache in
the Episode GUI program, and also configure the <resource-base-path> in the
Node.xml configuration file (see Back-end Process Configuration.) This cache path
should be configured to point to the shared storage. Otherwise, Episode's IOServer
will be used to access each nodes local file cache in a cluster.

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<node>

...
<resource-base-path>/Path/to/Storage</resource-base-path>
...

</node>
...

</node-configuration>

Due to the difference in how file resources are identified on Windows and MacOS
file systems, it is not possible for Episode on Windows to identify a shared storage
referenced in a MacOS manner as shared storage, and vice versa. If you want
Episode to use shared storage between MacOS and Windows, you should use
Named Storage instead.
Episode 6.5

Using Advanced Features
Named Storage

55
Named Storage
The Named Storage feature allows you to define a storage location, such as a SAN,
with a user-configurable name so that the same physical location can be used
across Mac and Windows platforms even though the local path to that storage is
different on each machine. Named Storage can be used within a cluster to permit
access to files by multiple machines of either platform belonging to the cluster.

Named Storage is implemented using CLI commands, which means that you must
have Episode Pro or Engine with API. For instructions in using the CLI, please refer
to the Episode Advanced User’s Guide. To access CLI help for instructions in using
Named Storage, enter the following in the CLI:

Windows: episodectl ns --help

Mac: ./episodectl ns --help

Named Storage Simple Example
Windows Machine1 accesses a media location on a SAN using a windows path S:\

Mac Machine2 accesses the same location using a mac path /Volumes/MediaSAN/

In order for Episode to recognize both locations as the same physical storage, the
CLI Named Storage feature must be used. You enter a CLI command on each
machine that gives the physical location a name common to both machines. Then
when that location is used, the system compares lists of named storage and
matches them up so that the IO Server is not used and the files are moved directly
from that storage. These are the commands you use for the two Windows and Mac
example machines:

On Windows Machine1: episodectl ns --add MediaSAN S:\

On Mac Machine2: ./episodectl ns --add MediaSAN /Volumes/MediaSAN/

Named Storage Cluster Example
You can also set up Named Storage to work with an Episode cluster, as this example
illustrates. Adjust details shown in the example to fit your situation and network.

Note: Named storage must be defined on all machines before they join the
cluster.

Starting Conditions
1. A network location is mounted on a Mac with the volume name “studioshares”.

2. Note the folder level where the “root” of this mounted volume is located:
smb://<servername>/<folder1>/<folder2>/studioshares/

3. Also note that once mounted, the path to this location on this machine is this:
/Volumes/studioshares/
Episode 6.5

Using Advanced Features
Named Storage

56
4. On Windows, you need to establish and note the full network path to this same
location. In this example, “studioshares” is a shared folder on the server:
\\<servername>\<folder1>\<folder2>\studioshares\

Named Storage Setup
1. On the Mac, define the named storage:
./episodectl node storage --add stgservices /Volumes/
studioshares/stgservices/

2. On Windows, define the same named storage but use the full network path:
episodectl node storage --add stgservices
\\<server-name>\<folder1>\<folder2>\studioshares\stgser-
vices\

Note: If there are any required user credentials for this server, add them as part of
the path when defining the named storage:
\\<user>:<password>@<servername>\<folder1>\<folder2>\studiosha
res\stgservices\

The key detail to remember regarding the named storage defined path is that it
must end in the same directory on all machines. In this case it’s “stgservices”.

3. Create the cluster.

4. Join or submit to cluster all client machines.

The cluster should now be operational and the named storage accessible to all
machines in the cluster.

Note: If you need to add new named storage to an existing cluster, you must take
down the cluster first and ensure that all machines are working alone. Then you
can add new named storage to each machine, create a new cluster, and join or
submit to cluster all the machines that you want to include in the cluster.
Episode 6.5

57
Using the Command
Line Interface
This chapter generally describes the Command Line Interface (CLI) for Episode.

The CLI is implemented on both Windows and MacOS; while use of the CLI is
generally identical, accessing and running the CLI interpreter are different, and
these differences are noted as appropriate.

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well.

Note: For license requirements, see XML-RPC and CLI License Requirements.

These topics are covered:

■ Starting the CLI Interpreter [Windows]

■ Starting the CLI Interpreter [MacOS]

■ Determining if Episode is Running

■ Using the CLI Interpreter

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, enter this path from the root (changed in Episode 6.5):
‘/Applications/Episode.app/Contents/Resources/engine/bin/episodectl’ launch start

On Windows, enter this path from the root:
“C:\Program Files\Telestream\Episode 6\bin\episodectl.exe” launch start

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).
 Episode 6.5

Using the Command Line Interface
Starting the CLI Interpreter [Windows]

58
Starting the CLI Interpreter [Windows]
Before you can use the CLI interpreter or use the CLI in other ways on the Windows
platform, the Client Proxy service must be running. Usually, you start all Episode
services when your computer starts, even though you may not need them. By
default, all Episode services are set to start up automatically when you install
Episode. After installation, you should restart your computer to start all Episode
services.

Based on your requirements, you can make sure your services are started by
following these guidelines.

Starting Episode Services
The easiest way to start all Episode services is to start the Episode program:

Go to Start > All Programs > Telestream > Episode 6 > Episode 6.

When you start the Episode GUI program, all Episode services are started if they are
not currently running. After starting Episode, you can stop the Episode GUI
program if you choose; all Episode services remain running until explicitly stopped
or the computer is shut down.

Note: Often, you’ll keep Episode (the graphic user interface program) running so
that you can use it to determine job status, refer to workflows, etc., as you interact
with Episode via the CLI.

Other Alternatives
If your services are set to startup type Manual (or are not started), you can start
them in the following ways:

• Start each Episode service manually in the Control panel

• Set each Episode service startup type to automatic in the Control panel

• Start each (or all) service using the CLI Launch command.
Episode 6.5

Using the Command Line Interface
Starting the CLI Interpreter [Windows]

59
Starting Episode Control
Episode Control—the CLI Interpreter program—is installed by default in
C:\Program Files\Telestream\Episode 6\bin\episodectl.exe.

If you installed Episode in another location, modify the commands below
accordingly.

Note: This topic assumes you are familiar with the Command window and its
features. If you’re not familiar with the Command window features, read a
Command window help document.

To start Episode Control, follow these steps:

Step 1 Click Start to display the Search Programs and Files text field. Enter cmd and press
Enter to display the Command window.

Step 2 Navigate to the Episode bin folder, type the following, and press Enter:
cd "C:\Program Files (x86)\Telestream\Episode 6\bin\"
Quotes are necessary because of spaces in the path.

Step 3 To use the CLI, type episodectl along with your function and any arguments to
execute the Episode command. For details, see Determining if Episode is Running.

Note: If your Episode services are not running, before proceeding, execute
episodectl launch start with the proper arguments (see Return codes of processes
in a UNIX-like environment do not display in the interpreter. To display the return
code of the latest run process, enter echo $? in Terminal.app.).
 Episode 6.5

Using the Command Line Interface
Starting the CLI Interpreter [MacOS]

60
Starting the CLI Interpreter [MacOS]
Before you can use the CLI interpreter or use the CLI in other ways, at least the
Client Proxy services must be running. Usually, you’ll start all Episode services, even
though you may not need them. By default, all Episode services are set to startup
type Automatic when you install Episode. After installation, you should restart your
computer to start all Episode services.

Based on your requirements, you can make sure your services are started by
following these guidelines.

Starting Episode Services
To start all Episode services, start the Episode application from the dock bar or go to
Applications > Episode and double-click the Episode application.

When you start the Episode application, all Episode services are started, if they are
not currently running. After starting Episode, you can stop Episode (the graphic
user interface program) if you choose; all Episode services will remain running until
explicitly stopped or the computer is shut down.

Note: Often, you’ll keep Episode (the graphic user interface program) running so
that you can use it to determine job status, refer to workflows, etc., as you interact
with Episode via the CLI.

Other Alternatives
If your services are set to startup type Manual (or are not started), you can start
them in the following ways:

• Start each Episode service manually in the Control panel

• Set each Episode service startup type to automatic in the Control panel

• Start each (or all) service using the CLI Launch command.

Starting Episode Control
Episode Control—the CLI Interpreter program—is installed in the Episode
application bundle.

Note: This topic assumes you are familiar with Terminal and its features.

To start Episode Control, follow these steps:

Step 4 Open a Terminal window (Applications > Utilities > Terminal).

Step 5 Navigate to Episode’s bin folder so you can execute the Episode Control program:
/Applications/Episode.app/Contents/Resources/engine/bin/.

Type the following command and press Enter:
cd /Applications/Episode.app/Contents/Resources/engine/bin

Step 6 In the bin folder, type the following with your function and any arguments to
execute the Episode command: ./episodectl

Note: If typing the full path is inconvenient you can add the directory to your
PATH, or put a link to episodectl in one of the directories in your PATH.
Episode 6.5

Using the Command Line Interface
Determining if Episode is Running

61
Determining if Episode is Running
Before you submit jobs for encoding or to query an Episode node, make sure that
Episode is running.

To determine that Episode is running on your local computer, execute one of these
commands (for Windows, leave off the ./):
./episodectl launch list
./episodectl ll

In response, the system should display a list of the running Episode processes (on
Windows, the PIDs are not shown):

EpisodeXMLRPCServer is running with PID 32420
EpisodeClientProxy is running with PID 32415
EpisodeAssistant is running with PID 32410
EpisodeIOServer is running with PID 32405
EpisodeNode is running with PID 32400

If Episode is not started, start it in one of two ways:

Start the Episode graphic user interface program

OR

In the CLI, execute one of these commands (for Windows leave off the ./):
./episodectl launch start
./episodectl ls
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

62
Using the CLI Interpreter
This topic describes generally how to interact with the CLI interpreter.

Executing Commands
To execute a command in Episode Control, execute Episode Control with the
appropriate command and parameters. Make sure your command interpreter or
terminal window is in the directory where Episode Control (Episodectl.exe) is
located:

[Windows] C:\Program Files\Telestream\Episode 6\bin\

[MacOS] /Applications/Episode.app/Contents/Resources/engine/bin/

Enter the program name, followed by the command and parameters and press
Enter to execute the command.

Note: In MacOS, precede the program name with ./ as in the following example:
./episodectl node create --name HDCluster

For Windows, the ./ should be left out.

Return Codes
Episode Control returns 0 when a command completes successfully, and returns 1
when most errors occur. When an error occurs, Episode Control returns an error
message as well. Some commands return special return codes, which are described
in the help page for the command.

Note: Return codes of processes in a UNIX-like environment do not display in the
interpreter. To display the return code of the latest run process, enter echo $? in
Terminal.app.

Displaying Episode Variables
To display the variables that can be set or read in conjunction with tasks, enter
either of these two commands (for Windows, leave off the ./):

./episodectl variables

./episodectl v

Displaying Episode Tags
To display the tags that can be used in conjunction with clusters, enter either of
these two commands (for Windows, leave off the ./):

./episodectl tags

./episodectl t
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

63
Executing Commands to a Cluster
The default target in the CLI is always the local node if nothing else is explicitly
specified. You need to use -c with CLI commands when intended for cluster-wide
execution— join, submit, watch-folder, status monitors, etc. Otherwise, the CLI will
only execute the command in the local node.

Displaying CLI Help
To display help (man pages) in Episode Control, execute Episode Control with the
command keyword help, or whelp. The whelp command displays the help text
the full width of the console window. When displaying help on a command, you
can specify the -h option. You can filter help contents by command or command
and sub-command, as shown below.

Help Command Syntax
./episodectl help | whelp [<command>] | [<command>] [<sub
command>] | all

Example (for Windows, leave off the ./):

./episodectl help all returns the entire help set.

./episodectl help watch-folder returns the help text for the watch-folder
command.

Writing Help to a Text File
To write help to a file, add > <filename.txt> to the command.

Example (for Windows, leave off the ./):
./episodectl help all > EpisodeCtl_Help.txt

This command writes the entire help text to this text file: EpisodeCtl_Help.txt.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

64
Episode 6.5 CLI Listing
The following pages include a complete listing of the CLI Help output. See Writing
Help to a Text File on the previous page for details about how to output the Help to
a text file.

 TELESTREAM EPISODE COMMAND LINE INTERFACE

DESCRIPTION
 The episodectl.exe program returns 0 on success and 1 for general errors. If 1 is
 returned an error message is also printed. Some commands have special return codes
 which are stated in their description.

SYNOPSIS

 episodectl.exe help [<command>]
 episodectl.exe help [<command>] [<sub command>]

 If you want to get all help text you can write

 episodectl.exe help all

 You can also use whelp instead of help to get the description texts printed in the
 full width of the console.

 episodectl.exe whelp [<command>] | [<command>] [<sub command>] | all

 You can also use the -h option like this:

 episodectl.exe [<command>] -h
 episodectl.exe [<command>] [<sub command>] -h

 episodectl.exe --version [<product>|<api>]

 Print version information. If the optional argument product> or api> is specified,
 only the relevant version number is printed, without newline, suitable for
 program/script string comparison.

 episodectl.exe variables
 episodectl.exe v

 An overview of "variables" that can be set and/or read to/from tasks.

 episodectl.exe tags
 episodectl.exe t

 An overview of the "tags" concept and how to use them in a Cluster.

 episodectl.exe priority

 An explanation of how priority works in Episode.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

65
 episodectl.exe examples
 episodectl.exe e

 Introduction to the command line interface, aswell as a getting started guide and
 examples. This section is always printed wide.

 episodectl.exe launch

 launch start (ls)
 launch restart (lr)
 launch list (ll)
 launch stop (lp)
 launch install
 launch uninstall

 episodectl.exe node

 node info (ni)
 node cache (ncache)
 node jobs (njobs)
 node create (nc)
 node join (nj)
 node privatize (np)
 node tag (nt)
 node storage (ns)
 node history (nh)
 node log (nl)

 episodectl.exe ioserver

 ioserver add (ioa)
 ioserver list (iols)
 ioserver remove (ior)
 ioserver log (iol)

 episodectl.exe proxy

 proxy defaults (pd)
 proxy storage (ps)
 proxy history (ph)
 proxy log (pl)

 episodectl.exe task

 task transfer (tt, tu)
 task youtube (ty)
 task execute (tx)
 task mail (tmail)
 task mbr (tmbr)

 task set (tset)

 episodectl.exe source

 source filelist (sfl)
 source monitor (smon) deprecated
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

66
 source watch-folder(swf)
 source edl(sedl)
 source iseq(siseq)

 episodectl.exe workflow

 workflow submit (ws)
 workflow stop (wp)
 workflow recall (wr)

 episodectl.exe status

 status clusters (sc)
 status nodes (sn)
 status workflows (sw, sws)
 status tasks (st, sts)
 status monitors (sm) Deprecated.
 status watch-folders (swfs)

 episodectl.exe job

 job cancel (jcan)
 job requeue (jrq)
 job pause (jpau)
 job resume (jres)
 job set-priority (jprio)

 episodectl.exe monitor

 monitor start (ms) Deprecated
 monitor list (ml) Deprecated.
 monitor set-priority (mprio) Deprecated
 monitor stop (mp) Deprecated
 monitor remove (mr) Deprecated
 monitor log (mg) Deprecated

 episodectl.exe watch-folder

 watch-folder start (wfs)
 watch-folder list (wfl) Deprecated
 watch-folder set-priority (wfprio)
 watch-folder stop (wfp)
 watch-folder remove (wfr)
 watch-folder log (wfg)

 episodectl.exe util

 util analyze (ua, analyze)

COMMANDS AND SUB COMMANDS

 launch

 The launch command starts Episode services, stops Episode services and lists running Episode
 processes.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

67
 launch start [-n] [-i] [-a] [-c] [-x] [-j]

 Start Episode process(es). Processes already running will not be restarted. If no
 process is specifically specified with an option, all processes will be started.

 This command can also be specified as ls, i.e. episodectl.exe ls

 -n
 --node Start EpisodeNode.exe

 -i
 --ioserver Start EpisodeIOServer.exe

 -a
 --assistant Start EpisodeAssistant.exe

 -c
 --clientproxy Start EpisodeClientProxy.exe

 -x
 --xmlrpc Start EpisodeXMLRPCServer

 -j
 --jsonrpc Start EpisodeJSONRPCServer

 launch restart [-n] [-i] [-a] [-c] [-x] [-j]

 Restart Episode process(es). Processes that are not running will be started. If no
 process is specifically specified with an option, all processes will be restarted or
 started.

 This command can also be specified as lr, i.e. episodectl.exe lr

 -n
 --node Restart EpisodeNode.exe

 -i
 --ioserver Restart EpisodeIOServer.exe

 -a
 --assistant Restart EpisodeAssistant.exe

 -c
 --clientproxy Restart EpisodeClientProxy.exe

 -x
 --xmlrpc Restart EpisodeXMLRPCServer

 -j
 --jsonrpc Restart EpisodeJSONRPCServer
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

68
 launch list

 List Episode processes.

 This command can also be specified as ll, i.e. episodectl.exe ll

 launch stop [-n] [-i] [-a] [-c] [-x] [-j]

 Stop Episode process(es). If no process is specifically specified with an option,
 all processes will be stopped.

 This command can also be specified as lp, i.e. episodectl.exe lp

 -n
 --node Stop EpisodeNode.exe

 -i
 --ioserver Stop EpisodeIOServer.exe

 -a
 --assistant Stop EpisodeAssistant.exe

 -c
 --clientproxy Stop EpisodeClientProxy.exe

 -x
 --xmlrpc Stop EpisodeXMLRPCServer

 -j
 --jsonrpc Stop EpisodeJSONRPCServer

 node

 With the node sub command, you can manage your local Node and get info about remote Nodes.

 node info [<hostname/IP>]

 Display some hardware info, licenses info, current status, and info about what is
 currently connected to this Node. Default host address is 127.0.0.1.

 This command can also be specified as ni, i.e. episodectl.exe ni
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

69
 NOTE: This will only work if the target node is in "Public" mode, i.e. a participant
 or master of a cluster. It will always work for the node on localhost regardless of
 mode.

 node cache [--set <base path> [<sub dir>]]
 [--set-default|--reset]
 [--list]
 [--clear]

 Manage the File Cache of this node. The File Cache is used to by the tasks in the
 workflow, such as temporary files, encoded output files, or localized files.

 It consists of two parts, a <base path> that must exist (<resource-base-path> in the
 configuration file) and a dynamically created <sub dir> sub directory
 (<resource-append-path> in confiuration file). There will be one more sub directory
 added to form the complete path, one for private mode called PrivateCache and one
 for cluster mode (public mode) called ClusterCache. Each workflow will have its own
 sub directory which will be deleted when a workflow is done.

 The default location is on the local machine which means that the IOServer must be
 used in a cluster setup to access files on the different nodes in the cluster. If a
 shared storage is used, the File Cache should be configured to point to the shared
 storage, for example on Windows:
 episodectl.exe node cache S:\ Episode
 or OS X:
 episodectl /Volumes/Storage/ Episode

 If no command option is specified, the current location will be printed.

 This command can also be specified as ncache, i.e. episodectl.exe ncache

 --set Set the path to a new File Cache directory. This must be a local path. UNC
 paths are supported on Windows. The previous configured cache directory will
 be cleared.

 --reset
 --set-default Set the default paths.

 --list List current contents in the cache. This should be empty. In cases when it's
 not empty and the node isn't currently working, the node was probably
 stopped while working or left a cluster while working.

 --clear Clear the cache. Note: Do not do this while workflows are being processed on
 this machine

 node jobs [--set <number of jobs>]
 [--set-recommended [cpu|mem]]
 [--run-master yes|no]
 [--scheduling HB|LB|RR]
 [--os-prio normal|low]
 [--verify-io yes|no]
 [--cluster-wide yes|no]
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

70
 [--retry <num>]
 [--encoding-retry <num>]

 Configure job related settings for this node, or a whole cluster in case of
 --verify-io and/or --os-prio. If no option is specified, the currently configured
 settings are displayed as well as recommendations for number of simultanious jobs.

 This command can also be specified as njobs, i.e. episodectl.exe njobs

 --set Set number of simultaneous encoding jobs to <number of jobs>.

 --set-recommended Set a recommended number of jobs based on the hardware of this computer. If
 the optional argument "cpu" is specified, a recommended value for CPU
 intensive jobs is set. CPU intensive jobs are in this case jobs that are
 predicted to use little memory, for example due to low resolution. The
 optional argument "mem" is for if jobs are predicted to use a lot of memory,
 for example HD material. If no argument is specified, a recommended value
 for general cases is set.

 --run-master If this node should run any jobs if/when it is a cluster master node. If
 there are more than 1 other nodes (worker/slave nodes) in the cluster, it is
 a good idea to consider turning the job running off on the master node. Note:
 Only encoding nodes require a license (i.e. nodes that have 1 or more
 encoding job slots configured). This means that you may put in a extra
 machine that is unlicensed to be the master node, and which is not running
 any jobs.

 --scheduling Which scheduling (or job distribution) algorithm to use if/when this node is
 a cluster master node. HB is short for "Hardware Balanced", LB is short for
 "Load Balanced", and RR is short for "Round Robin". All three algorithms
 will take th number of configured job slots (available and total) into
 account and where Round Robin only takes that into account. Hardware
 Balanced will also take the individual cluster participants' hardware
 specifications into account. Finally, in addition to that, Load balanced
 will also look at the reported CPU and Memory load of each machine. The
 default interval for the nodes' "current load" (used in Load Balancing)
 reporting is 5 seconds. You can monitor that visually with this command episodectl.exe
 status nodes -c MyClusterName -w.

 --os-prio If the jobs (EpisodeWorker processes) should be set with Normal or Low OS
 process priority. If you have a cluster where the participants may be
 computers that are performing other tasks or a person is currently working
 on, it is recommended to set this to Low. If this is the master node in a
 cluster and is configured to do encodings, it is highly recommended to set
 this to Low

 --verify-io Advanced configuration. Perform IO verification in the job (EpisodeWorker).
 This is a security mechanism that, if a URL that is used in a job (for
 example file transfer) is a local URL/file (or resolves into a local
 URL/file), the local IOServer will be asked if this file was actually shared
 and thus belonged to a validly submitted job.

 --cluster-wide If options --verify-io and --os-prio should be cluster-wide or configured
 locally on each node. If they are configured to be cluster-wide (on the
 master node), the master node will tell each job its own (the master's)
 confiuration instead of the local node's configuration, i.e. the node that
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

71
 is actually running the task.

 --retry How many times to retry failed non-encoding jobs. Default is 2.

 --encoding-retry How many times to retry failed encoding jobs. Default is 0.

 node create [-n] [<cluster name>]
 [--search yes|no]
 [--publish yes|no]

 Create a public cluster. If you don't specify a name, the name previously configured
 will be used. If you haven't configured anything before, this is the default cluster
 name "Episode Cluster". If you specify an already existing cluster name and use
 Bonjour, one of the master nodes will re-join the cluster as a non-master.

 This command can also be specified as nc, i.e. episodectl.exe nc

 -n
 --name Explicitly specify that this argument is the cluster name.

 --search Use Bonjour to search for, and contact other nodes that belongs to the
 cluster with the same name. The default is "yes".

 --publish Publish this node on Bonjour; making it visible to other nodes and clients.
 If Bonjour publication is turned off, other nodes that should participate in
 this cluster must specify the hostname/IP (with the --connect option) of
 this node to be able to join. Clients (such as episodectl) that want to
 submit jobs to this node or view status etc. must also specify this host's
 hostname or IP address with the --host option. The default is "yes".

 node join [-n] [<cluster name>]
 [--search yes|no]
 [--publish yes|no]
 [--connect <hostname/IP>]

 Join a public cluster. If you don't specify a name, the name previously configured
 will be used. If you haven't configured anything before, this is the default cluster
 name "Episode Cluster". If joining by cluster name (as opposed to joining by address
 with option --connect), any previously configured host addresses will be cleared.

 This command can also be specified as nj, i.e. episodectl.exe nj

 -n
 --name Explicitly specify that this argument is the cluster name.

 --search Use Bonjour to search for, and contact other nodes that belongs to the
 cluster with the same name. The default is "yes".

 --publish Publish this node on Bonjour; making it visible to other nodes and clients.

 --connect Specify a hostname or an IP address to a node in a cluster. The IP address
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

72
 may be directly to the master (recommended) or to a participant which will
 re-direct this node to the master node. When specifying a IP address, the
 cluster name will be inherited from the node you connect to, and thus the
 name will be ignored if you specify one.

 node privatize [--publish yes|no]

 Leave a cluster and make the node "private".

 This command can also be specified as np, i.e. episodectl.exe np

 --publish Publish this node on Bonjour; making it visible to other nodes and clients.
 NOTE: When a node is in private mode, no other client or node can connect
 it.

 node tag [--add <tag> ...]
 [--clear]
 [--set-default|--reset]

 Manage Tags on this node. If no option is specified, the currently set tags are
 shown as a space separated list. See tag section (episodectl.exe tags) for further
 information.

 This command can also be specified as nt, i.e. episodectl.exe nt

 --add Add one or more tags to the local node.

 --clear Clear tags. This will remove all tags, including the default one.

 --reset
 --set-default Clear all user defined tags and set the default one which is a platform tag
 that is "Mac" or "Win".

 node storage [--add <name> <path or url>]
 [--remove <name>]
 [--clear]

 Manage named storages on this node. If no option is specified, the currently
 configured storages are shown. Named storages are useful if you have a mixed cluster
 of Windows and OS X machines, or if you submit jobs from clients that access a
 storage through a different path or URL than the submission target machine, either
 because of different platform or otherwise different mount point etc. If the access
 through a storage can not be resolved on a particluar machine (because it wasn't
 configured there), the Episode IOServer will be used for access instead. NOTE: If
 you configure storages on your machines, you must NOT use the --no-resource option
 when submitting jobs because that will disable the storage identification/resolving
 possibilities.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

73
 This command can also be specified as ns, i.e. episodectl.exe ns

 --add Add one storage where <name> should preferrably be a unique (nick-)name for a
 particular storage on your entire network where Episode is used (see
 advanced note) and the same name must be used for the same storage on all
 machines where the storage is configured. <name> must not contain these
 characters '[]{}'.

 The <path or url> should be a path or URL for how to reach a specific point on
 the storage from this machine, for example, if you have a Windows machine
 that accesses a storage via a UNC path \\server\share\share-object\ and you
 have a OS X machine that have access to the same share-point (or
 share-object) via the URL smb://server/share/share-object/ you should
 specify episodectl.exe node storage --add MyShareName
 \\server\share\share-object\ on the Windows machine and specify episodectl
 node storage --add MyShareName smb://server/share/share-object/ on the OS X
 machine. The important thing is that the relative paths, or sub directory
 structure inside the share-point is the same for all machines. Let's say
 that you have mounted that storage on the OS X machine in /Volumes/Storage/
 (where "Storage" points to exactly the same point/directory as
 "share-object" in previous example) you should specify episodectl node
 storage --add MyShareName /Volumes/Storage/ on the OS X machine. Likewise,
 if you have mounted that share-point on Windows in S:\ you should specify episodectl.exe
 node storage --add MyShareName S:\ on the Windows machine.

 NOTE: The named storage will be added to both the local Node and to the
 ClientProxy configuration. This is to enable both the Node to be a
 participant of a cluster where this storage is needed, and to enable this
 machine to be a pure client to one or more clusters where this storage is
 needed.

 ADVANCED NOTE: If you have 2 or more different clusters where each cluster
 have different storages or different share-points on one storage, you should
 NOT use the same <name> for the storages/share-points beacuse that will
 disable the possibility for both clients and nodes (with the configured
 storage <name>) to "interact" with both/all clusters.

 --remove Remove the storage named <name>.

 --clear Clear/remove storage.

 node history [--clear]
 [--set-keep-time <number of days>]

 Clear current history from database or re-configure the time to keep history.

 This command can also be specified as nh, i.e. episodectl.exe nh

 --clear Clear the current history from database.

 --set-keep-time Set the number of days to keep history.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

74
 node log [--set-default|--reset]
 [--set-debug|--full]
 [--syslog yes|no [<level>]]
 [--file yes|no [<level>]] [-n <max-files>] [-s <max-size>]]
 [--tasks yes|no [<level>] [-n <max-files>]]
 [--watch-folders yes|no [<level>]] [-n <max-files>] [-s <max-size>]]

 Set logging settings for the Node, Tasks and Watch folders. The task and watch
 folder settings are "cluster-wide", meaning that only the master Node's
 configuration of these matters and it will log all tasks and watch folders
 throughout a cluster on the machine of the master Node. If no option is specified,
 the currently configured logging settings are shown. The <level> argument/parameter to
 some of the options should be a digit/number in the range 0..7 where 0 = Fatal, 1 =
 Alert, 2 = Critical, 3 = Error, 4 = Warning, 5 = Notice, 6 = Info, 7 = Debug.

 This command can also be specified as nl, i.e. episodectl.exe nl

 --set-default
 --reset Set default logging settings, i.e. the settings for a fresh install. The
 default is to only log to ASL (Apple System Log) on OS X and Event Log on
 Windows with a verbosity of 5 (Notice).

 --set-debug
 --full Set full debug logging settings. This is a significant overhead, only use
 this to try and solve problems.

 --syslog If the Node should log to the system log and optionally a log verbosity
 level.

 --file If the Node should log to a file and optionally a log verbosity level. The
 log files will be rotated when <max-size> is reached (configurable with sub
 option -s) and up to <max-files> will be created/rotated (configurable with
 sub option -n).

 --tasks If the Tasks should log to file and optionally a log verbosity level. The
 sub option -n <max-files> configures how many Task files to save on disk
 before starting to clean older ones.

 --watch-folders If watch folders should log to file and optionally a log verbosity level.
 Each monitor will have its own log files that work just like for the Node,
 see option --file.

 ioserver

 With the ioserver sub command, you can manage shares currently shared in the local IOServer
 and configure logging settings for the IOServer.

 ioserver add <file or directory> ...
 [-i <id>]
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

75
 [-e <hours>]

 Add a share to the local IOServer. If no ID is specified, the CLI's ID will be used.

 This command can also be specified as ioa, i.e. episodectl.exe ioa

 -i
 --id An ID for the share.

 -e
 --expire Optional automatic expiry time for the share specified in hours from current
 time. The default is the value 0 which means it will never expire, thus
 having to be removed manually.

 ioserver remove -i <id>|--all

 Remove a share from the local IOServer. If no ID is specified, the CLI's ID will be
 used, which will remove all shares added through the CLI.

 This command can also be specified as ior, i.e. episodectl.exe ior

 -i
 --id An ID for the share to remove

 --all Remove all shares

 ioserver list

 List shares on the local IOServer.

 This command can also be specified as iols, i.e. episodectl.exe iols

 ioserver log [--set-default|--reset]
 [--set-debug|--full]
 [--syslog yes|no [<level>]]
 [--file yes|no [<level>]] [-n <max-files>] [-s <max-size>]]

 Set logging settings for the IOServer. If no option is specified, the currently
 configured logging settings are shown. The <level> argument/parameter to some of the
 options should be a digit/number in the range 0..7 where 0 = Fatal, 1 = Alert, 2 =
 Critical, 3 = Error, 4 = Warning, 5 = Notice, 6 = Info, 7 = Debug.

 This command can also be specified as iol, i.e. episodectl.exe iol

 --set-default
 --reset Set default logging settings, i.e. the settings for a fresh install. The
 default is to only log to ASL (Apple System Log) on OS X and Event Log on
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

76
 Windows with a verbosity of 5 (Notice).

 --set-debug
 --full Set full debug logging settings. This is a significant overhead, only use
 this to try and solve problems.

 --syslog If the IOServer should log to the system log and optionally a log verbosity
 level.

 --file If the IOServer should log to a file and optionally a log verbosity level.
 The log files will be rotated when <max-size> is reached (configurable with
 sub option -s) and up to <max-files> will be created/rotated (configurable
 with sub option -n).

 proxy

 With the proxy sub command, you can manage your local ClientProxy.

 proxy defaults [-d <path or url>]
 [-c <cluster name>]
 [--host <hostname or IP>]
 [--guess yes|no]

 The CLI uses the EpisodeClientProxy.exe process to do most things, and most
 importantly, use it to submit jobs and get status from. By configuring the Client
 Proxy with default values, you can change the behavior of your job submissions and
 omit certain options to episodectl.exe workflow submit. If no option is given, the
 currently configured defaults are shown.

 This command can also be specified as pd, i.e. episodectl.exe pd

 -d
 --destination-dir Set a default destination path or URL. This will be used if option -d is
 omitted for the command episodectl.exe workflow submit. Default is the
 user's Desktop.

 -c
 --cluster Set a default target cluster name to submit to or check status on. This will
 be used if option -c is omitted for the commands episodectl.exe workflow ...,
 episodectl.exe status ..., and episodectl.exe watch folder This has
 precedence over a specified host. This may be an empty string, which is also
 default.

 --host Set a default target host (hostname or IP address) to submit to. This will
 be used if option --host and -c are omitted for the commands episodectl.exe
 workflow ..., episodectl.exe status ..., and episodectl.exe watch folder
 Default is "127.0.0.1".

 --guess "Guess if Shared Storage". This is a workflow configuration that tells the
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

77
 tasks to "guess" if a file/directory is located on a shared storage. It
 bases its guess on if it has "non-native local access", i.e. if it has local
 access and the filesystem is non-native, or mounted. If it is, it is treated
 like a shared storage. This guess will be wrong if the computers in a
 cluster has (path wise) identical storages mounted on them that are not the
 same stoarage, for example Firewire/USB drives mounted at the same path with
 the same folder structure etc. Default is "yes".

 proxy storage [--add <name> <path or url>]
 [--remove <name>]
 [--clear]

 Manage named storages on this machine. If no option is specified, the currently
 configured storages are shown. Named storages are useful if you have a mixed cluster
 of Windows and OS X machines, or if you submit jobs from clients that access a
 storage through a different path or URL than the submission target machine, either
 because of different platform or otherwise different mount points etc. If the access
 through a storage can not be resolved on a particluar machine (because it wasen't
 configured there), the Episode IOServer will be used for access instead. NOTE: If
 you configure storages on your machines, you must NOT use the --no-resource option
 when submitting jobs because that will disable the storage identification/resolving
 possibilities.

 This command can also be specified as ps, i.e. episodectl.exe ps

 This command will do the exact same thing as episodectl.exe node storage so please
 see description of that command or use that command.

 proxy history [--clear]
 [--set-keep-time <number of hours>]

 Clear current history from memory or re-configure the time to keep history in
 process memory. If you are submitting jobs to multiple target clusters, each history
 for each connection will be affected.

 This command can also be specified as ph, i.e. episodectl.exe ph

 --clear Clear the current history from memory (process memory of ClientProxy, not
 the Node).

 --set-keep-time Set the number of hours to keep history. Default is 1 hour.

 proxy log [--set-default|--reset]
 [--set-debug|--full]
 [--syslog yes|no [<level>]]
 [--file yes|no [<level>]] [-n <max-files>] [-s <max-size>]]

 Set logging settings for the ClientProxy. If no option is specified, the currently
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

78
 configured logging settings are shown. The <level> argument/parameter to some of the
 options should be a digit/number in the range 0..7 where 0 = Fatal, 1 = Alert, 2 =
 Critical, 3 = Error, 4 = Warning, 5 = Notice, 6 = Info, 7 = Debug.

 This command can also be specified as pl, i.e. episodectl.exe pl

 --set-default
 --reset Set default logging settings, i.e. the settings for a fresh install. The
 default is to only log to ASL (Apple System Log) on OS X and Event Log on
 Windows with a verbosity of 5 (Notice).

 --set-debug
 --full Set full debug logging settings. This is a significant overhead, only use
 this to try and solve problems.

 --syslog If the ClientProxy should log to the system log and optionally a log
 verbosity level.

 --file If the ClientProxy should log to a file and optionally a log verbosity
 level. The log files will be rotated when <max-size> is reached (configurable
 with sub option -s) and up to <max-files> will be created/rotated
 (configurable with sub option -n).

 task

 With the task sub command, you can create .epitask configuration files. The created file
 will be written in the current working directory unless --out <directory> is specified.

 task transfer <url or path>
 [--name <name>]
 [--increment-filename yes|no]
 [--try-link yes|no]
 [--try-rename yes|no]
 [--dest-filename <naming convention>]
 [--dest-sub-dirs <name> ...]
 [--dest-sub-dirs-ext <naming convention> ...]
 [--re-create-source-sub-dirs yes|no]
 [--post-dest-sub-dirs-ext <naming convention> ...]
 [--post-dest-sub-dirs <name> ...]
 [--priority <priority>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]

 Create a Transfer .epitask configuration file where <url or path> is the destination
 directory for files. This directory must exist. <url or path> could also be the (case
 insensitive) keyword SAS which will configure the destination to "Same As Source".
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

79
 The task of the Transfer is to transfer the encoded file from the Episode "Cache" to
 its final destination (this may of course just as well be a "download" depending on
 which computer it runs on and where its final destination is). This can be done in
 three (main) ways.

 First way is to link the file (hard-link) to the destination. Notice that the cache
 directory will be removed when the workflow is done. This is the most effective way,
 as the file system only makes a new reference to the actual file data at the
 destination, in other words, it's the exact same physical data that once was wrtten
 to the cache. This is also preferable if more than one Deployment tasks are used
 because it is independent of in which order the tasks are executed, the file exists
 at the two locations at the same time until the whole workflow is done. Notice also
 that it's called "try-link", if linking fails due to that the target is not on the
 same physical device for example, a regular copy will be made instead. IF you're
 using a file system that doesn't support hard-links, renaming (or moving) the file
 is the second most effective way.

 Renaming/Moving a file can also only be done on the same logical device (file
 system). It is implementation specific what actually is being done in case of
 different devices. A operating system copy could be made in which case no progress
 will be reported by the Transfer task and the job could time out. If more than one
 Deployment tasks are specified, for example one FTP and one local destination, the
 local Deployment could move the file (if executed first) so that the FTP Transfer
 task will have nothing to upload... It is therefore only recommended to use this if:
 You have a file system that does not support hard-links, you are only using one
 Deployment task, and you have your Episode File Cache (resource-base-path in
 Node.xml) and destination directory on the same logical device (file system).

 The third way is of course to copy the file to its destination.

 The default configuration is try-link=yes, try-rename=no. try-link has precedence
 over try-rename.

 Output Directory creation

 There are a number of directory creation options for the output. One option is to
 re-create a directory structure that "came" from (was set by) the source. The only
 source that currently sets a directory structure (sub directories) is a watch folder
 that is configured with recursive listing, i.e. a watch folder that looks for files
 in sub directories.
 This is option --re-create-source-sub-dirs.

 Then there are 2 versions of directory lists to create. The first version takes
 exactly one string of text per space separated list entry, a static text or one
 variable.
 That is the --dest-sub-dirs option.

 The other version takes a list of text strings, where each space separated list
 entry can contain both static texts and multiple variables.
 That is the --dest-sub-dirs-ext option.

 Finally, there are "post-" versions of the previous 2 options, where "post" means
 post source directory re-creation. Here is a example and its result:

 A Watch Folder is set up to monitor a directory C:\Episode\ which contains a
 directory "MonitoredContent". The watch fpöder is created with the command:
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

80
 episodectl.exe source watch-folder C:\Episode\ --recursive 1

 Then we create a Transfer task with the following command:

 episodectl.exe task transfer C:\EpisodeOutput\ --dest-sub-dirs
 '$dynamic.year.YYYY$' Project1 --dest-sub-dirs-ext
 '$dynamic.month.MM$-$dynamic.day.DD$' --re-create-source-sub-dirs yes

 The workflow is set up with command:

 episodectl.exe workflow submit --watch-folder Episode.episource -e
 H264.epitask -d EpisodeOutput.epitask

 A file "SourceFile.mov" is copied into the "MonitoredContent" directory, which will
 produce the following output path

 C:\EpisodeOutput\2012\Project1\03-12\MonitoredContent\SourceFile-H264.mov

 If the post-versions are used instead, i.e. --post-dest-sub-dirs-ext and --post-dest-sub-dirs
 , the following path is created

 C:\EpisodeOutput\MonitoredContent\03-12\2012\Project1\SourceFile-H264.mov

 The order of directory creation is the same as the order the options are listed in
 the synopsis section above.

 This command can also be specified as tu, i.e. episodectl.exe tu

 --name A name for the task.

 --increment-filename If "incremental filename" should be applied. This will make a listing of the
 destination directory and see if there are files named the same, and if
 there is, it will add " (n)" (where 'n' is one number higher than found) to
 the outfile. This MAY be a slight loss in performance depending on
 circumstances. Default is "yes".

 --try-link If the task should try to link the file to its destination. Default is
 "yes".

 --try-rename If the task should try to rename/move the file to its destination. Default
 is "no".

 --naming
 --dest-filename Insert a custom naming convention. The naming convention is specified as one
 string and you can insert variables. See variable section (episodectl.exe
 variables) for a list of the variables.

 --dest-sub-dirs See Output Directory creation section above.

 --dest-sub-dirs-ext See Output Directory creation section above.

--re-create-source-sub-dirs If the task should re-create a directory structure that "came" from (was set
 by) the source. The only source that currently sets a directory structure
 (sub directories) is a watch folder that is configured with recursive
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

81
 listing, i.e. a watch folder that looks for files in sub directories. See Output
 Directory creation section above. The default is "no".

--post-dest-sub-dirs-ext See Output Directory creation section above.

 --post-dest-sub-dirs See Output Directory creation section above.

 --priority Set the priority of the task, default is 0. See episodectl.exe priority for
 more information.

 --tag Set one or more tags on this task. See tag section (episodectl.exe tags) for
 further information.

 --inverse-tag Set one or more inverse-tags on this task. See tag section (episodectl.exe
 tags) for further information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the output file should be written. Default is
 current working directory.

 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 task youtube -u <username>
 -p <password>
 -t <title>
 -d <description>
 -c <category>
 -k <keyword> ...
 [--name <name>]
 [--priority <priority>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]

 Create a YouTube .epitask configuration file. Most options are mandatory.

 The YouTube task will deploy the encoded file to YouTube.

 This command can also be specified as ty, i.e. episodectl.exe ty
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

82
 -u
 --username Username for YouTube account. Mandatory option.

 -p
 --password Password for YouTube account. Mandatory option.

 -t
 --title Title for uploaded video. This text could contain dollar variables, for
 example 'My encoded $source.filename$'. See episodectl.exe variables for
 more information. Mandatory option.

 -d
 --description Description for uploaded video. This text could contain dollar variables,
 for example 'My encoded $source.filename$'. See episodectl.exe variables for
 more information. Mandatory option.

 -c
 --category Category for uploaded video. Mandatory option.
 Valid categories are: People Film Autos Music Animals Sports Travel
 Games Comedy News Entertainment Education Howto Nonprofit Tech

 -k
 --keywords One or more space separated keywords. Mandatory option.

 --name A name for the task. The recipient's address will be used by default.

 --priority Set the priority of the task, default is 0. See episodectl.exe priority for
 more information.

 --tag Set one or more tags on this task. See tag section (episodectl.exe tags) for
 further information.

 --inverse-tag Set one or more inverse-tags on this task. See tag section (episodectl.exe
 tags) for further information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the output file should be written. Default is
 current working directory.

 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

83
 task execute <path>
 [--name <name>]
 [--content yes|no]
 [--args <arg> ...]
 [--env <name> <value>]
 [--parse-progress yes|no]
 [--progress-format <regexp>]
 [--progress-type percent|fraction]
 [--priority <priority>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]

 Create a Execute .epitask configuration file where <path> is the path to a
 program/script.

 The Execute task can execute a program/script in two ways.

 - Execute a executable file referenced by a path.
 - Read the content of a script and later, when run, create a tempfile with the
 script code in the Episode "Cache" and execute that file.

 Executing a path is both platform dependent and may not be very suitable for
 distribution in a cluster. The execution (task scheduling/distribution) is very
 easily configurable through Tags (see episodectl.exe tags) so this may not be an
 issue. Reading in the script content is at least easily distributable but is
 probably still platform dependent and could consume memory and disk space etc if
 it's a large program.

 If the content is read, the file extension of the specified file is also saved and
 will be set on the file before execution in case of that the OS is basing its choice
 of interpreter by file extension.

 There is one environment variable that is always set by this task (in excess of
 variables configured with option --env), and that is the variable EPISODECTL in
 which the absolute path to the CLI executable file (episodectl.exe) is set.
 See episodectl.exe examples section about this task for more information.

 This command can also be specified as tx, i.e. episodectl.exe tx

 --name A name for the task. A suitable name is generated if not specified.

 --priority Set the priority of the task, default is 0. See episodectl.exe priority for
 more information.

 --content If the content (code) of the program/script should be read and distributed.
 See description above. The default is yes.

 --args The command line options and arguments that should be passed to the executed
 program. If you want to specify options to your program (and running this
 command from a command prompt), you may have to double-escape them like this
 episodectl.exe tx --args '"-x"' or the other way around. The parser for this
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

84
 option will remove both single and double quotation marks.

 --env The environment variables to set for the executed program. The arguments
 should be a space separated list of <name> <value> <name> <value> etc. See episodectl.exe
 variables for further info.

 --parse-progress If the Execute task should read progress (by parsing stdout) from the
 executed program. This is mostly suitable for long running programs, or
 programs that makes a Deployment or file copying etc. Default is no.

 --progress-format A regular expression to use to identify progress. The default regular
 expression looks like this: progress\[([\d\.]+)\] where you can see that it
 has a "capturing" definition (the parentheses) for digits '\d' and dots '\.'
 which must be present if you define your own. (You can leave dots out if you
 are using percent output, i.e. 0..100). If the default regexp is used, the
 executed program should output "progress[30]" or something like
 "progress[0.30000]" for reporting a progress of 30%, depending on which --progress-type
 is chosen. NOTE: Be sure to flush stdout for a successful feedback.

 --progress-type If you want to output a progress value in percent between 0 and 100 as a
 integer value, or if you want to output a fraction value between 0.0 and
 1.0.

 --tag Set one or more tags on this task. See tag section (episodectl.exe tags) for
 further information.

 --inverse-tag Set one or more inverse-tags on this task. See tag section (episodectl.exe
 tags) for further information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the output file should be written. Default is
 current working directory.

 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 task mail [-u <username> [-p <password>]]
 -s <server> [--port <port>]
 -f <address>
 -t <address> [-c <address>] [-b <address>]
 -j <subject>
 -m <message>
 [--ssl yes|no]
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

85
 [--name <name>]
 [--priority <priority>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]

 Create a Mail .epitask configuration file. Most options are mandatory.

 The Mail task sends a e-mail through a SMTP server. The default port for the mail
 submission is 587 which is the most common port for mail submissions.

 This command can also be specified as tmail, i.e. episodectl.exe tmail

 -u
 --username Username for outgoing mail server.

 -p
 --password Password for outgoing mail server.

 -s
 --server The server to submit the mail to. The outgoing SMTP mail server. Mandatory
 option.

 --port The port to connect to on the outgoing SMTP mail server. Default is 587.

 -f
 --from Mail sender address. eg. EpisodeEngine@mycompany.com Mandatory option.

 -t
 --to Mail receiver address. Mandatory option.

 -c
 --cc Carbon Copy receiver address.

 -b
 --bcc Blind Carbon Copy receiver address.

 -j
 --subject Message subject. This text could contain dollar variables, for example
 'Error: $source.filename$ failed to encode!'. See episodectl.exe variables
 for more information. Mandatory option.

 -m
 --message The message. This text could contain dollar variables, for example 'Error:
 $source.filename$ failed to encode!'. See episodectl.exe variables for more
 information. Mandatory option.

 --ssl If TLS/SSL should be used. Default is "yes" and the task fails if a secure
 connection couldn't be set up.

 --name A name for the task. The recipient's address is used by default.

 --priority Set the priority of the task, default is 0. See episodectl.exe priority for
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

86
 more information.

 --tag Set one or more tags on this task. See tag section (episodectl.exe tags) for
 further information.

 --inverse-tag Set one or more inverse-tags on this task. See tag section (episodectl.exe
 tags) for further information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the output file should be written. Default is
 current working directory.

 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 task mbr HTTPStreaming|SmoothStreaming|DASHStreaming
 [--name <name>]
 [--fragment-duration <duration>]
 [--package-name <package name>]
 [--priority <priority>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]

 Create a MBR .epitask configuration file where the first argument is the type of
 packaging to perform. The three currently available values/packaging types are HTTPStreaming
 , DASHStreaming, and SmoothStreaming.

 The MBR task creates Multi Bitrate output packages for Microsoft's Smooth Streaming,
 Dynamic Adaptive Streaming over HTTP (DASH) or Apple's HTTP Live Streaming. The
 package will be put in the output directory specified by the user. The input files
 to the MBR task must be one or more TIFO files.
 TIFO is short for Telestream Intermediate Format and is available in the Episode GUI
 as a export format for the Encode task. Each TIFO file can contain one or more
 tracks of H264 video and AAC audio. The tracks are said to be unique depending on
 their bitrate. For HTTP Streaming the output will be a set of TS (Transport Stream)
 segments. Each source TIFO file will be packed into a separate set of TS segments.
 In the case of Smooth Streaming the output will be separate TS files where each
 uniquely identified track in the source files will be put into one output file.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

87
 This command can also be specified as tmbr, i.e. episodectl.exe tmbr

 --name A name for the task. A suitable name is generated if not specified.

 --fragment-duration Specify the fragment duration (in whole seconds). Default for HTTPStreaming
 is 10, for DASHStreaming is 2, and for SmoothStreaming 2.

 --package-name Specify the package name. This name will be used as the file prefix for the
 final ouput files inside the output directory and in the manifest file or
 playlist file.

 --priority Set the priority of the task, default is 0. See episodectl.exe priority for
 more information.

 --tag Set one or more tags on this task. See tag section (episodectl.exe tags) for
 further information.

 --inverse-tag Set one or more inverse-tags on this task. See tag section (episodectl.exe
 tags) for further information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the output file should be written. Default is
 current working directory.

 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 task set <task configuration file>
 [--name <name>]
 [--tag <tag> ...]
 [--inverse-tag <tag> ...]
 [--remove-tag <tag> ...]
 [--priority <priority>]

 Set/Modify a existing <task configuration file> (path to a .epitask file). These
 settings are general task settings which apply to all tasks regardless of what kind
 of task it is.

 This command can also be specified as tset, i.e. episodectl.exe tset
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

88
 --name Re-name the task.

 NOTE: This does not rename the actual file. It only changes the configured
 task name inside the file.

 --priority Set or modify the priority of the task. See episodectl.exe priority for more
 information.

 --tag Set one or more tags on this task. No previously set tag is removed. See tag
 section (episodectl.exe tags) for further information.

 --inverse-tag Set one or more inverse-tags on this task. No previously set tag is removed.
 See tag section (episodectl.exe tags) for further information.

 --remove-tag Remove one or more tags (or inverse-tags) from the task.

 source

 With the source sub command, you can create episource configuration files. The created file
 will be written in the current working directory unless --out <directory> is specified.

 source filelist <url or path> ...
 [--name <name>]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [-p]

 Create a file-list .episource configuration file.

 This command can also be specified as sfl, i.e. episodectl.exe sfl

 --name A name for the source.

 -o
 --out-dir Specify the directory where the output file should be written. Default is
 current working directory.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 source watch-folder <url or path>
 [--name <name>]
 [--interval <seconds>]
 [--safe-delay <seconds>]
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

89
 [--pickup-present yes|no]
 [--recursive <depth>]
 [--ewi yes|no]
 [--ewi-wait 0..3600]
 [--ewi-num-waits 0..100]
 [--iseq yes|no [--msni 0..1000000] [--sf 0..1000] [--fr <framerate>]]
 [--udtim 0|1|2]
 [--workflow-failure encode|deploy]
 [--move-source <url or path>]
 [--remove-source]
 [--stop-encoders]
 [--workflow-success]
 [--move-source <url or path>]
 [--remove-source]
 [--retry-delay-start <seconds>]
 [--retry-delay-factor <factor>]
 [--retry-delay-max <seconds>]
 [--retry-max-attempts <attempts>]
 [--file-name-contains-include <text> ...
 [--file-name-contains-ignore <text> ...
 [--file-name-is-include <name> ...
 [--file-name-is-ignore <name> ...
 [--file-name-begins-with-include <text> ...
 [--file-name-begins-with-ignore <text> ...
 [--file-name-ends-with-include <text> ...
 [--file-name-ends-with-ignore <text> ...
 [--file-extension-is-include <extension> ...
 [--file-extension-is-ignore <extension> ...
 [--directory-contains-include <text> ...
 [--directory-contains-ignore <text> ...
 [--directory-is-include <name> ...
 [--directory-is-ignore <name> ...
 [--max-size <bytes>]
 [--min-size <bytes>]
 [--max-mod-date <POSIX time>]
 [--min-mod-date <POSIX time>]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [-p]

 Create a watch folder .episource configuration file where <url or path> should be a
 URL or path to an existing directory to be watched. A common configuration request
 is to re-create the watched directory structure (when recursive directory monitoring
 is configured) and that is an option on the Upload task, please see episodectl.exe
 task transfer -h for information about the option --re-create-source-sub-dirs.

 This command can also be specified as smon, i.e. episodectl.exe smon

 --name A name for the watch folder.

 --interval Interval in seconds to check for directory changes (default is dependent on
 which watch folder plug-in that is used but typically between 2 and 5
 seconds).

 --safe-delay Safe delay in seconds. If no file change is discovered for this amount of
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

90
 time, the file will be reported as ready. There is also an adaptive delay
 mechanism, see option --udtim. The default is 10 seconds.

 --pickup-present If the watch folder should pick up files that are present when the watch
 folder is started (default is no).

 --recursive Set a directory depth to which a recursive sub directory search should be
 made (default is 0, i.e. don't look in sub directories).

 --ewi Encode While Ingest. If you use Telestream Pipeline for ingesting material,
 this option will encode the stream as it is written to disk. This basically
 means that the transcoding will be finished at about the same time as the
 ingest (if the transcoding is faster than, or equal to real-time). NOTE:
 This requires a stream source format. Also keep in mind that if 2-pass
 encoders are used, the second pass will never start until the first pass is
 finished, and the first pass will never finish before the ingest is
 finished. NOTE: Due to many SANs reporting wrong / duplicate files in any
 given listing, we advise against using EWI in combination with SAN
 filesystems (especially with image sequences).

 --ewi-wait Number of seconds to wait before checking if a file has grown in size or in
 the case of Image Sequences, if a new file has arrived (at the end of the
 sequence). Default is 5 seconds.

 --ewi-num-waits Number of times to wait. Default value is 5 which means that the total time
 to wait for a file-change detection, or in the case of Image Sequences, a
 new file at the end of the sequence has arrived, will default be 5 * 5 = 25
 seconds.

 --iseq If the watch folder should look for Image Sequences. Notice though that
 regular files, i.e. files where no sequence number is found, will be
 reported by the watch folder. The final sequence start, i.e. the first file
 (the file that will be reported) will have to arrive/be detected before --safe-delay
 "runs out". If this is used together with --ewi yes, the first file will be
 reported in the first "pass" of the watch folder, i.e. --safe-delay will
 have no effect. So to sum this up, if you use a scanner or other device that
 will guarantee that the first "true" file of the sequence will be detected
 first (or within the same watch folder pass), you can use --ewi yes. If you
 will transfer files some other way where the order of arrival is not
 guaranteed, you should NOT use "Encode While Ingest".

 --msni This only affects option --iseq. See episodectl.exe source iseq -h.

 --sf This only affects option --iseq. See episodectl.exe source iseq -h.

 --fr This only affects option --iseq. See episodectl.exe source iseq -h.

 --udtim This is short for "Update Detection Time Interval Multiplier". What it does
 is to measure the time between file update detections (UDTI) and Multiplies
 that time with a configurable number and then adds it to the "base
 safe-delay" specified by option --safe-delay. The new value is always based
 on the most reacent interval and could therefore go down. The need for this
 functionality has been observed on certain SANs. A value of 0 means no
 increase in safe delay (UDTI * 0 + safe-delay). A value of 1 is a
 proportinal adjustment (UDTI * 1 + safe-delay). A value of 2 is an
 exponential adjustment (UDTI * 2 + safe-delay). The default value is 1.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

91
 --workflow-failure Specify actions to be taken in the workflow in case of encoding or
 deployment failure. This will fulfill if ANY task fails (if multiple
 encoders or multiple deployments are present within the workflow). The
 argument to this option must be either "encode" or "deploy" and there are
 three "sub options" that could be used which are --move-source,
 --remove-source, and/or --stop-encoders. The valid combinations of these sub
 options are:
 --move-source <url or path> --stop-encoders
 --remove-source --stop-encoders
 --stop-encoders
 --move-source <url or path>
 --remove-source

 --workflow-success Specify actions to be taken in the workflow in case of deployment success.
 This will fulfill if ALL tasks succeeds (if multiple deployments are present
 within the workflow). There are two "sub options" that could be used which
 are --move-source or --remove-source where only either one of them may be
 specified.

 --move-source Move the source file to <url or path> which should point to a existing
 directory.

 --remove-source Remove the source file.

 --stop-encoders Stop any non-finished encode tasks within the workflow (if multiple encoders
 were present within the workflow).

 --dest-sub-dirs This is short for "Maximum Sequence Number Increase" which enables sequences
 with "gaps" in the sequence numbers. The default value is 1 which means that
 as soon as there is a missing number in a sequence, it will be treated as
 the end of the sequence (the sequence to encode).

 --retry-delay-start If the watch folder fails to list the directory for some reason, it will try
 to list it again after specified amount of seconds (unless --retry-max-attempts
 is set to 0). The default is 20 seconds.

 --retry-delay-factor For every retry to list the directory, the value specified with --retry-delay-start
 will be multiplied with this value until --retry-delay-max is reached. The
 default value is 2, i.e. the retry delay will be doubled.

 --retry-delay-max The max amount of time in seconds that the retry delay will reach. The
 default value is 3600 seconds which equals 1 hour.

 --retry-max-attempts The maximum number of tries to list a directory (that for some reason is
 un-listable) before giving up and stop monitoring. The default value is 40.

--file-name-contains-include One or more text strings that a filename should contain in order to be
 reported by the watch folder.

 NOTE: This searches the file's name without the file extension.

--file-name-contains-ignore One or more text strings that a filename should contain in order to NOT be
 reported by the watch folder. In other words - if any specified text string
 is found in the filename, that file will be ignored by the watch folder.

 NOTE: This searches the file's name without the file extension.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

92
--file-name-is-include One or more file names that should be equal to found files in order to be
 reported by the watch folder.

 NOTE: This matches the file's name without the file extension.

 --file-name-is-ignore Ignore files where the file's name matches (one of) the specified names.

 NOTE: This matches the file's name without the file extension.

--file-name-begins-with-include Report (include) files where the file name begins with (one of) the
 specified text string(s).

 NOTE: This matches the file's name without the file extension.

--file-name-begins-with-ignore Ignore files where the file name begins with (one of) the specified text
 string(s).

 NOTE: This matches the file's name without the file extension.

--file-name-ends-with-include Report (include) files where the file name ends with (one of) the specified
 text string(s).

 NOTE: This matches the file's name without the file extension.

--file-name-ends-with-ignore Ignore files where the file name ends with (one of) the specified text
 string(s).

 NOTE: This matches the file's name without the file extension.

--file-extension-is-include Report (include) files where the file extension is equal to (one of) the
 specified file extension(s).

--file-extension-is-ignore Ignore files where the file extension is equal to (one of) the specified
 file extension(s).

--directory-contains-include Report (include) files which are found inside a directory where the
 directory name contains (one of) the specified text strings. This is only
 applicable for watch folders that does recursive directory listings. If the
 directory depth is more than 1, all individual directory names will be
 checked, not just the "deepest" one (the one in which the file actually is
 located).

--directory-contains-ignore Ignore files which are found inside a directory where the directory name
 contains (one of) the specified text strings. This is only applicable for
 watch folders that does recursive directory listings. If the directory depth
 is more than 1, all individual directory names will be checked, not just the
 "deepest" one (the one in which the file actually is located).

--directory-is-include Same as --directory-contains-include except that the directory name must be
 equal.

 --directory-is-ignore Same as --directory-contains-ignore except that the directory name must be
 equal.

 --max-size The maximum size in bytes that a file must have in order to be reported by
 the watch folder.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

93
 --min-size The minimum size in bytes that a file must have in order to be reported by
 the watch folder.

 --max-mod-date Files that have a modification date that is older than specified date will
 be reported and newer files will be ignored. This should be specified as a
 "Unix time" or "POSIX time". It is the number of seconds passed since
 00:00:00 UTC, January 1, 1970. In the current timezone, the start time was
 Wed Dec 31 16:00:00 1969. The current POSIX time is 1432052485. See
 http://en.wikipedia.org/wiki/Unix_time for more information.

 --min-mod-date Files that have a modification date that is newer than specified date will
 be reported and older files will be ignored. This should be specified as a
 "Unix time" or "POSIX time". It is the number of seconds passed since
 00:00:00 UTC, January 1, 1970. In the current timezone, the start time was
 Wed Dec 31 16:00:00 1969. The current POSIX time is 1432052485. See
 http://en.wikipedia.org/wiki/Unix_time for more information.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out-dir Specify the directory where the output file should be written. Default is
 current working directory.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 source edl --clip <url or path> [--in <time>] [--out <time>]
 [--clip <url or path> [--in <time>] [--out <time>]]
 [--clip <url or path> [--in <time>] [--out <time>]]
 [...]
 [--name <name>]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [-p]

 Create a EDL .episource configuration file. This command is a bit special because
 the order in which the options are specified is very important and the same options
 should be specified over and over again.

 This is an example where a EDL is specified consisting of 3 source files. The first
 file is cut with seconds, the second file is not cut at all and the third file is
 cut with time code.
 episodectl.exe source edl --clip file1.mov --in 1.00 --out 3.00 --clip file2.mov
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

94
 --clip file3.mov --in 00:00:01:01 --out 00:01:00:01

 Each segment in the list begins with the --clip option which takes one source file
 as argument/parameter. After each --clip <url or path> specification, exactly one --in
 and one --out may follow. Any of the --in/--out options may be left out in which
 case there will be no cutting in the beginning/end of the file. If the same source
 file should be used in multiple cuts, each cut must be specified with its own --clip
 option.

 This command can also be specified as sedl, i.e. episodectl.exe sedl

 --name A name for the source.

 --clip Specifies a clip in the list of clips where <url or path> is the URL or path
 to a source file.

 --in Specify the in-point of the current --clip ... where <time> could be either a
 fractional number treated as seconds, or a time code in the format
 "HH:MM:SS:FF" and optionally followed by a frame rate definition with format
 "HH:MM:SS:FF@FR" where FR can have one of the following "values": 23.976, 24,
 25, 29.97, 30, 50, 59.94, 60.

 --out Specify the out-point of the current --clip. See description of option --in.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out-dir Specify the directory where the output file should be written. Default is
 current working directory.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 source iseq <url or path> ...
 [--msni 0..1000000]
 [--sf 0..1000]
 [--fr <framerate>]
 [--ewi yes|no]
 [--ewi-wait 0..3600]
 [--ewi-num-waits 0..100]
 [--name <name>]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

95
 [-p]

 Create a Image Sequence .episource configuration file. Each specified <url or path>
 should be a URL or path to the first image in a sequence, i.e. the first image in
 the sequence you want to encode, it could of course be an image in the middle of a
 sequence too. If you use images that lacks frame rate information, Episode will
 default to 25 fps. A desired frame rate may be set using the Advanced Frame Rate
 filter.

 This command can also be specified as siseq, i.e. episodectl.exe siseq

 --name A name for the source.

 --msni This is short for "Maximum Sequence Number Increase" which enables sequences
 with "gaps" in the sequence numbers. The default value is 1 which means that
 as soon as there is a missing number in a sequence, it will be treated as
 the end of the sequence (the sequence to encode).

 --sf This is short for "Safety Files" which controls how many files after any
 given file need to be present in the sequence before processing of said file
 begins. This does not apply to the first file in a sequence. This only has
 practical implications if "Encode While Ingest" is enabled. Setting this to
 0 may significantly decrease the time the encoder has to wait when the end
 of the sequence is reached, but depending on file system and file format,
 may result in errors. Default is 1.

 --fr Specifies which framerate to default to if the file header does not contain
 such info.

 --ewi Enable/Disable "Encode While Ingest". This is suitable if you have a scanner
 or other device that writes new files over time. This will tell the sequence
 reader to wait for more images to arrive. This waiting time is configurable
 with the two options below. Default is "no". Keep in mind that if 2-pass
 encoders are used, the second pass will never start until the first pass is
 finished, and the first pass will never finish before the whole sequence is
 finished.

 --ewi-wait Number of seconds to wait before checking if a new file has arrived. Default
 is 5 seconds.

 --ewi-num-waits Number of times to wait. Default value is 5 which means that the total time
 to wait for a new file will default be 5 * 5 = 25 seconds.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

96
 --out-dir Specify the directory where the output file should be written. Default is
 current working directory.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 workflow

 A Workflow consists of tasks usually forming a graph, tree, or "line" (branch). A subsequent
 task in a branch is run after the preceding one by two main conditions. Either that the
 preceding task sets one or more in-values or "variable" values on the subsequent task, which
 the subsequent task is dependent on to run, or that the subsequent task is triggered by a
 "result", or "status" of the preceding task, i.e. if it failed or succeeded.

 A submitted workflow is always considered a "Template Workflow" from which any number of "Started
 Workflows" may originate. The started workflows are "Spawned" off a template by some
 in-value, usually a source file. If, for example a file source is used that consists of a
 file list of 3 files, 3 started workflows will be spawned from that source+workflow. If you
 have a watch folder source, each of the files that are reported by the watch folder will
 spawn off a started workflow from the template workflow that the watch folder source is
 attached to.

 NOTE: When you save a .episubmission file in the GUI, it may or may not contain a source. In
 either case, the source can be overridden or inserted by the submit -s ... command described
 below.

 If you do submissions and consider the entire submission as one job that can succeed or
 fail, you should use --id-out and poll status with status workflows -i ID. If you want to
 see status for the individual started workflows, you can use --ids-out and be able to poll
 statuses of all IDs with status workflows ID1 ID2 ... Even more detailed status information
 can be obtained about the individual tasks in the workflows by calls to status tasks.

 workflow submit -e <encoder-file or directory-of-encoderfiles> ...
 [-f <sourcefile or directory-of-sourcefiles> ...]
 [--file-source <file-source-file>]
 [--edl <edl-source-file>]
 [--iseq <iseq-source-file>]
 [--watch-folder <watch-folder-source-file or directory-to-monitor>]
 [-d <directory or deployment-task-file>]
 [-x <Execute-file>|<script-file> [done|failure|success]]
 [-m <Mail-file> [done|failure|success]]
 [--mbr HTTPStreaming|SmoothStreaming|DASHStreaming|<MBR-file> <encoder-file
 > ...]
 [--workflow-failure encode|deploy
 [--move-source <url or path>]
 [--remove-source]
 [--stop-encoders]]
 [--workflow-success
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

97
 [--move-source <url or path>]
 [--remove-source]]
 [--naming <naming convention>]
 [--split
 [--max-splits 2..32]
 [--split-on-gop-size 1..100]
 [--min-split-time 9..3600]]
 [-n <name>]
 [--workflow-name <workflow name>]
 [--priority <priority>]
 [--set-name <task-username> <variable> <value>]
 [--set-type <task-typename> <variable> <value>]
 [--set-list-name <task-username> <list-variable> <value> ...]
 [--set-list-type <task-typename> <list-variable> <value> ...]
 [--tag-name <task-username> <tag> ...]
 [--tag-type <task-typename> <tag> ...]
 [--tag-workflow <tag> ...]
 [--inverse-tag-name <task-username> <tag> ...]
 [--inverse-tag-type <task-typename> <tag> ...]
 [--inverse-tag-workflow <tag> ...]
 [-r <hours until expiration>]
 [--no-resource]
 [--id-out]
 [--ids-out [<separator char>]]
 [--watch-folder-id-out]
 [-w [-v]]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]
 [--demo]
 [-o [<directory>] [--format xml|simple-xml|ascii|bin] [-p]]

 The above creates a one-shot workflow

 workflow submit -s <submission-file or directory-of-submission-files> ...
 [-f <sourcefile or directory-of-sourcefiles> ...]
 [--file-source <file-source-file>]
 [--edl <edl-source-file>]
 [--iseq <iseq-source-file>]
 [--watch-folder <watch-folder-source-file or directory-to-monitor>]
 [--naming <naming convention>]
 [--split
 [--max-splits 2..32]
 [--split-on-gop-size 1..100]
 [--min-split-time 9..3600]]
 [-n <name>]
 [--workflow-name <workflow name>]
 [--priority <priority>]
 [--set-name <task-username> <variable> <value>]
 [--set-type <task-typename> <variable> <value>]
 [--set-list-name <task-username> <list-variable> <value> ...]
 [--set-list-type <task-typename> <list-variable> <value> ...]
 [--tag-name <task-username> <tag> ...]
 [--tag-type <task-typename> <tag> ...]
 [--tag-workflow <tag> ...]
 [--inverse-tag-name <task-username> <tag> ...]
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

98
 [--inverse-tag-type <task-typename> <tag> ...]
 [--inverse-tag-workflow <tag> ...]
 [-r <hours until expiration>]
 [--no-resource]
 [--id-out [<separator char>]]
 [--ids-out [<separator char>]]
 [--watch-folder-id-out [<separator char>]]
 [--id-group-separator [<separator char>]]
 [-w [-v]]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]
 [--demo]

 The above takes a submission configuration file

 Submit Jobs to a Node. A Workflow instance will be created for every source file
 specified.
 If a directory is specified (ends with a '\'), all files in that directory will be
 submitted.

 There are a two ways to submit Jobs. Either by building a workflow "on the fly" (a
 one-shot workflow) or by submitting a saved submission configuration file.

 If option -e is used, a new "one-shot" Workflow will be built from the Encoder Task
 configuration files (or Episode 5.x settings), destination(s) specified with option -d
 .

 If option -s is used, the specified files should be saved submission files (for
 example a .episubmission file). If one or more directories are specified all
 recognizable submission files found will be submitted.

 This command can also be specified as ws, i.e. episodectl.exe ws

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 -f
 --file Specify one or more files as source files. You can also specify one or more
 directories in which case they should end with a slash. If a directory is
 specified, all files in that directory will be added to the file source
 list. In the case of option -s, this will override the source if one is
 already present.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

99
 --file-source Specify a File List configuration file as source. In the case of option -s,
 this will override the source if one is already present.

 --edl Specify a EDL configuration file as source. In the case of option -s, this
 will override the source if one is already present.
 NOTE: All $source.xxx$ variables (see episodectl.exe variables for more
 information) will be set with information about the first file in the EDL
 list.

 --iseq Specify a Image sequence configuration file as source. In the case of option
 -s, this will override the source if one is already present.

 --watch-folder Specify a Watch Folder configuration file as source or a directory to be
 monitored. If a directory to be monitored is specified, it should end with a
 slash ('/') in order to be identified as a directory (this could be a URL
 too, in which case episodectl.exe will not try to figure out if it's a
 directory or configuration file, that's why). In the case of option -s, this
 will override the source if one is already present.

 -e
 --encoder One or more Encoder Task configuration files or Episode 5.x setting files or
 a directory. If a directory is specified, that directory will be "searched"
 (recursively) for Encoder task configuration files and every Encoder task
 file found will be added to the workflow.

 --mbr Specify either a multi bit rate (MBR) .epitask configuration (as <MBR-file>)
 file or a package type (HTTPStreaming, DASHStreaming, or SmoothStreaming)
 followed by any number of encoder epitasks which are to provide the encoded
 streams to the MBR task. This option can be supplied several times to
 generate a workflow with several packagings. <Note:> If the same encoder
 epitask appears in several packaging options, only one encoding will be
 performed and the resulting encoded stream will be shared between the MBR
 tasks (optimization) <Note:> You do not need to specify any encoders using the
 -e switch if --mbr is used.

 -d
 --destination A Destination to be used instead of the default one. The argument may be a
 Destination Task configuration file (see episodectl.exe task transfer -h on
 how to create one), a directory URL, or a directory path. If it is a
 directory path, it should end with a \. If no destination task or
 destination folder is specified, the default one will be used. The default
 one is configurable with the command episodectl.exe proxy defaults -d
 <default destination>.

 -x
 --execute Specify one or more Execute Task configuration files or script files to be
 run after the deployment (each deployment). If the specified file has the
 file extension "epitask" it's considered to be a Execute Task configuration
 file (see episodectl.exe task execute -h on how to create one) and if it has
 any other exension (or no extension), it is considered to be a script. If a
 script file is specified, a Execute task is created and configured with the
 content and file extension of that script (extension is for Windows where
 interpreter is chosen based on file extension). In other words, a copy of
 the script is sent for execution in the workflow. You can specify this
 option multiple times in order to run several Execute tasks either in case
 of previous task finish ('done'), previous task failure, or in case of
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

100
 previous task success. The 'done', 'failure' or 'success' is per branch in a
 graph, i.e. if you specify two Encode tasks with option -e, and 2
 Deployments with option -d, a total of four branches are created and each of
 these branches will have a copy of the done, failure and/or success Execute
 tasks. To specify one failure and two success scripts you may write: -x
 /path/to/Failure.epitask failure -x /path/to/Success1.epitask -x
 /path/to/Success2.epitask. The default is to run the Execute task in case of
 success. If a Encode + Deploy branch fails and the Execute task is
 configured to run on success, the status 8 or "Redundant" will be set on the
 Execute task. See example section (episodectl.exe examples) for further
 information.

 -m
 --mail Specify one or more Mail Task configuration files to be run after the
 deployment (each deployment). You may specify this option multiple times in
 order to run several Mail tasks either in case of previous task finish
 ('done'), previous task failure, or in case of previous task success. The
 'done', 'failure' or 'success' is per branch in a graph, i.e. if you specify
 two Encode tasks with option -e, and 2 Deployments with option -d, a total
 of four branches are created and each of these branches will have a copy of
 the failure and/or success Mail tasks. To specify one failure and one
 success Mail tasks you may write: -m /path/to/FailureMail.epitask failure -m
 /path/to/SuccessMail.epitask. The default is to run the Mail task in case of
 failure. If a Encode + Deploy branch succeeds and the Mail task is
 configured to run on failure, the status 8 or "Redundant" will be set on the
 Mail task. See example section (episodectl.exe examples) for further
 information.

 --workflow-failure Specify actions to be taken in the workflow in case of encoding or
 deployment failure. This will fulfill if ANY task fails (if multiple
 encoders or multiple deployments are present within the workflow). The
 argument to this option must be either "encode" or "deploy" and there are
 three "sub options" that could be used which are --move-source,
 --remove-source, and/or --stop-encoders. The valid combinations of these sub
 options are:
 --move-source <url or path> --stop-encoders
 --remove-source --stop-encoders
 --stop-encoders
 --move-source <url or path>
 --remove-source

 --workflow-success Specify actions to be taken in the workflow in case of deployment success.
 This will fulfill if ALL tasks succeeds (if multiple deployments are present
 within the workflow). There are two "sub options" that could be used which
 are --move-source or --remove-source where only either one of them may be
 specified.

 --move-source Move the source file to <url or path> which should point to a existing
 directory.

 --remove-source Remove the source file.

 --stop-encoders Stop any non-finished encode tasks within the workflow (if multiple encoders
 were present within the workflow).

 --set-name Set one or more variables on task(s) with specified name. The first argument
 is the user defined task name and following arguments should be
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

101
 "variablename value variablename value" etc. See variable section (episodectl.exe
 variables) for further information.

 --set-type Set one or more variables on task(s) with specified "type name". The first
 argument is one of the type names listed below and following arguments
 should be "variablename value variablename value" etc. See variable section
 (episodectl.exe variables) for further information. Available type names
 are:

 Note for 6.2.x users: "Encode" was previously called "Encoder" and
 "Transfer" was previously called "Uploader". The old names still works but
 should be changed as soon as possible.

 Encode
 Transfer
 YouTube
 Execute
 Mail
 MBR

 --set-list-name Set several values that makes up a list; on task(s) with specified name. See
 variable section (episodectl.exe variables) for further information.

 --set-list-type Set several values that makes up a list; on task(s) with specified "type
 name". See variable section (episodectl.exe variables) for further
 information.

 --tag-name Set one or more tags on task(s) with specified name. The first argument is
 the user defined task name and following arguments should be tags. See tag
 section (episodectl.exe tags) for further information.

 --tag-type Set one or more tags on task(s) with specified "type name". The first
 argument is one of the type names listed below and following arguments
 should be tags. See tag section (episodectl.exe tags) for further
 information. Available type names are:

 Note for 6.2.x users: "Encode" was previously called "Encoder" and
 "Transfer" was previously called "Uploader". The old names still works but
 should be changed as soon as possible.

 Encode
 Transfer
 YouTube
 Execute
 Mail
 MBR

 --tag-workflow Set one or more tags on the whole workflow, every task will inherit these
 tags. See tag section (episodectl.exe tags) for further information.

 --inverse-tag-name Set one or more inverse-tags on task(s) with specified name. The first
 argument is the user defined task name and following arguments should be
 tags. See tag section (episodectl.exe tags) for further information.

 --inverse-tag-type Set one or more inverse-tags on task(s) with specified "type name". The
 first argument is one of the type names listed below and following arguments
 should be tags. See tag section (episodectl.exe tags) for further
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

102
 information. Available type names are:

 Note for 6.2.x users: "Encode" was previously called "Encoder" and
 "Transfer" was previously called "Uploader". The old names still works but
 should be changed as soon as possible.

 Encode
 Transfer
 YouTube
 Execute
 Mail
 MBR

--inverse-tag-workflow Set one or more inverse-tags on the whole workflow, every task will inherit
 these tags. See tag section (episodectl.exe tags) for further information.

 --split Configure the Encoder(s) to do Split-and-Stitch. (This is the same as "--set-type
 Encoder sns yes")

 --max-splits Specify maximum number of splits created. This only applies to option --split
 . The default value is 16.

 --min-split-time Specify minimum duration in seconds for each split. This only applies to
 option --split. The default value is 30.

 -r
 --resource Specify an expiry time for IO shares. Default is 1 week.

 --no-resource Don't convert files and directories into TSRC URIs, and don't share anything
 in the local IOServer. If you use this option, you must have configured all
 the nodes in a cluster to have access to the same storage at the same path.
 You can not use "Named Storages" if you use this option and you will most
 certainly get "Access Denied" errors if you don't turn off "IO
 Verificaition", see episodectl.exe node jobs -h for more information on
 that. This option is therefore not recommended.

 -n
 --name Name the submission. This does NOT have to be a unique name. If used
 together with option -s and multiple submission files, this will override
 the name on all submissions and name them the same.

 --workflow-name Name the workflow. The workflow will default be named the same as the
 submission. This name can be used for job control through command episodectl.exe
 job ... -n <workflow name>.

 -s
 --submission Specifies that the input files are submission configuration files. If option
 -f, --edl, or --watch-folder is used in conjunction with this option, the
 source in the submission file will be replaced if one is already present.

 --naming Insert a custom naming convention. The naming convention is specified as one
 string and you can insert variables. See variable section (episodectl.exe
 variables) for a list of the variables.

 An example of the default naming convention would be specified as
 '$source.filename$-$encoder.name$'.If you're specifying this command in a
 shell, be sure to enclose it with single quotes as many shells interpret '$'
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

103
 as a special character. (This is the same as "--set-list-type Transfer
 dest-filename '$source.filename$' - '$encoder.name$'")

 --priority Set priority on the workflow. A higher value equals higher priority. The
 value can be any 64-bit integer, negative or positive (If you don't know
 what this means, it means very big numbers). The default priority is 0.

 -w
 --wait Wait until the started Workflows are finished. Program will exit with 0 if
 every job finished without failure and 1 if any of the jobs (started
 workflows) failed. NOTE: This option will have no effect if a watch folder
 source is used.

 -v
 --visual Get a visual (human readable) representation of the submitted workflow that
 is updated with intervals. NOTE: This is mostly useful for testing purposes.
 NOTE: This only applies to option --wait.

 --id-out Output Template Workflow ID (from which any number of started workflows are
 created). This ID can be used to retrieve status through the command status
 workflows -i ... or status tasks -i If option -s is used, multiple
 Template IDs will be printed if multiple submission files were specified in
 which case you can optionally specify a separator character as argument, the
 default is a vertcal bar or "pipe" character ('|'). There are two special
 identifiers you can specify - "newline" or "LF" to get a newline separator.

 --ids-out Output Started Workflow IDs. These IDs can be used to retrieve status with
 the commands status workflows ... or status tasks An optional separator
 character can be specified, default is a vertcal bar or "pipe" character
 ('|'). There are two special identifiers you can specify - "newline" or "LF"
 to get a newline separator.

 --watch-folder-id-out Output Watch Folder ID if the source was a watch folder source. This ID can
 be used to control the watch folder with the episodectl.exe watch-folder
 command. If option -s is used, multiple Template IDs will be printed if
 multiple submission files were specified in which case you can optionally
 specify a separator character as argument, the default is a vertcal bar or
 "pipe" character ('|'). There are two special identifiers you can specify -
 "newline" or "LF" to get a newline separator.

 --demo Submits the workflow with demo mode set (will add watermark)

 -o
 --out If you use episodectl.exe ws -e ... to build a workflow "on the fly", you
 can save that workflow to a .episubmission and later submit it through episodectl.exe
 ws -s The options --format and --print-plain-path are directly tied to
 this option (and the save functionality). The ouput filename will be
 generated unless option -n <name> is specified in which case <name> will be the
 filename and the extension .episubmission. The configuration file will be
 written to the current working directory unless the optional
 argument/parameter <directory> is specified. NOTE: Some things are not saved
 when you use this option. These include all variable override options --set-name
 --set-type --set-list-name --set-list-type and the utility option --split as
 well as workflow --priority and --demo. These options must be specified when
 the workflow is submitted. If this option is used from within a
 program/script, you can use option --print-plain-path to read/store the
 complete path in a variable.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

104
 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them. NOTE: This option only applies to option
 -o.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path. NOTE: This option only applies to option -o.

 workflow stop [<workflow id> ...]
 [-i <template id>]
 [--all]
 [--host <hostname/IP>]
 [-c <cluster name>]
 [--timeout <seconds>]

 Stops any running tasks and removes the workflow from the node's/cluster's "active
 state". The workflow will end up in the history. Started workflows are specified
 without any option and you can specify one Template workflow withy option -i.

 This command can also be specified as wp, i.e. episodectl.exe wp

 -i
 --id Specify that this ID is a Template ID. Any workflows originating from this
 will be stopped and removed.

 --all Stop all running workflows.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

105
 workflow recall [<workflow id>]
 [-i <template id>]
 [-n <name>]
 [--format xml|simple-xml|ascii|bin]
 [-o <directory>]
 [--print-plain-path]
 [--host <hostname/IP>]
 [-c <cluster name>]
 [--timeout <seconds>]

 Recall a submitted workflow from a node/cluster. This will write the recalled
 workflow as a submission file (.episubmission) including the source. The written
 file will be the same as if option --out was used in the command workflow submit ...
 --out and thus submittable again through option episodectl.exe workflow submit -s
 <recalled file>.

 If a <workflow id> is specified, the recalled data is the submission (and its template
 workflow) that spawned the started workflow with ID <workflow id>.

 This command can also be specified as wr, i.e. episodectl.exe wr

 -i
 --id Specify that this ID is a Template ID.

 -n
 --name Specify a name of the output file. This will not change the name of the
 actual submission/workflow. If no name is specified, the filename will be
 the same as the name of the recalled submission/workflow.

 --format Format of the ouput configuration file. The argument can be any of xml, simple-xml
 , ascii, bin. The default is xml which is an XML format with type
 information. There is a simple-xml format that is more readable and easier
 to use for manual editing but use this with caution because it may not be
 upgradable/usable when a new version of Episode is released. ascii is a more
 compact format and more efficient to work with (IO, storage etc) and still
 kind of readble but not recommended for editing. bin is a binary format and
 about the same size as ascii but not readble nor editable. ascii and bin are
 therefore only recommended for "automatic" use, i.e. from a program that
 both creates them and submits them.

 -o
 --out Specify the directory where the recalled workflow's submission file should
 be written. Default is current working directory.

 -p
 --print-plain-path Print the path to the written configuration file without any other text or
 newline etc. Usable if a program/script should run this command and read
 back the path.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

106
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 status clusters [-p]
 [-l [<separator>]]
 [--timeout <seconds>]

 Display info about the visible clusters on the local network by performing a Bonjour
 search. An asterisk character (*) indicates the Master node.

 This command can also be specified as sc, i.e. episodectl.exe sc

 -p
 --private Include non-clustered nodes in the output, i.e. "Private" nodes.

 -l
 --list Print cluster names only, as a parse-friendly list with an optional <separator
 > character argument. The default is a "vertical bar", or "pipe" character
 ('|'). There are two special identifiers you can specify - "newline" or "LF"
 to get a newline separator.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 status nodes [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Display info about the nodes in a cluster as well as current CPU and RAM usage. The
 configuration controlling the frequency of the updates is the
 <machine-metrics-update-interval> in the individual nodes' confiuration files. It is
 default set to 5 seconds (30 seconds before version 6.2) and you can change that
 interval for more frequent updates. The machine metrics information is also the base
 for the job scheduling algorithm called "Load Balancing" which will also be more
 accurate with shorter update intervals.

 This command can also be specified as sn, i.e. episodectl.exe sn
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

107
 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 -w
 --wait This will update and display the status with certain intervals. This will
 not exit so you will have to manually stop the program.

 status workflows [<id> ...]
 [-i <template id>]
 [--all [history [request]]]
 [-s <separator char>]
 [--status-out [text]]
 [-v]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Get status for one or more Started Workflows. The IDs are supposed to have been
 obtained from a call to workflow submit ... --ids-out unless option -i is used where
 an id obtained from workflow submit ... --id-out should be specified. If neither of
 these are specified, this is the default behaviour episodectl.exe sw --all.
 Each status is printed in the order their ID was specified. A value of 0 means that
 the workflow is finished and was successful. A value of 1 is a general error code. 2
 means that the workflow failed. 3 means that it's still running and 4 means that
 it's idle and can be treated as running. Idle is most often that some tasks in the
 workflow are currently queued.

 This command can also be specified as sw, i.e. episodectl.exe sw

 -i
 --id If you have obtained a template ID from a submission with option --id-out,
 you can specify that to recieve status for all workflows originating from
 that single template ID.
 With this option this command will return special program return codes.

 If ALL workflows originating from the specified ID has finished and was
 successful, 0 is returned.

 If ANY of the workflows has failed, 2 is returned.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

108
 If ANY of the workflows are still running and none has failed, 3 is
 returned.

 If ANY of the workflows are idle and none has failed, 4 is returned.

 Idle in this case is most often when tasks in the workflow are queued and
 can be treated as if the workflow is still running. This will only return
 status for workflows which have not yet expired from the ClientProxy's
 history. i.e. the ClientProxy will not query the Node's history for status.

 This means that the returned status can change from, for example 2 (failed)
 to 3 or 4 IF a failed workflow expires from history before other workflows
 from the same template are still idle or running.

 For example, if the ClientProxy has a configured history keep time of 1
 hour, a submission is made at 12:00 which spawns 2 workflows, one of which
 immediately fails. The other one is (for some reason) queued (idle) for over
 1 hour. At 13:00 the returned status will go from 2 to 3 because only the
 idle workflow is still in the history cache. It is therefore recommended to
 take immediate action on failure if this option is used!

 --all This option lists all "active" workflows, i.e. status 3 or 4. The workflow
 ID will be printed aswell as the status. The format is
 "workflow-id=status-format".
 You may optionally include the results of all historized workflows with the
 argument "history" in which case a plus-sign character is printed after the
 status which indicates that more info may be retrieved for this workflow.
 The history in this case is the history of the EpisodeClientProxy.exe
 process which is only in memory of that process and not stored on disk. This
 history cache-time is configurable in ClientProxy.xml.

 You can add a second argument "request" to make a request to the node's
 database to see which workflows are still stored in the node's database.
 NOTE: Using "request" may be a significant overhead.

 The result of the workflow, i.e. status 0 or 2, is saved as long as the
 node's database is not manually removed. What this means is that you can
 list workflow "results" (status) for workflows that have been cleaned out
 automatically after the configurated time to keep history. In other words,
 you will see a lot of workflows listed here that there is no way to get
 further info about than the actual status, or result. It's up to the user to
 maintain a description of these "Jobs" outside of the Episode system if
 needed.

 -s
 --separator Specify a separator character. The default is a newline character.

 --status-out Print status instead of using return values. The printed number is the ASCII
 equivalent of the return codes. An optional argument "text" can be specified
 to print the status as text.

 Status code Text string

 0 "Succeeded"
 1 "Error" (CLI general error)
 2 "Failed"
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

109
 3 "Running"
 4 "Idle"

 -v
 --visual Shows a human readable overview output.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 status tasks [<workflow id> ...]
 [-i <template id>]
 [--all [history|history-only [request]]]
 [--task-separator <separator char>]
 [--task-property-separator <separator char>]
 [--out [<key> ...]]
 [--filter-type <task type name> ...]
 [--filter-name <task user name> ...]
 [-w]
 [-v]
 [--host <hostname/IP>]
 [-c <cluster name>]
 [--timeout <seconds>]

 Get status for one or more tasks inside one or more workflows. There are two
 different separators to make it easy to parse the output.
 The first separator is for separating the individual tasks, and the other is for
 separating the properties of the task requested.

 Note for 6.2.x users, The synopsis and documentation for this command is completely
 new. The <key>s to option --out replaces all the old --xxx-out options as well as
 "variables". All the old options are still working but it is recommended to use the
 new --out option as soon as possible.

 This command can also be specified as st, i.e. episodectl.exe st

 If no option is specified, this is the default behaviour episodectl.exe st --all.

 -i
 --id If you have obtained a template ID from a submission with option --id-out,
 you may specify that to recieve status for all tasks originating from that
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

110
 single template ID. This will only return status for workflows which have
 not yet expired from the ClientProxy's history. i.e. the ClientProxy will
 not query the Node's history for status.

 --all This will return status for all "active" (Idle, Queued, Running) tasks. If
 argument "history" is specified, finished (historized) tasks will also be
 shown.
 The history in this case is the history of the EpisodeClientProxy.exe
 process which is only in memory of that process and not stored on disk. This
 history cache-time is configurable in ClientProxy.xml.
 You can add a second argument "request" to make a request to the node's
 database to retreive status for tasks that are still stored in the node's
 database. NOTE: Using "request" may be a significant overhead. To view only
 history, the history argument can be "history-only".

 --task-separator
 --ts Specify a separator character to be used to separate group of specified
 "task properties". The default is a newline character.

--task-property-separator
 --tps Specify a separator character to be used to separate each specified task
 property. The default is a "vertical bar", or "pipe" character ('|'). There
 are two special identifiers you can specify - "newline" or "LF" to get a
 newline separator.

 --filter-type Filter the output based on the name of the type of task. This is supposed to
 be one of the task type names printed with option --name-out. Several type
 names may be specified.

 --filter-name Filter the output based on the user defined name of the task. Several names
 may be specified.

 -w
 --wait Waits indefinitely (until the program is manually stopped) and polls status
 for the tasks with a certain interval. This implies option -v which means
 that it shows a human readable overview output.

 -v
 --visual Shows a human readable overview output. Running tasks' status is a progress
 bar showing progress with a dash character '-' if it is not the last pass
 and a equality character '=' when it is the last pass (The dash only applies
 to Encode tasks configured with 2-pass/Multipass). Paused tasks are
 indicated with double vertical bars, or pipe characters as a prefix to
 either the status or the progress bar, e.g.
 ||[==========]
 || Queued
 If used in conjunction with option --wait, the output is truncatated
 vertically to fit the terminal/console window.

 TIP: To get the best overview of Episode task status, get a computer with a
 wide screen, create 2 terminal/console windows that are maximized vertically
 and shares the screen horizontally. Then execute:
 episodectl.exe st -c MyCluster --all -wv in the first window and
 episodectl.exe st -c MyCluster --all history-only -wv in the second window.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

111
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 -o
 --out This option takes one or more space separated <key>s, where each <key> is a
 keyword from the list below. Many keywords has the same name as the
 variables (episodectl.exe variables), without the surrounding dollar
 characters.

 The output is printed in the same order as they are specified on the command
 line. If no option is specified, all <key>s listed below are printed in the
 format '<key>=value|<key>=value' etc (for default <separator char>). If all <key>s
 are printed, the order is undefined.

 The keywords that outputs a time will print the time as a "Unix time" or
 "POSIX time". It is the number of seconds passed since 00:00:00 UTC, January
 1, 1970. In the current timezone, the start time was Wed Dec 31 16:00:00
 1969. The current POSIX time is 1432052485. See
 http://en.wikipedia.org/wiki/Unix_time for more information.

 task.status.code
 task.status.text

 Current status code of the task as a number or as text, here is a
 list of each status:

 Status code Text string

 0 "Idle"
 1 "Queued"
 2 "Submitted"
 3 "PreStartFail"
 4 "Running"
 5 "Cancelled"
 6 "Succeeded"
 7 "Failed"
 8 "Redundant"

 task.scheduling-state

 Current scheduling state of the task. A value of 0 means schedule
 (for execution, i.e. default), 1 means paused (do not schedule for
 execution).

 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

112
 task.progress

 Current progress of the task as a integer value from 0 to 100

 task.progress.float

 Current progress of the task as a floating point value from 0.0 to
 1.0

 task.progress.mp

 Multipass information. If multipass is not configured or the task is
 not an encoder task, the output will be "-". If multipass is enabled
 but it's not the last pass, the pass will be printed as a number
 followed by a "+"-sign, indicating there are more passes coming.
 When the encoder is doing the last pass, the pass will be printed as
 a number without a following "+"-sign. For example, when doing a
 2-pass encoding, the output for the first pass will be "1+" and for
 the second pass "2".

 task.id

 The unique task ID inside the workflow. This ID can be used in calls
 to job cancel/requeue/pause/resume/set-priority together with the
 workflow ID, workflow.id.

 task.name

 The name of the task. In case of Split-and-Stitch or EDL tasks
 (dynamically created tasks), this name is a dynamically generated
 name suitable for human readbility, i.e a GUI. To identify a
 dynamically created task by (user defined) name, use task.user-name.

 task.user-name

 The user defined name of the task. In case of Split-and-Stitch or
 EDL tasks (dynamically created tasks), this name will be the same
 name as the "original" task name that created the task.

 task.type-name

 The type name of the task. Here is the current list of task type
 names:

 Localize
 Encode
 MBR
 Transfer
 Move
 Delete
 YouTube
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

113
 Execute
 Mail

 task.priority

 The current priority of the task. This will initially be the same as
 workflow.priority but may be changed after the workflow is submitted
 with a call to job set-priority.
 Developer note: 64-bit signed integer value.

 task.message

 The current message of the task. There is currently no definition of
 what this message may be, but in case of task failure, it will be a
 error message. In case of status Idle, it will tell why it is idle
 and so on. In a GUI, this may be displayed at all times.

 task.node-id

 The ID of the node that is currently running the task, or has the
 task queued, idle, etc. This ID is default configured to be the
 hostname of the machine. If the task is done, this will be the ID of
 the node that executed it (the last time in case of several
 attemps).

 task.attempt

 The current attempt to execute the task. This will be 0 if the task
 has not been run yet.

 task.start-time

 The time the task was scheduled for execution, i.e. started. If the
 task hasn't been started yet, this time will be 0. If this task is
 re-queued (manually, by Episode re-start, or by failure-re-run
 attempt) this will show the latest time it was started.

 task.end-time

 The time the task was finished. If the task hasn't finished yet,
 this time will be 0. If this task was re-queued (by failure-re-run
 attempt) this will show the latest time it failed.

 workflow.status.code
 workflow.status.text

 Current status of the workflow as a status code or text.

 Notice: This differs from the status of command status workflows,
 the reason is that the status is used as a program exit code in that
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

114
 command and therefore needs to be altered, while that is not the
 case here.

 Statuses:

 Status code Text string

 0 "Idle"
 1 "Running"
 2 "Succeeded"
 3 "Failed"

 workflow.priority

 Current priority of the workflow.
 Developer note: 64-bit signed integer value.

 workflow.end-time

 The time the workflow finished. If the workflow hasn't finished yet,
 this time will be 0.

 Additional (static) workflow information can be obtained through these
 keywords, see episodectl.exe variables for more information.

 workflow.submission-name workflow.submission-time
 workflow.submission-client workflow.submission-host
 workflow.template-id workflow.id
 workflow.spawn-value workflow.spawn-time
 workflow.name workflow.seq-nr

 Source information can be obtained through these keywords, see episodectl.exe
 variables for more information.

 source.name source.type
 source.url source.path
 source.file
 source.filename source.extension
 source.parent-dir-name source.parent-dir-path
 source.grandparent-dir-name source.grandparent-dir-path

 If task.type-name equals Encode, the following keywords are available after
 the Encode task has finished successfully. If they are read under other
 circumstances the value will be empty. See episodectl.exe variables for more
 information.

 encoder.name (same as task.user-name and always available)
 encoder.input-duration-s encoder.input-duration-hms
 encoder.input-pixel-dimensions
 encoder.input-framerate encoder.input-samplerate
 encoder.output-bitrate-kbps encoder.output-bitrate-mbps
 encoder.output-duration-s encoder.output-duration-hms
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

115
 encoder.output-pixel-dimensions
 encoder.output-framerate encoder.output-samplerate

 If task.type-name equals MBR, the following keywords are available after the
 MBR task has finished successfully. If they are read under other
 circumstances the value will be empty. See episodectl.exe variables for more
 information.

 mbr.name (same as task.user-name and always available)
 mbr.package-type mbr.package-name

 If task.type-name equals Transfer, the following keywords are available
 after the Transfer task has finished successfully. If they are read under
 other circumstances the value will be empty. See episodectl.exe variables
 for more information.

 deployment.name (same as task.user-name and always available)
 deployment.dest-url deployment.outfile-path
 deployment.outfile-name deployment.outfile-extension
 deployment.outfile-file

 If task.type-name equals YouTube, the following keywords are available.

 deployment.name

 If task.type-name equals Execute, the following keyword is available after
 the Execute task has finished successfully. If it is read under other
 circumstances the value will be empty.

 execute.exit-code

 The exit code of the program/script that was executed.

 status watch-folders [--watch-folder-separator <separator char>]
 [--watch-folder-property-separator <separator char>]
 [--out [<key> ...]]
 [-v]
 [--host <hostname/IP>]
 [-c <cluster name>]
 [--timeout <seconds>]

 Get status for all watch folders. There are two different separators to make it easy
 to parse the output.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

116
 The first separator is for separating the individual watch folders, and the other is
 for separating the properties of each watch folder.

 This command can also be specified as sm, i.e. episodectl.exe sm

--watch-folder-separator
 --ms Specify a separator character to be used to separate group of specified
 "monitor properties". The default is a newline character.

--watch-folder-property-separator
 --mps Specify a separator character to be used to separate each specified watch
 folder property. The default is a "vertical bar", or "pipe" character ('|').
 There are two special identifiers you can specify - "newline" or "LF" to get
 a newline separator.

 -v
 --visual Shows a human readable overview output.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 -o
 --out This option takes one or more space separated <key>s, where each <key> is a
 keyword from the list below.

 The output is printed in the same order as they are specified on the command
 line. If no option is specified, all <key>s listed below are printed in the
 format '<key>=value|<key>=value' etc (for default <separator char>). If all <key>s
 are printed, the order is undefined.

 The keywords that outputs a time will print the time as a "Unix time" or
 "POSIX time". It is the number of seconds passed since 00:00:00 UTC, January
 1, 1970. In the current timezone, the start time was Wed Dec 31 16:00:00
 1969. The current POSIX time is 1432052485. See
 http://en.wikipedia.org/wiki/Unix_time for more information.

 id

 The unique watch folder ID.

 name
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

117

 User defined watch folder name.

 url

 The URL that this watch folder is monitoring.

 workflow-id

 The template workflow that the watch folder is targeting.

 workflow-priority

 The priority of the targeted template workflow.
 Developer note: 64-bit signed integer value.

 running

 If the watch folder is currently running (monitoring). The printed
 value will be yes or no.

 stop-reason

 The reason why the watch folder is not running (stopped). If the
 monitor is running, this will be a empty value.

 submission-time

 The time this watch folder (and its template workflow) was
 submitted.

 submission-name

 The name of the submission.

 submission-client

 The client which made the submission.

 submission-host

 The host from which the submission came.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

118
 job

 With the job commands, tasks and workflows can be operated on in run-time, i.e. after
 they've been submitted. All job commands have different options that takes IDs as arguments
 and here is a description of how to obtain these IDs

 <workflow id>

 episodectl.exe workflow submit ... --ids-out
 episodectl.exe status workflows --all
 episodectl.exe status tasks ... --out workflow.id
 When printing everything with
 episodectl.exe status tasks ... --out,
 it is printed as "workflow.id=<workflow id>"

 <task id>

 episodectl.exe status tasks ... --out task.id
 When printing everything with
 episodectl.exe status tasks ... --out,
 it is printed as "task.id=<task id>"

 <template id>

 episodectl.exe workflow submit ... --id-out
 episodectl.exe status tasks ... --out workflow.template-id
 When printing everything with
 episodectl.exe status tasks ...,
 it is printed as "workflow.template-id=<template id>"

 <workflow name>

 Specified through submission with
 episodectl.exe workflow submit ... --workflow-name <workflow name>
 episodectl.exe status tasks ... --out workflow.name

 job cancel [-t <workflow id> <task id>]
 [-w <workflow id>]
 [-i <template id>]
 [-n <workflow name>]
 [--all]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Cancel a individual task, or remove one or more workflows in which case any
 associated tasks are cancelled. One of the options -t, -w, -i, -n, or --all must be
 specified and each option below describes the effects of the option. Commands for
 obtaining the various IDs are:

 This command can also be specified as jcan, i.e. episodectl.exe jcan
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

119
 -t
 --task Cancel and remove a individual task. The workflow that this task is a part
 of is not affected except for this task. If the task is in a running state,
 it is stopped first.

 -w
 --workflow Cancel and remove a workflow. All running tasks (if any) are stopped before
 removal. This is the same as episodectl.exe workflow stop <workflow id>.

 -i
 --id Cancel and remove all workflows originating from this ID. All running tasks
 (if any) are stopped before removal. This is the same as episodectl.exe
 workflow stop -i <template id>.

 -n
 --name Cancel and remove all workflows that have the name <workflow name>. All
 running tasks (if any) are stopped before removal.

 --all Cancel and remove all workflows. All running tasks are stopped before
 removal. This is the same as episodectl.exe workflow stop --all.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 job requeue [-t <workflow id> <task id>]
 [-w <workflow id>]
 [-i <template id>]
 [-n <workflow name>]
 [--all]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Stop and re-queue one or more tasks.One of the options -t, -w, -i, -n, or --all must
 be specified and each option below describes the effects of the option.

 Notice that re-queuing tasks does not mean that another task is going to start
 without previously having either increased another task's priority, decreased the
 soon-to-be-re-queued task's priority, or new tasks have been submitted with higher
 priority, see explanation below.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

120
 There are many parameters taken into consideration when the Node schedules tasks for
 execution. First of all, a sequential number is given to each task that leaves the
 "idle" state and enters the "queued" state. Then there are priority and a number of
 requirements. Requirements includes license requirements, user defined requirements
 such as Tags, and finally platform requirements for certain encode formats. If many
 tasks meet the same scheduling requirements and have the same priority, the initial
 sequnce number will decide which task will be sheduled to run. Since the priority is
 the only scheduling parameter that can be changed after a submission is done, it
 must be changed on some task in order to avoid the "default" re-queue behavior that
 basically equals a re-start.

 This command can also be specified as jrq, i.e. episodectl.exe jrq

 -t
 --task Re-queue a individual task. This will only affect a running task.

 -w
 --workflow Re-queue all running tasks in the workflow with ID <workflow id>.

 -i
 --id Re-queue all running tasks in workflows originating from this ID.

 -n
 --name Re-queue all running tasks in workflows that has the name <workflow name>.

 --all Re-queue all running tasks.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 job pause [-t <workflow id> <task id>]
 [-w <workflow id> [queued-only]]
 [-i <template id> [queued-only]]
 [-n <workflow name> [queued-only]]
 [--all [queued-only]]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Pause one or more tasks.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

121
 Pausing a task means that its scheduling state is set in paused mode, meaning that
 every queued tasks can be paused, not just running tasks. If the task being paused
 is currently running, the actual process (EpisodeWorker.exe) is paused. If the task
 being paused is queued, it will not be scheduled for execution until it is resumed
 again.

 Pausing running tasks does not free any job slots or other resources and is probably
 only useful for Desktop users to temporarily free CPU resources on the computer.

 However, by pausing all non-running tasks, a cluster can be left to process all
 currently running tasks and concurrently be instructed to not schedule any new
 tasks, meaning that the cluster can be taken down for maintenance or
 re-configuration in a graceful way (no loss of semi-processed data) when the
 currently running tasks are finished, and any deployments and/or post-deployments
 are finished. When pausing is only done to queued tasks, all "branches" in the
 workflow (each Encoder has it's own branch) that has started will finish (since idle
 tasks are not paused), which means that there will not be any dependencies on
 temporary files (files in the Episode File Cache) when re-starting the cluster. When
 the cluster is brought back up, use episodectl.exe job resume --all to start task
 scheduling again.

 One of the options -t, -w, -i, -n, or --all must be specified and each option below
 describes the effects of the option.

 This command can also be specified as jpau, i.e. episodectl.exe jpau

 -t
 --task Pause a individual task, regardless of status.

 -w
 --workflow Pause all tasks in the workflow with ID <workflow id>. Only idle, submitted,
 running, or queued tasks will be affected. If the optional argument queued-only
 is specified, only queued tasks are paused.

 -i
 --id Pause all tasks in workflows originating from this ID. Only idle, submitted,
 running, or queued tasks will be affected. If the optional argument queued-only
 is specified, only queued tasks are paused.

 -n
 --name Pause all tasks in workflows that has the name <workflow name>. Only idle,
 submitted, running, or queued tasks will be affected. If the optional
 argument queued-only is specified, only queued tasks are paused.

 --all Pause tasks in all active workflows. Only idle, submitted, running, or
 queued tasks will be affected. If the optional argument queued-only is
 specified, only queued tasks are paused.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

122
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 job resume [-t <workflow id> <task id>]
 [-w <workflow id>]
 [-i <template id>]
 [-n <workflow name>]
 [--all]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Resume one or more paused tasks.One of the options -t, -w, -i, -n, or --all must be
 specified and each option below describes the effects of the option.
 Resuming tasks will only affect tasks that are paused.

 See episodectl.exe job pause -h for a description of how to obtain the various IDs.

 This command can also be specified as jres, i.e. episodectl.exe jres

 -t
 --task Resume a individual task. This will only affect a paused task.

 -w
 --workflow Resume all paused tasks in the workflow with ID <workflow id>.

 -i
 --id Resume all paused tasks in workflows originating from this ID.

 -n
 --name Resume all paused tasks in workflows that has the name <workflow name>.

 --all Resume all paused tasks.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

123
 job set-priority [-p] <priority>
 [--whence <zero|original|current>]
 [-t <workflow id> <task id>]
 [-w <workflow id>]
 [-i <template id>]
 [-n <workflow name>]
 [-c <cluster name>]
 [--host <hostname/IP>]
 [--timeout <seconds>]

 Set new priority on one or more tasks. One of the options -t, -w, -i, or -n must be
 specified and each option below describes the effects of the option. Commands for
 obtaining the various IDs are:

 This command can also be specified as jprio, i.e. episodectl.exe jprio

 Developer note: Priority is a signed 64-bit integer value.

 --whence Set absolute value (zero) or adjust relative original or current priority. zero
 equals <priority>, original equals <priority> + task priority before workflow
 spawning, and current equals <priority> + current task priority. Default is original
 .

 -t
 --task Set/adjust priority on a individual task.

 -w
 --workflow Set/adjust priority on all tasks belonging to the workflow with ID "workflow-id
 ".

 -i
 --id Set/adjust priority on all tasks belonging to any workflows spawned from
 this template ID.

 -n
 --name Set/adjust priority on tasks belonging to any workflows with name <workflow-name
 >.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

124
 monitor

 Monitors can be added to a Node or Cluster with the workflow submit command. With the monitor
 command, you can start, stop or remove these. You can also see log messages from them with
 the log subcommand which may be useful for debugging purposes.
 With the monitor subcommands, the monitors are always attached to an existing Template
 Workflow (See workflow subcommand for a description of Template Workflows).
 You can either control a monitor by its unique ID automatically given to it when attached,
 or you can choose to give it a name and reference it by that name.
 The name must not be unique and if you reference monitors by name, all monitors with that
 name will be affected.
 This means that you can control a group of monitors by giving them the same name.

 monitor start [-i <monitor ID>] [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Start one or more existing monitor(s). This will have no effect if it's already
 running. One of the options -i, -n, or --all must be specified.

 This command can also be specified as ms, ie. episodectl.exe ms

 -i
 --id A monitor ID to start.

 -n
 --name A monitor name to start. This may affect multiple monitors if they are named
 the same.

 -a
 --all Start all monitors that are not running.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 -w
 --wait Do not exit program. This will print out any monitor log messages as they
 arrive. You have to manually stop the program.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

125
 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 monitor set-priority <priority>
 [-i <monitor ID>]
 [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Set priority on the template workflow that this monitor is attached to. The priority
 will be used as "initial task priority adjustment" for all workflows spawned from this
 template workflow (every file reported/submitted by this monitor. One of the options
 -i, -n, or --all must be specified.
 Developer note: Priority is a signed 64-bit integer value.

 This command can also be specified as mprio, ie. episodectl.exe mprio

 -i
 --id A monitor ID.

 -n
 --name A monitor name. This may affect multiple monitors if they are named the
 same.

 -a
 --all Set priority on all monitors.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 -w
 --wait Do not exit program. This will print out any monitor log messages as they
 arrive. You have to manually stop the program.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 monitor stop [-i <monitor ID>] [-n <name>]
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

126
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Stop one or more existing monitor(s). This will have no effect if it's not running.
 One of the options -i, -n, or --all must be specified.

 This command can also be specified as mp, ie. episodectl.exe mp

 -i
 --id A monitor ID to stop.

 -n
 --name A monitor name to stop. This may affect multiple monitors if they are named
 the same.

 -a
 --all Stop all monitors that are running.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 monitor remove [-i <monitor ID>] [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Remove one or more existing monitor(s). The monitor(s) will be stopped (if running)
 and permanently removed. The template workflow that this monitor is attached to will
 also be removed. One of the options -i, -n, or --all must be specified.

 This command can also be specified as mr, ie. episodectl.exe mr

 -i
 --id A monitor ID to remove.

 -n
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

127
 --name A monitor name to remove. This may affect multiple monitors if they are
 named the same.

 -a
 --all Remove all monitors.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 monitor log [-i <monitor ID>] [-n <name>]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Recieve log messages from one or more existing monitor(s). This command will not
 exit, thus having to be manually stopped/breaked. If no option is given, all running
 monitors' log messages will be printed. The configuration variable controlling the
 level/verbosity of the messages is the one in the Node.xml configuration file in the
 'monitors' section inside the 'logging' section. If you want to see debug output
 from a monitor with this command, you can use this command to set monitors to report
 at debug level: episodectl.exe node log --monitors no 7 (the 'no' is no, we don't
 want to log to file). You will have to either stop/start the monitor or restart the
 node after re-configuration. One of the options -i, -n, or --all must be specified.

 This command can also be specified as mg, ie. episodectl.exe mg

 -i
 --id A monitor ID to recieve log messages from.

 -n
 --name A monitor name to recieve log messages from. This may affect multiple
 monitors if they are named the same.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

128
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 watch-folder

 Watch folders can be added to a Node or Cluster with the workflow submit command. With the watch-folder
 command, you can start, stop or remove these. You can also see log messages from them with
 the log subcommand which may be useful for debugging purposes.
 With the watch-folder subcommands, the watch folders are always attached to an existing
 Template Workflow (See workflow subcommand for a description of Template Workflows).
 You can either control a watch folder by its unique ID automatically given to it when
 attached, or you can choose to give it a name and reference it by that name.
 The name must not be unique and if you reference watch folders by name, all watch folders
 with that name will be affected.
 This means that you can control a group of watch folders by giving them the same name.

 watch-folder start [-i <watch folder ID>] [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Start one or more existing watch folder(s). This will have no effect if it's already
 running. One of the options -i, -n, or --all must be specified.

 This command can also be specified as ms, ie. episodectl.exe ms

 -i
 --id A watch folder ID to start.

 -n
 --name A watch folder name to start. This may affect multiple watch folders if they
 are named the same.

 -a
 --all Start all watch folders that are not running.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

129
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 -w
 --wait Do not exit program. This will print out any watch folder log messages as
 they arrive. You have to manually stop the program.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 watch-folder set-priority <priority>
 [-i <watch folder ID>]
 [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Set priority on the template workflow that this watch folder is attached to. The
 priority will be used as "initial task priority adjustment" for all workflows spawned
 from this template workflow (every file reported/submitted by this watch folder. One
 of the options -i, -n, or --all must be specified.
 Developer note: Priority is a signed 64-bit integer value.

 This command can also be specified as mprio, ie. episodectl.exe mprio

 -i
 --id A watch folder ID.

 -n
 --name A watch folder name. This may affect multiple watch folders if they are
 named the same.

 -a
 --all Set priority on all watch folders.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 -w
 --wait Do not exit program. This will print out any watch folder log messages as
 they arrive. You have to manually stop the program.

 --timeout A timeout for the request. This command will connect to the Node through the
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

130
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 watch-folder stop [-i <watch folder ID>] [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Stop one or more existing watch folder(s). This will have no effect if it's not
 running. One of the options -i, -n, or --all must be specified.

 This command can also be specified as mp, ie. episodectl.exe mp

 -i
 --id A watch folder ID to stop.

 -n
 --name A watch folder name to stop. This may affect multiple watch folders if they
 are named the same.

 -a
 --all Stop all watch folders that are running.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 watch-folder remove [-i <watch folder ID>] [-n <name>]
 [--all]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Remove one or more existing watch folder(s). The watch folder(s) will be stopped (if
 running) and permanently removed. The template workflow that this watch folder is
 attached to will also be removed. One of the options -i, -n, or --all must be
 specified.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

131
 This command can also be specified as mr, ie. episodectl.exe mr

 -i
 --id A watch folder ID to remove.

 -n
 --name A watch folder name to remove. This may affect multiple watch folders if
 they are named the same.

 -a
 --all Remove all watch folders.

 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 watch-folder log [-i <watch folder ID>] [-n <name>]
 [--host <hostname/IP>]
 [--cluster <name>]
 [--timeout <seconds>]

 Recieve log messages from one or more existing watch folder(s). This command will
 not exit, thus having to be manually stopped/breaked. If no option is given, all
 running watch folders' log messages will be printed. The configuration variable
 controlling the level/verbosity of the messages is the one in the Node.xml
 configuration file in the 'watch folders' section inside the 'logging' section. If
 you want to see debug output from a watch folder with this command, you can use this
 command to set watch folders to report at debug level: episodectl.exe node log
 --watch-folders no 7 (the 'no' is no, we don't want to log to file). You will have
 to either stop/start the watch folder or restart the node after re-configuration.
 One of the options -i, -n, or --all must be specified.

 This command can also be specified as mg, ie. episodectl.exe mg

 -i
 --id A watch folder ID to recieve log messages from.

 -n
 --name A watch folder name to recieve log messages from. This may affect multiple
 watch folders if they are named the same.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

132
 --host A host Node to operate on (default is 127.0.0.1). If this Node is a
 participant of a cluster but it is not the Master Node, we will
 automatically be redirected to the Master Node. You can configure a default
 host/IP to submit to with the command episodectl.exe proxy defaults --host
 <default host>.

 -c
 --cluster A Cluster name to operate on. This will try to find a Cluster participant
 via Bonjour. You can configure a default cluster to submit to with the
 command episodectl.exe proxy defaults -c <default name>.

 --timeout A timeout for the request. This command will connect to the Node through the
 ClientProxy and this timeout will be used in both those requests but it is
 unlikely that they will "add up". The default timeout is 30.

 util

 There is currently only one utility command, analyze, with which you can retreive some basic
 source file information.

 util analyze <url or path>
 [-o [<key> ...]]
 [-s <separator char>]

 Analyze

 This command can also be specified as ua or analyze, i.e. episodectl.exe ua or episodectl.exe
 analyze

 -o
 --out This option takes one or more space separated <key>s, where each <key> is a
 keyword from the list below. The values will be written in the same order as
 specified, separated by <separator char>.

 duration

 Media duration in seconds. Floating point value.

 start-tc

 Start time code in the format HH:MM:SS:FF. This will be present if
 time code information was present in the file. If no time code
 information was found, this will be an empty value.

 video.width

Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

133
 Number of horizontal pixels. Integer value. This will be present if
 a video track was present in the file. If no video track was found,
 this will be an empty value.

 video.height

 Number of vertical pixels. Integer value. This will be present if a
 video track was present in the file. If no video track was found,
 this will be an empty value.

 video.frame-rate

 Number of frames per second. Floating point value. This will be
 present if a video track was present in the file. If no video track
 was found, this will be an empty value.

 video.bitrate

 Bitrate on the video track. Floating point value. This will be
 present if a video track was present in the file. If no video track
 was found, this will be an empty value.

 video.field-order

 Field order for the video track. String value. It can be either
 unknown, top first, bottom first or progressive.

 video.duration

 VIDEO track duration. Floating point value. Can be compared to the
 video duration to find possible audio/video sync issues.

 video.display-aspect-ratio-height

 Display aspect ratio for height. Integer value. Not set for most
 containers.

 video.display-aspect-ratio-width

 Display aspect ratio for width. Integer value. Not set for most
 containers.

 audio.channel-count

 Number of audio channels. Integer value. This will be present if a
 audio track was present in the file. If no audio track was found,
 this will be an empty value.

 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

134
 audio.sample-rate

 Number of audio samples per second. Integer value. This will be
 present if a audio track was present in the file. If no audio track
 was found, this will be an empty value.

 audio.duration

 Audio track duration. Floating point value. Can be compared to the
 video duration to find possible audio/video sync issues.

 audio.bitrate

 Bitrate on the audio track. Floating point value. This will be
 present if a audio track was present in the file. If no audio track
 was found, this will be an empty value.

 -s
 --separator Specify a separator character to be used to separate the output. The default
 is a "vertical bar", or "pipe" character ('|'). There are two special
 identifiers you can specify - "newline" or "LF" to get a newline separator.

 TELESTREAM EPISODE VARIABLES

 There are a number of variables available that can be used in file name generation,
 descriptions, script environment/arguments etc. Each task has a number of in-values, also
 called variables. Each task-variable has a name in the most simple case but could also be an
 ID or path that identifies a value inside a container. There are two kinds of containers -
 lists and "maps"/"dictionaries" (key-value containers). List elements are idenfied by square
 brackets and a index into the list starting at index 0, for example "args[0]" may refer to
 the first argument configurable in the Execute task. Keys in a key-value container are
 referred to by curly brackets, for example "env{MY_VAR}" may refer to a environment variable
 named MY_VAR, also configurable in the Execute task.

 Then there are the values of these variables. The values may be a constant value set by
 default or by the user, or it could be a variable itself, identified by surrounding dollar
 signs, for example $source.filename$ which are pre-defined variables (by Episode) that are
 resolved some time during the execution of the workflow.

 To sum it up, tasks have a number of variables that can be set before execution, or read
 after execution. These are identified by an ID that could just be a name, or may refer to
 items inside containers. The values of these variables may be a constant value, or a
 pre-defined "dollar-variable" value that is resolved by Episode.

 Let's begin with the list of pre-defined variables (v1, v2 etc. refers to the Notes below):
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

135
 $uuid.uppercase$ - A Universally unique identifier (uppercase).
 $uuid.lowercase$ - A Universally unique identifier (lowercase).
 $uuid$ - This is the same as $uuid.uppercase$.

 $source.name$ - Name of the source used (user defined).
 $source.type$ - "file", "monitor", "edl", or "iseq".

 $source.url$ - URL of the source file.
 $source.path$ - Native platform path of the source file. v1.
 $source.filename$ - Filename (without extension) of the source file.
 $source.extension$ - File extension of the source file.
 $source.file$ - Filename including extension of the source file.
 $source.parent-dir-name$ - Name of parent directory of the source file.
 $source.parent-dir-path$ - Native platform path of parent directory of the
 source file.
 $source.grandparent-dir-name$ - Name of grandparent directory of the source file.
 $source.grandparent-dir-path$ - Native platform path of grandparent directory
 of the source file.

 $workflow.submission-name$ - Name of submission (user defined).
 $workflow.submission-time$ - Time of the submission. v3.
 $workflow.submission-client$ - ID of the client that did the submission.
 $workflow.submission-host$ - Host from which the submission came.

 $workflow.template-id$ - The unique template workflow ID. v4.

 $workflow.id$ - The unique workflow ID. v4.
 $workflow.name$ - The workflow name.
 $workflow.spawn-value$ - The in-value that spawned the workflow. v5
 $workflow.spawn-time$ - Time of workflow spawning (instance creation). v3.
 $workflow.seq-nr$ - Workflow sequence number, set at spawn time.

 $encoder.name$ - User defined Encoder task name.

 $encoder.input-duration-s$ - Input duration in seconds (always two decimals).
 $encoder.input-duration-hms$ - Input duration with format HH-MM-SS.
 $encoder.input-pixel-dimensions$ - Input pixel dimensions with format WxH.
 $encoder.input-framerate$ - Input frame rate (number of frames per second).
 $encoder.input-samplerate$ - Input audio sample rate in Hertz.

 $encoder.output-bitrate-kbps$ - Output bitrate in kbit/s (always two decimals).
 $encoder.output-bitrate-mbps$ - Output bitrate in Mbit/s (always two decimals).
 $encoder.output-duration-s$ - Output duration in seconds (always two decimals).
 $encoder.output-duration-hms$ - Output duration with format HH-MM-SS.
 $encoder.output-pixel-dimensions$ - Output pixel dimensions with format WxH.
 $encoder.output-framerate$ - Output frame rate (number of frames per second).
 $encoder.output-samplerate$ - Output audio sample rate in Hertz.

 $mbr.name$ - User defined MBR task name.

 $mbr.package-type$ - "SmoothStreaming", "HTTPStreaming", or
 "DASHStreaming"
 $mbr.package-name$ - Name prefix of the output files.

 $deployment.name$ - User defined Deployment task name.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

136
 $deployment.dest-url$ - URL of the outfile. v2.
 $deployment.outfile-path$ - Native platform path of the outfile. v1, v2.
 $deployment.outfile-name$ - Filename (without extension) of the outfile. v2.
 $deployment.outfile-extension$ - File extension of the outfile. v2
 $deployment.outfile-file$ - Filename including extension of the outfile. v2

 $destination.url$ - Alias for $deployment.dest-url$.
 $destination.path$ - Alias for $deployment.outfile-path$.
 $destination.filename$ - Alias for $deployment.outfile-name$.
 $destination.extension$ - Alias for $deployment.outfile-extension$.
 $destination.file$ - Alias for $deployment.outfile-file$.

 $dynamic.time$ - Execution time of a task. v6 v3.
 $dynamic.hr-time$ - Human readable execution time of a task. v6.
 $dynamic.year.YY$ - Current year as two digits. v6.
 $dynamic.year.YYYY$ - Current year as four digits. v6.
 $dynamic.month.name$ - Current full month name. v6, v7.
 $dynamic.month.short-name$ - Current abbreviated month name. v6, v7.
 $dynamic.month.MM$ - Current month as two digits. v6.
 $dynamic.day.name$ - Current full weekday name. v6, v7.
 $dynamic.day.short-name$ - Current abbreviated weekday name. v6, v7.
 $dynamic.day.DD$ - Current day as two digits. v6.
 $dynamic.hours.HH$ - Current hours as two digits. v6.
 $dynamic.minutes.MM$ - Current minutes as two digits. v6.
 $dynamic.seconds.SS$ - Current seconds as two digits. v6.
 $dynamic.hostname$ - Hostname (of node) where a task is executed. v6.
 $dynamic.node-id$ - Node ID (of node) where a task is executed. v6.
 $dynamic.platform$ - Platform where a task is executed. v6.

 Note v1 - This is probably only useful when working with local files or UNC/Samba on
 Windows, i.e. not ftp monitors etc.

 Note v2 - This is not applicable for YouTube deployment.

 Note v3 - This is a "Unix time" or "POSIX time". It is the number of seconds passed since
 00:00:00 UTC, January 1, 1970. In the current timezone, the start time was Wed Dec 31
 16:00:00 1969.

 Note v4 - This may for example be used in calls to episodectl.exe from within scripts.

 Note v5 - The spawn value is often the URL of the source file, or in the case of a EDL
 source, it's the user defined name of the source, i.e. same as $source.name$.

 Note v6 - The $dynamic.xxx$ variables will be resolved in run-time, when the actual task
 (that is configured with one of them) is executed on a certain node. The $dynamic.hostname$
 and $dynamic.node-id$ will by default be the same, due to that the Node ID is default set to
 the hostname of the machine but could be configured to any (cluster-wide unique) ID. The
 $dynamic.platform$ will have one the the values "Win" or "Mac" (the same values used for the
 default platform "Tags").

 Note v7 - Names according to the current locale.

 These pre-defined variables may be used in different places due to where they are resolved
 and in what order the tasks are run.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

137
 The following variables are resolved prior to workflow execution (instantiation) and may be
 used everywhere in the workflow and read afterwards through the status tasks command:

 $source.name$

 $source.url$
 $source.path$
 $source.filename$
 $source.extension$
 $source.file$
 $source.parent-dir-name$
 $source.parent-dir-path$
 $source.grandparent-dir-name$
 $source.grandparent-dir-path$

 $workflow.submission-name$
 $workflow.submission-time$
 $workflow.submission-client$
 $workflow.submission-host$

 $workflow.template-id$
 $workflow.id$
 $workflow.name$
 $workflow.spawn-value$
 $workflow.spawn-time$
 $workflow.seq-nr$

 The following variables are also resolved prior to workflow execution (instantiation) and
 may be used everywhere in the workflow but can not be read afterwards, their value is placed
 directly where they are specified:

 $uuid.uppercase$
 $uuid.lowercase$
 $uuid$

 The following variables are resolved when a task that is configured with one of them is
 actually executed on a node, their value is placed directly where they are specified and
 therefore not readble after workflow execution, i.e. readable by variable name.

 $dynamic.time$
 $dynamic.hr-time$
 $dynamic.year.YY$
 $dynamic.year.YYYY$
 $dynamic.month.name$
 $dynamic.month.short-name$
 $dynamic.month.MM$
 $dynamic.day.name$
 $dynamic.day.short-name$
 $dynamic.day.DD$
 $dynamic.hours.HH$
 $dynamic.minutes.MM$
 $dynamic.seconds.SS$
 $dynamic.hostname$
 $dynamic.node-id$
 $dynamic.platform$
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

138
 The following variables are generated by the tasks and may be used either after the task has
 run or read after workflow execution through the status tasks command. That means that, for
 example, $encoder.output-duration-s$ is perfectly fine to use in a deployment task, since
 the deployment task is run after the encode task.

 $encoder.name$
 $encoder.input-duration-s$
 $encoder.input-duration-hms$
 $encoder.input-pixel-dimensions$
 $encoder.input-framerate$
 $encoder.input-samplerate$

 $encoder.output-bitrate-kbps$
 $encoder.output-bitrate-mbps$
 $encoder.output-duration-s$
 $encoder.output-duration-hms$
 $encoder.output-pixel-dimensions$
 $encoder.output-framerate$
 $encoder.output-samplerate$

 $mbr.name$
 $mbr.package-type$
 $mbr.package-name$

 $deployment.name$
 $deployment.dest-url$
 $deployment.outfile-path$
 $deployment.outfile-name$
 $deployment.outfile-extension$
 $deployment.outfile-file$

 Now let's have a look at the task-variable IDs that you can set these pre-defined variable
 values on, or a constant value of choice. You have probably seen these "Task type names"
 mentioned before, but these are the available type names:
 Encode, Transfer, YouTube, Execute, Mail.

 And here is a list of recommended/documented variable IDs for each:

 Encode

 dest-file-extension - Outfile extension.
 sns - Do Split-and-Stitch? "yes"|"no".
 sns-min-time - A integer value (9..3600).
 sns-max-splits - A integer value (2..32).
 sns-split-on-gop-size - A integer value (1..100).
 split-tag - A tag to set on split-encode tasks. e1.
 split-inverse-tag - A inverse-tag to set on split-encode tasks. e1.
 stitch-tag - A tag to set on the stitch task. e1.
 stitch-inverse-tag - A inverse-tag to set on the stitch task. e1.

 Note e1 - See episodectl.exe tags for a description of tags.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

139
 Transfer

 dest-filename - A list of values that forms the outfile name. d1
 dest-filename[0] - First part of outfile name.
 dest-filename[1] - Second part of outfile name.
 dest-filename[n-1] - n'th part of outfile name.
 dest-sub-dirs - A list of sub directories. d2, same logic as d1
 dest-sub-dirs[0] - First sub directory.
 dest-sub-dirs[1] - Second sub directory.
 dest-sub-dirs[n-1] - n'th sub directory.
 increment-filename - "yes"|"no". d2
 try-link - Try to hard-link the outfile. d3
 try-rename - Try to rename (move) the outfile. d3

 Note d1 - This is a list of string values that are concatenated to form the final outfile
 name (without extension; the extension is taken from the encoded file). To set a list value,
 you should use the --set-list-name or --set-list-type option to workflow submit where the
 list items are space separated. Here is an example of how to specify the default naming
 convention for the outfile:
 --set-list-type Transfer dest-filname $source.filname$ - $encoder.name$
 Or the alternative:
 --set-type Transfer dest-filname[0] $source.filname$ dest-filname[1] - dest-filname[2]
 $encoder.name$

 Note d2 - See episodectl.exe task transfer -h for a description of this.

 Note d3 - How to "transfer" the outfile from Episode's "Cache" directory to its final
 destination? See episodectl.exe task transfer -h for a description of this.

 YouTube

 username - YouTube account username.
 password - YouTube account password.
 meta-data{title} - Title. y1.
 meta-data{titles} - Title. A list value. y1, y3.
 meta-data{titles}[0] - First piece of title. y1, y3.
 meta-data{titles}[1] - Second piece of title. y1, y3.
 meta-data{titles}[n-1] - n'th piece of title. y1, y3.
 meta-data{description} - Description. y1.
 meta-data{descriptions} - Description. A list value. y1, y3.
 meta-data{descriptions}[0] - First piece of description. y1, y3.
 meta-data{descriptions}[1] - Second piece of description. y1, y3.
 meta-data{descriptions}[n-1] - n'th piece of description. y1, y3.
 meta-data{category} - YouTube category. y2
 meta-data{keywords} - YouTube Keywords. A list value. y3.
 meta-data{keywords}[0] - First YouTube Keyword.
 meta-data{keywords}[1] - Second YouTube Keyword.
 meta-data{keywords}[n-1] - n'th YouTube Keyword.
 private - If the movie is private "yes"|"no".

 Note y1 - There is no support for inserting pre-defined variable values in the middle of a
 text. There are therefore 2 versions of both title and description, one version that could
 only hold a single variable, and 1 version that takes a list of strings. To construct a
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

140
 title or description made up of both static text and variables, the list versions must be
 used, for example --set-list-type YouTube meta-data{descriptions} "My description of "
 "$source.filename$" "is ...".

 Note y2 - The category should be one of these values: People, Film, Autos, Music, Animals,
 Sports, Travel, Games, Comedy, People, News, Entertainment, Education, Howto, Nonprofit,
 Tech.

 Note y3 - To set a list value, you should use the --set-list-name or --set-list-type option
 to workflow submit where the list items are space separated. Here is an example of how to
 specify the keywords "world", "record", and "attempt"
 --set-list-type YouTube meta-data{keywords} world record attempt
 Or the alternative:
 --set-type YouTube meta-data{keywords}[0] world meta-data{keywords}[1] record
 meta-data{keywords}[2] attempt

 Execute

 args - Arguments to pass to program/script. A list value. x1
 args[0] - First argument.
 args[1] - Second argument.
 args[n-1] - n'th argument.
 env - Environment to set for program/script. A map value. x2
 working-dir - Working directory to set before execution. x3
 parse-progress - Parse/report progress?. "yes"|"no" x4

 Note x1 - The arguments and/or options to pass to the executed program. To set a list
 value, you should use the --set-list-name or --set-list-type option to workflow submit where
 the list items are space separated. These two options will trim away both double and single
 quotation marks in order to support double escaping of passed options, i.e. if the executed
 program should recieve option -x, it has to be double escaped on the command line to avoid
 being treated as a regular option to workflow submit. Here is an example:
 --set-list-type Execute args '"-x"' '$source.filename$'.

 Note x2 - The environment variables to set for the executed program as a map value. To set
 map values, you use --set-type or --set-name and refer to the keys in the map with curly
 brackets {}. Here is an example, I have set the name "First Script" as a user-defined name
 for my task:
 --set-name "First Script" env{UNIQUE_ID} 123 env{DURATION} '$encoder.output-duration-s$'

 Note x3 - This should be a native platform/OS path and is therefore highly platform
 dependent.

 Note x4 - See episodectl.exe task execute -h for more information.

 Mail

 username - SMTP server account username.
 password - SMTP server account password.
 server - SMTP server address.
 port - SMTP server port.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

141
 from-mail - Sender address.
 from-mail - Receiver address.
 cc-mail - Carbon Copy receiver address.
 bcc-mail - Blind Carbon Copy receiver address.
 subject - Message Subject. m1
 body - Message Body. m1
 enable-ssl - Use TLS/SSL.

 Note m1 - Both the message subject and message body is specified as a list of strings. This
 is because any list item may be a dollar variable value. In the command episodectl.exe task
 mail --subject <subject> --message <message>, both <subject> and <message> are specified as ONE text
 string, and that string is then tokenized into a list. If you want to get a subject with the
 text "Episode Error: C:\path\to\MyFile.mov failed to encode!" C:\path\to\MyFile.mov was the
 variable $source.path$, you have to (in this "dynamic override" case) use:
 --set-list-type Mail subject 'Episode Error: ' '$source.path$' ' failed to encode!'. Notice
 the spaces in the surrounding texts.

 TELESTREAM EPISODE TAGS

 The concept of Tags is used to enable an easy way of controlling execution of tasks in a
 Cluster, i.e. on which node, or computer, or even group of computers a certain task should
 run on.

 The need for this is primarily for the Execute task (or Script task) which is often
 dependent on the OS and/or what software and languages are installed on specific machines.
 But it can be used for other tasks too.

 This is how it works. One or more tags can be set on each node in a cluster. One tag is set
 as default (unless explicitly removed) on each node and that is one of "Mac" or "Win" that
 could be used to control on which platform a certain task should run. Run episodectl.exe
 node tag to see tags currently set on the local node. You can also run episodectl.exe node
 info and look for "Tags:". If you already have a cluster set up, you can run episodectl.exe
 status nodes which will also show "Tags:" on each node in the cluster.

 To add your own tags to the node (you can not configure a node remotely), use episodectl.exe
 node tag --add MyTag. Tags are case sensitive so be sure that you pay attention to that when
 specifying your tags.

 When you have set up your tags on the nodes in your cluster, there are different tag options
 to episodectl.exe workflow submit which allows you to set tags on the tasks you're
 submitting. There are two kinds of tags you can set on tasks. A regular tag that means that
 the task will require that the tag is set on the machine in order to run there. The other
 kind of tag is a "inverse-tag". If this is set on a task it means that the task will require
 that the tag is NOT set on the machine in order to run there.

 Since the platform tags "Mac" or "Win" are set by default, this is an example of the most
 basic usage:
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

142
 For example, if you have a cluster with one Apple OS X machine and one Microsoft Windows
 machine. You have made a script file ("MyScript") with AppleScript code in it, this is how
 you should create a one shot workflow:

 episodectl.exe ws -f ... -e ... -d ... -x MyScript --tag-type Execute Mac

 Here is a more advanced example. If the Encoder task is configured with Split-and-Stitch, it
 will create a number of split tasks and a stitch task. It has therefore two "in-values" or
 variables named "split-tag" and "stitch-tag" that can be set to create these tasks with tags
 on them. It also has the two inverse-tag versions, "split-inverse-tag" and
 "stitch-inverse-tag".
 For example, if you have 2 machines in your cluster that has fiber connections to your SAN
 and a bunch of other machines that don't. You want the 2 fiber connected machines to run all
 stitch tasks, but you do not want them to do any of the split encoding tasks. Begin with
 choosing and adding a tag for the stitch machines, let's say "Stitch". Now you have two
 options. Option 1 is to tag all remaining nodes with a "split tag" and set that as value on
 the Encoder's "split-tag" variable. Option 2 is to "inverse-tag" the split encoding tasks by
 setting the variable "split-inverse-tag".

 Option 1 illustrated:

 Tags on node 1: Mac Stitch
 Tags on node 2: Mac Stitch
 Tags on node 3: Mac Split
 Tags on node 4: Mac Split
 Tags on node 5: Mac Split

 episodectl.exe ws -f ... -e ... -d ... --set-type Encoder stitch-tag Stitch split-tag Split

 Option 2 illustrated:

 Tags on node 1: Mac Stitch
 Tags on node 2: Mac Stitch
 Tags on node 3: Mac
 Tags on node 4: Mac
 Tags on node 5: Mac

 episodectl.exe ws -f ... -e ... -d ... --set-type Encoder stitch-tag Stitch split-inverse-tag Stitch

 If you want total control of the job distribution you may of course tag each computer with
 tags like Node1, Node2, Node3 etc and you may use the --tag-workflow or --inverse-tag-workflow
 options to workflow submit.

 EXAMPLES FOR TELESTREAM EPISODE COMMAND LINE INTERFACE

General usage and command synopsis interpretation
===
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

143
 The Episode CLI has a set of commands, sub commands, and options. All commands consists of
 both a command and a sub command and there is often a short version of the command,
 typically consisting of two letters. For example, to start/launch the Episode Back End, the
 command episodectl.exe launch start is used, which also can be specified with the short
 version episodectl.exe ls.

 Most commands have options. episodectl.exe understands "long options" and "short options". A
 long option is always specified with double dashes (--) and the option name immediately
 following the double dashes, for example a option named "priority" is specified --priority.

 A short option is always a single letter and is always specified with a preceding single
 dash (-), for example the priority option may have a short version "p" which is then specified
 as -p. Since short options always are a single letter, multiple short options can be
 specified in "a row" or "a string" of letters, preceded by a single dash, for example the
 command status tasks has a option --wait with short version -w and a option --visual with
 short version -v. These two options are often used together to get a human readble, visual,
 and continuous status feedback in the terminal, and can be specified as -wv.

 Most options also have "arguments" (parameters) which is indicated in a number of ways in the
 command synopsis documentation. Let's look at an example.

 1 example command <required command argument>
 2 --required-option <required option argument>
 3 --required-option [<optional argument>]
 4 [--optional-option <required option argument>]
 5 [--optional-option [<optional argument>]]
 6 [--optional-option [OptionalConstant]]
 7 [--optional-option RequiredConstant|AnotherRequiredConstant]
 8 [--optional-option RequiredConstant|<argument>]
 9 [--option <keyword> ...]
 10 [--option <key> <value>]
 11 [--option <one time argument> <key> <value>]

 In this example command, there are many options that are named the same which is unusual but
 actually do occur in Episode but not with different arguments like in this example. This is
 written to better illustrate the syntactic meaning of the options and the arguments.

 In the first line, the <required command argument> is indicated by not having surrounding
 square brackets ([]) which indicates that something is optional, a option or argument. A
 argument that looks like this <argument> is printed differently on OS X and on Windows. On OS
 X, the argument is underlined, and on Windows it is surrounded by greater-than and less-than
 characters (<>). When a argument is indicated like this, it means that the argument should
 be defined by the user, it is often a path or URL or a keyword defined in Episode. In the
 help text for the command or option, that argument is often referenced in the same way as
 defined in the synopsis. In this example, the command text could refer to the required
 command argument like this:

 "This command takes a required argument <required command argument>, where <required command
 argument> should be a path or URL to a existing file."

 Line 2, 3, 4, and 5 should be self-explanatory.

 In line 6, the "OptionalConstant" is a CLI defined word that should be entered exactly as the
 synopsis/documentation states, for example, if the documentation states [--all [request]],
 the valid option usages are --all or --all request.

 In line 7, the vertical bar (|) placed between the two required constants indicates "or",
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

144
 meaning that either "RequiredConstant" or "AnotherRequiredConstant" must be specified for the
 option. Notice that options also can be "or'd", for example [--set-default|--reset]. In that
 case, the options means the same thing. Options can also be "or'd" that do not mean the same
 thing, for example [-i <id>|--all]. In that case, either the option taking a <id> should be
 used, or the option --all, but not both, and in which case the documentation should clearly
 state how to use it!

 In line 8, either the "RequiredConstant" or a user defined argument should be specified.

 In line 9, the three dots indicates that more than one argument could be specified. It
 always refers to the previous argument so in this case it means that one or a list of <keyword
 >s can be specified.

 In line 10, there are two sets of the three dots. This indicates that there is a pair of
 preceding arguments that can be continued. In this case, the pair <key> <value> can continue to
 be specified as, for example key1 value key2 value key3 value

 In the last line, line 11, the dots refer to the <key> <value> pair, just like in line 10, and
 the <one time argument> should be specified once and only once as the first argument to the
 option.

About the examples
==================

 To illustrate a command line prompt, the "$" character is used followed by a space. The actual
 command is also highlighted. This is a prompt and a command:
 $ command

 To illustrate the user's home directory, the "~" is prepended, like this "~$".

 My username is "tomasa" which I will use when showing output from commands and scripts, for
 example

 Output:
 $ Path: /Users/tomasa/directory/file

 To symbolize the path to the Current Working Directory, "[CWD]" is used.

 Examples that involves script code are written in the Ruby programming language for its
 simple syntax and easy accessibility on all platforms, please see
 http://www.ruby-lang.org/en/ for more information about Ruby.

 All scripts are available here: /Applications/Episode.app/Contents/MacOS/engine/API/ and can
 be executed like this (try it!)
 $ ruby /Applications/Episode.app/Contents/MacOS/engine/API/scriptExample.rb

 Notice: For simplicity, all commands and paths used in the examples are Unix/OS X-style.
 When the difference for Windows is big, a separate Windows section is present. The Windows
 PowerShell is a good shell to use on Windows because it has the most commonly used Unix
 commands as aliases for its regular commands, see
 http://technet.microsoft.com/en-us/library/bb978526.aspx and
 http://en.wikipedia.org/wiki/Windows_PowerShell.
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

145
Making the Episode CLI accessible from anywhere
===

 A nice thing to begin with is to make episodectl.exe accessible from any directory, without
 having to specify the complete path to it.
 This can be accomplished in many many ways but let's only go through a couple. What is
 needed is to somehow make the location of episodectl.exe known to the command-line shell
 (the command-line interface provided by the Operating system).

 OS X

 The default shell on OS X is "Bash". Bash, as other Unix-shells, uses the built-in environment
 variable PATH to search for executable files, also called commands. Here is a quote from the
 description of PATH in the Bash Reference Manual -
 http://www.gnu.org/software/bash/manual/bashref.html#Bourne-Shell-Variables

 "A colon-separated list of directories in which the shell looks for commands."

 There are a number of pre-defined paths already present in PATH which can be seen by
 executing the command (the dollar character is used to read the value of a variable)
 $ echo $PATH

 Example output:
 $ /usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin

 The quickest way of accomplishing what we want is to make a symbolic link to episodectl in
 one of the already defined directories in $PATH. Although I would recommend to continue to
 the next solution, here is a example of how to create the symbolic link
 $ sudo ln -s /Applications/Episode.app/Contents/MacOS/engine/bin/episodectl /usr/bin/

 Since the episodectl.exe is located in the directory
 /Applications/Episode.app/Contents/MacOS/engine/bin/ we can add this directory to the PATH
 variable so that Bash will look in this directory when trying to find the command "episodectl",
 but how do we do that?
 Here is another quote from Bash Reference Manual -
 http://www.gnu.org/software/bash/manual/bashref.html#Bash-Startup-Files

 "When Bash is invoked [...], it first reads and executes commands from the file
 /etc/profile, if that file exists. After reading that file, it looks for
 ~/.bash_profile, ~/.bash_login, and ~/.profile, in that order, and reads and
 executes commands from the first one that exists and is readable."

 First, check if one of those files is already present in the user's home directory. (The
 home directory is indicated by the "~" character, this is the directory the user is placed in
 when opening a Terminal window). These files begin with a dot (as in ".bash_profile") which
 means that they are "hidden" and not visible when doing a regular directory listing with ls.
 To also list files beginning with a dot, use the ls option -a.
 ~$ ls -a

 There shouldn't be any of these files present unless some software has been installed that
 has automatically created one, such as for example MacPorts, X11, etc.

 If there is one of these files present, edit that one, if there isn't we will create ".bash_profile
 ". You can use any text editor of choice as long as the output file is saved as pure text.
 Instead of using a text editor, we can simply execute the following command
 ~$ echo 'export PATH=$PATH:/Applications/Episode.app/Contents/MacOS/engine/bin/' >>
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

146
 .bash_profile

 If the file existed, the line will be appended to the file. If it didn't exist, it will be
 created.

 The PATH=$PATH means that the old value of PATH is read into the new value of PATH before "our
 " path is appended to the list.

 Now, when opening a new Terminal window, just typing ...
 ~$ epi[Hit TAB button]
 ... should result in
 ~$ episodectl

 Congatulations, now we are ready to get to work!

 Windows

 We want to go to the Advanced tab in System Properties. Click on the button "Environment
 Variables...", locate the PATH variable in the list and click "Edit..." button. Add a
 semi-colon (;) at the end and type in (or copy/paste) the path where Episode is installed
 and add "\bin" at the end of that path.
 Now, open a new Windows PowerShell window and type
 ~$ epi[Hit TAB button]

 The shell on Windows is not case sensitive when performing "TAB completion", so it can be a
 bit hard to get to episodectl.exe, continue to hit the TAB button until you see
 ~$ episodectl.exe

 Congatulations, now we are ready to get to work!

Controlling the back end processes
==================================

 To start, restart, list, or stop the Episode back end processes, the launch ... commands are
 used. If a process' configuration file is changed, for example the Node.xml file, that
 process must be restarted in order to use the new configuration.

 List processes
 $ episodectl.exe launch list
 $ episodectl.exe ll

 Example output:
 EpisodeXMLRPCServer is running with PID 37518
 EpisodeJSONRPCServer is running with PID 37511
 EpisodeClientProxy is running with PID 37515
 EpisodeAssistant is running with PID 37512
 EpisodeIOServer is running with PID 37509
 EpisodeNode is running with PID 37506
 $

 Restart (or start) processes
 $ episodectl.exe launch restart
 $ episodectl.exe lr
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

147
 Example ouput:
 EpisodeNode restarted
 EpisodeIOServer restarted
 EpisodeAssistant restarted
 EpisodeClientProxy restarted
 EpisodeXMLRPCServer restarted
 EpisodeJSONRPCServer restarted
 $

Get Node information
====================

 A very useful tool to verify the configuration, state, licenses, etc. in a node, local or
 remote, is to use the node info command.

 Get information about the local Node
 $ episodectl.exe node info
 $ episodectl.exe ni

 Get information about a remote Node. Notice that the remote node must be in "public"
 mode, i.e. a cluster master or a cluster participant
 $ episodectl.exe ni 10.5.5.123
 $ episodectl.exe ni server.domain.com

Setting up a environment for the examples
===

 Before we start going through the examples, it's very good to set up a directory structure
 that is easy to work with and that can be referenced to in the rest of the examples. Let's
 begin with creating a root directory that everything we create later is going to be placed
 in and referenced from. A good start is a directory called "EpisodeAPI" in the home directory.

 Note: We will only operate in the user's home directory in these examples to avoid "permission
 denied" errors and it is not within these examples to describe how to get around such errors.

 Create the root directory for examples, make sure you are in the home directory
 ~$ mkdir EpisodeAPI

 Then go into that directory with
 ~$ cd EpisodeAPI

 Tip! Try and get used to always using the TAB keyboard button when entering paths in
 the Terminal, because

 * It speeds up navigation and finding target files
 * It greatly reduces the risk of typing errors
 * It automatically corrects paths with characters in
 it that needs to be preceded by a shell escape character,
 for example a path with a space in it, where the space character
 needs to be preceded by a backslash. In Windows PowerShell,
 quotation marks are automatically inserted around a path when
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

148
 using the TAB button.

 Try again and do this, back out of the directory again using ".." which means "parent
 directory"
 $ cd ..
 ~$ cd Epi[Hit TAB button]

 The shell should automatically (unless there is a directory in ~/ that begins with "Epi
 " already) fill in
 ~$ cd EpisodeAPI/

 Make sure you are currently inside the ~/EpisodeAPI/ directory because we will create a few
 sub directories there now.

 Create a directory for input (sources)
 $ mkdir input

 Create a directory for tasks
 $ mkdir tasks

 Create a directory for workflows
 $ mkdir workflows

 Create a directory for output
 $ mkdir output

 To be able to submit our first workflow, we need a Encode task. When testing things, it's
 good (in my opinion) to use a fast encoder and a short source file. In the application
 bundle, there is a API directory where there is a file called encoder.epitask that is going
 to be used in the examples, let's copy it over here...
 $ cp /Applications/Episode.app/Contents/MacOS/engine/API/encoder.epitask .

 Notice that the last dot (.) in the command means "current directory", which is used as the
 target for the copy command.
 You are of course free to use whatever Encode task you want, the template Encode tasks that
 comes with Episode are located here
 /Applications/Episode.app/Contents/Resources/templates/tasks/encodings/

 Now we only need a source file. The only source file that I can refer to is a file called
 DefaultSource.mov which is located here
 /Applications/Episode.app/Contents/Resources/DefaultSource.mov, it is not a pretty sight but
 it's not the purpose either. I'm sure you have a bunch of nice clips to use instead, why
 would you need Episode otherwise, right? Let's copy a source here that we can use later, and
 at the same time, rename it to source.mov
 $ cp /Applications/Episode.app/Contents/Resources/DefaultSource.mov ./source.mov

 Now we are ready to move on to the first submission!

Submit the first workflow
=========================

 Submitting workflows is easy. It usually involves specifying tasks that have been created in
 advance which is demonstrated in the next section, but to get a feel for where we're going,
 we will do a simple submission so we can refer back to that in subsequent sections.
 We begin with the most simple submission command, make sure you are in ~/EpisodeAPI/ created
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

149
 in previous section
 $ episodectl.exe workflow submit --file source.mov --encoder encoder.epitask
 --destination output/

 For the rest of the examples, I will use the short versions, both for the command and for
 options that have a short version, like this
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/

 Let's submit it again and watch the status of it. We use option --wait to tell episodectl to
 not exit and wait until the submitted workflow is done, and option --visual to get a human
 readable status output which is nice when doing things manually like now. Notice that the
 short options are used, and that they are specified as described in the first section
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/ -wv

 Just for fun, try it again and type as little as possible, remember to always use the TAB
 button!
 $ epi[Hit TAB] ws -f s[Hit TAB] -e e[Hit TAB] -d o[Hit TAB] -wv

 As you may have noticed, we always have used relative paths in these examples. This is to
 easily being able to demonstrate usage when typing/submitting things manually. For real
 integrations with scripts/programs around the CLI, absolute paths are probably always used
 and the long options are preferable for readability and clarity.

Creating tasks
==============

 To be able to submit workflows to Episode, task configuration files must be used. The most
 important task is the Encode task which must be created through the Episode GUI application.
 All the other task types can be created through the CLI, either explicitly through the task
 ... commands or implicitly (automatically) when using the workflow submit command. For
 example, the only required configuration for a Transfer task is the URL to a directory to
 transfer a output file to, so a Transfer task may be implicitly created in the submit
 command by just specifying a URL or path like this --destination /path/to/destination/
 instead of specifying a explicitly created task like this --destination
 /path/to/MyDeployment.epitask.

 All tasks have a few common configurations ...

 name
 All tasks have a name. The name can be used for referencing a task when
 submitting it, for example override a certain configuration on it. The name
 can also be used by other tasks in the workflow, for example in naming
 conventions, and it can be used in decisions in Execute tasks or in a
 integration through status output etc, etc.

 priority
 Workflow-internal prioritization, see episodectl.exe priority for more
 information.

 tag
 inverse-tag
 Task distribution control, see episodectl.exe tags for more information.

 ... and a few common options for the output of the created task
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

150
 format
 Indicate what format to write the created task in (XML, binary, etc.). If
 dynamic task creation is performed by a program/script, it could be
 beneficial to write configuration files as binary to speed up
 parsing/reading and to reduce data size.

 out
 Specify in which directory the created configuration file should be written.

 print-plain-path
 Meant to be used when a program/script should read back the path of the
 created file.

 task transfer

 Create a Transfer task, no options
 $ episodectl.exe task transfer ~/EpisodeAPI/output/
 $ episodectl.exe tt ~/EpisodeAPI/output/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/output.epitask
 $

 Create a transfer task with name "deployment", read back path into script. Notice This
 is Ruby script code, don't try to execute it con the command line!
 f = IO.popen("episodectl task transfer ~/EpisodeAPI/output/ --name deployment -o
 ~/EpisodeAPI/ --format bin --print-plain-path")
 output_path = f.gets
 puts "'#{output_path}'"

 Output:
 '/Users/tomasa/EpisodeAPI/deployment.epitask'
 $

 Create a Transfer task with a custom naming convention
 $ episodectl.exe tt ~/EpisodeAPI/output/ --dest-filename
 '$source.filename$-Encoded@$dynamic.hr-time$-Duration-$encoder.output-duration-hms$-Bitrate-$encoder.output-bitrate-
mbps$Mbps'

 Create a Transfer task for upload to a FTP server
 $ episodectl.exe tt ftp://user:password@server.domain.com/directory/ --name
 MyFTP

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/MyFTP.epitask
 $

 Important When using deployments to external servers, always consider the potential
 failure due to server reliability, possible maintanance downtimes, possible
 overloading, etc, etc. Always consider using a backup deployment to some local
 storage or the local disk. For example, create a deployment called
 SafetyBackup.epitask which points to a local directory, then submit the workflow
 with the two deployments
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d MyFTP.epitask
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

151
 SafetyBackup.epitask

 Advanced Example

 The naming convention, as a lot of other things, can be dynamically created when we
 submit the workflow. When specifying a text string consisting of variables, the
 string is tokenized so that each variable ends up in its own list item and any
 surrounding static text also ends up in its own list item in the task configuration.
 Let's demonstrate that. Let's say that we use the default naming convention, but
 between the source filename and the Encode task name, we want to put in a custom
 message. Here is a example of how the default naming convention looks in a XML
 configration file (the naming convention list items are highlighted)
 <list name="dest-filename">
 <string>$source.filename$</string>
 <string>-</string>
 <string>$encoder.name$</string>
 </list>

 In the default naming convention, the only static text is the dash (-) between the
 source filename and the Encode task name. We could just substitute the dash with our
 custom message but it wouldn't look very nice so we want to have dashes on both
 sides of the message. Since the naming convention is tokenized (by the CLI) by
 dollar signs (as in Episode's variables), we need to specify a dummy variable to get
 a separate list item to substitute, for example
 $ episodectl.exe tt ~/EpisodeAPI/output/ --dest-filename
 '$source.filename$-$custom-message$-$encoder.name$' --name custom-name-deployment -o
 ~/EpisodeAPI/tasks/

 Output:
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/custom-name-deployment.epitask
 $

 Now, if we look in the created file, the naming convention should look like this
 (The key parts for substitution are highlighted)
 <list name="dest-filename">
 <string>$source.filename$</string>
 <string>-</string>
 <string>custom-message</string>
 <string>-</string>
 <string>$encoder.name$</string>
 </list>

 Notice that the dollar signs have been removed. That's because it wasn't a
 recognized Episode variable.

 Referencing a list item begins at index 0, so our custom message is now at index 2.
 We also need to know the name of the configuration we're affecting, in this case
 "dest-filename". There are four different options for setting values/variables in
 the submission command workflow submit. These are --set-name, --set-type, --set-list-name
 , and --set-list-type.
 Let's test all of them. We begin with --set-name. For this option, we need to know
 the name of our task. When we created the task, we specified the name
 "custom-name-deployment" so here's how to submit the workflow with a custom message
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

152
 inserted
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d
 tasks/custom-name-deployment.epitask --set-name custom-name-deployment
 dest-filename[2] "My Message"

 If we have multiple Transfer tasks, for example, one that uploads to a FTP server,
 and the same configured naming convention, we can use the --set-type option to set
 the message on all Transfer tasks like this
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d
 tasks/custom-name-deployment.epitask --set-type Transfer dest-filename[2] "My
 Message"

 The two list options are helper options for setting a complete list of values,
 separated by space characters. These two examples replaces the whole naming
 convention we configured earlier, i.e. these examples makes the previous
 configuration superflous
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d
 tasks/custom-name-deployment.epitask --set-list-name custom-name-deployment
 dest-filename '$source.filename$' - "My Message" - '$encoder.name$'

 $ episodectl.exe ws -f source.mov -e encoder.epitask -d
 tasks/custom-name-deployment.epitask --set-list-type Transfer dest-filename
 '$source.filename$' - "My Message" - '$encoder.name$'

 Here is a script with a more fancy message (requires previous steps) that you can
 run like this
 $ ruby
 /Applications/Episode.app/Contents/MacOS/engine/API/CLI/TaskTransferSetNamingConv.rb

 Output:
 Outfile path: /Users/tomasa/EpisodeAPI/output/source-Created by
 tomasa-encoder.mov
 $

 task youtube

 A YouTube task is probably pretty useless without the use of at least one variable.
 Let's create a YouTube task with the source filename as YouTube title and a
 description also containing the source filename. Let's call it "youtube" and place it
 in the tasks/ sub directory for easy reference in next example
 $ episodectl ty -u MyName -p MyPass -t '$source.filename$' -d 'Here goes the
 description of $source.filename$' -c Howto -k Episode Example --name youtube -o
 tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/youtube.epitask
 $

 Advanced Example

Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

153
 To make the YouTube deployment a bit more useful, we can substitue the "meta-data"
 (title, description, category, keywords) when we submit a workflow. The YouTube
 task's configuration for "title" and "description" are list values called "titles" and "description
 s". The legacy single-string versions are still available, but the list versions have
 precedence and should be used even when using a single string of static text or a
 single variable. The list values makes it possible to have variables in the middle
 of static text which wouldn't be supported otherwise. When using options --title and
 --description, the CLI will split up dollar-variables and static text to form a list
 and configure the input configurations meta-data{titles} and meta-data{descriptions}.
 That means that the task created in the previous example will have 2 list entries
 configured for the description. To make the base task (the one that is used in
 submissions but with dynamically overrided values) more flexible, let's create a new
 one that has dummy text in a single list entry so we know that we always override
 the list values completely, even when using a single static text or a single
 variable
 $ episodectl ty -u MyName -p MyPass -t placeholder -d placeholder -c Howto -k
 placeholder --name youtube -o tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/youtube.epitask
 $

 This example demonstrates specifying a list of 3 values for the title, a single
 static text as description, a new category, and new keywords spcified as single list
 entries (as opposed to using --set-list-name for keywords).

 $ episodectl.exe ws -f source.mov -e encoder.epitask -d tasks/youtube.epitask
 --set-list-name youtube meta-data{titles} 'World record attempt. '
 '$source.filename$' ' encoded with Episode' --set-list-name youtube
 meta-data{descriptions} 'I will make a new world record attempt in transcoding'
 --set-name youtube meta-data{category} Entertainment meta-data{keywords}[0]
 Telestream meta-data{keywords}[1] Episode

 Important When using deployments to external servers, always consider the potential
 failure due to server reliability, possible maintanance downtimes, possible
 overloading, etc, etc. Always consider using a backup deployment to some local
 storage or the local disk. For example, create a deployment called
 SafetyBackup.epitask which points to a local directory, then submit the workflow
 with the two deployments
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d youtube.epitask
 SafetyBackup.epitask

 Here is a script that demonstrates how you could interactively create the submission
 command
 $ ruby
 /Applications/Episode.app/Contents/MacOS/engine/API/CLI/TaskYouTubeInteractiveUsage.rb

 task execute

 The Execute task can be used to do pretty much anything, upload a file to some web
 storage, encode a file with Episode Engine 5.x, create output meta data, create
 archives, integrate with content management systems, etc, etc. Read the help page
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

154
 for the Execute task (episodectl.exe tx -h) and make sure you understand the
 difference between running a program at a specified path, and reading in a script
 which can be distributed in a cluster.

 The first example will show how we can create a simple "move source file" task. We
 will use the built in program /bin/mv to move/rename the file.

 Important Never create a task that executes installed programs as "content", i.e. when
 using a OS program or other installed binaries, always create the task with option --content
 no.

 Apart from obviously being platform dependent (to OS X), this task will not be able
 to move any URL, only locally accessible paths, so we will use the variable $source.path$
 to send to /bin/mv. We also make sure that it is only executed on a OS X machine by
 tagging it with the built-in tag "Mac".
 $ episodectl.exe tx /bin/mv --content no --args '$source.path$' /tmp/ --tag Mac
 -o tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/mv.epitask
 $

 If we submit a workflow with our ~/EpisodeAPI/source.mov source file, it will be
 moved to /tmp/
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/ -x
 tasks/mv.epitask -wv

 Let's move it back here again...
 $ mv /tmp/source.mov .

 When working with scripts, it's always good to know what the data looks like that
 comes into a script. Try running the command
 $ ruby
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptPrintARGV_ENV.rb Test
 arguments

 Now there should be a file called "argv_env.txt" in the directory ~/EpisodeAPI/. Read
 contents, for example
 $ cat argv_env.txt

 Sample output, a lot of environment variables have been excluded here:

 Arguments:
 'Test'
 'arguments'

 Environment:
 SHELL=/bin/bash
 USER=tomasa
 HOME=/Users/tomasa

 Let's create a Execute task with this script and set a few arguments and environment
 variables in it. To easily find the environment variables we set in the output from
 the script, I prepend "EPISODE_" to them which is of course not necessary
 $ episodectl.exe tx
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptPrintARGV_ENV.rb --args
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

155
 '$source.path$' '$deployment.outfile-path$' --env EPISODE_WORKFLOW_NAME
 '$workflow.name$' EPISODE_SOURCE_DURATION '$encoder.input-duration-s$' -o tasks/

 Output:
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/scriptPrintARGV_ENV.rb.epitask
 $

 If we submit a workflow with this task and dynamically set some data, let's say a
 server hostname and a path
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/ -x
 tasks/scriptPrintARGV_ENV.rb.epitask --set-type Execute env{DYNAMIC_SERVER}
 my.server.com env{DYNAMIC_PATH} /dynamic/directory/ --workflow-name Amazing -wv

 Content of ~/EpisodeAPI/argv_env.txt should look something like this:

 Arguments
 '/Users/tomasa/EpisodeAPI/source.mov'
 '/Users/tomasa/EpisodeAPI/output/source-encoder (5).mov'

 Environment:
 SHELL=/bin/bash
 HOME=/Users/tomasa
 USER=tomasa
 DYNAMIC_PATH=/dynamic/directory/
 DYNAMIC_SERVER=my.server.com
 EPISODE_SOURCE_DURATION=3.00
 EPISODE_WORKFLOW_NAME=Amazing

 A very important thing to notice here is that this task is only possible to run as a
 success task. That is because we have two input values that requires output from
 previous successful tasks, one from the the Encode task ($encoder.input-duration-s$)
 and one from the Transfer task ($deployment.outfile-path$). If we specify this
 Execute task to run on 'done' or 'failure' status, it will not run because it needs
 to be provided with the these values which it will not be if any of the previous
 tasks fail.

 If status 'done' is chosen for a script, the status of the workflow's previous tasks
 may be checked inside the script with a call to episodectl.exe status tasks. The
 script /Applications/Episode.app/Contents/MacOS/engine/API/scriptStatistics.rb
 demonstrates that.

 This script uses the pre-defined environment variable EPISODECTL to get the absolute
 path to the Episode CLI. It also uses the variable EPISODE_WORKFLOW_ID which should
 be configured with the Episode variable $workflow.id$ to be able to query the status
 for the Encode task. Let's create a Execute task
 $ episodectl.exe tx
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptStatistics.rb --env
 EPISODE_WORKFLOW_ID '$workflow.id$' -o tasks/

 Output:
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/scriptStatistics.rb.epitask
 $
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

156
 Let's try to submit a workflow with this task, use the encoder task as a source
 file, just to get an error.
 $ episodectl.exe ws -e encoder.epitask -f source.mov encoder.epitask -d output/
 -x tasks/scriptStatistics.rb.epitask done -wv

 A file called "statistics.txt" should now be present in ~/EpisodeAPI/, let's check
 it's contents
 $ cat statistics.txt
 Output:
 encoder.epitask failed to encode: initialization failed (no importer found)
 source.mov encoded with 'encoder' in 7 seconds
 $

 If we want to do a script that does something that could take a long time, for
 example upload a file to some web storage or a FTP server, we might need to report
 progress from the script. Reporting progress is both visually nice and prevents the
 task from timing out due to lack of reporting. The default timeout is 10 minutes
 (which can be configured in the (Master-)Node's configuration file).

 Let's begin with testing the progress reporting. There is a dummy progress reporting
 script located here
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptDummyProgress.rb, test
 executing it
 $ ruby
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptDummyProgress.rb

 Output (1 second delay for each line):
 progress[0]
 progress[10]
 progress[20]
 progress[30]
 progress[40]
 progress[50]
 progress[60]
 progress[70]
 progress[80]
 progress[90]
 $

 In order for Episode's Execute task to parse the scripts output, we must tell it to
 do so
 $ episodectl.exe tx
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptDummyProgress.rb
 --parse-progress yes -o tasks/

 Submit a workflow, just to see that it works...
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/ -x
 tasks/scriptDummyProgress.rb.epitask -wv

 There is a example script for uploading to a FTP server that demonstrates progress
 too. If you don't have a FTP server set up or one that you can use, you can always
 just check out the code. Let's copy the script over here to reduce commands a bit...
 $ cp /Applications/Episode.app/Contents/MacOS/engine/API/scriptFTPUpload.rb .

 This script uses the environment variables EPISODE_OUTPUT_PATH, FTP_SERVER,
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

157
 FTP_USER, and FTP_PASS. The FTP_ variables have default values to 127.0.0.1 and
 anonymous user. If you have a FTP server on localhost with anonymous user
 access/upload rights, you can test the script with this command
 $ env EPISODE_OUTPUT_PATH=~/EpisodeAPI/source.mov ruby scriptFTPUpload.rb

 Otherwise you can of course set all variables, for exmaple
 $ env EPISODE_OUTPUT_PATH=~/EpisodeAPI/source.mov FTP_SERVER=my.server.com
 FTP_USER=MyUser FTP_PASS=MyPass ruby scriptFTPUpload.rb

 As you can see, the script outputs a floting point progress between 0 and 1, e.g.
 progress[0.21157411376775]. This means that we must configure the Episode Execute
 task to parse that as a "fraction" as the progress type is called. Create the task
 $ episodectl.exe tx scriptFTPUpload.rb --parse-progress yes --progress-type
 fraction --env EPISODE_OUTPUT_PATH '$deployment.outfile-path$' FTP_SERVER
 my.server.com FTP_USER MyUser FTP_PASS MyPass -o tasks/ --name FTPdeployment

 Output:
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/FTPdeployment.epitask
 $

 A common situation is the requrement for some output meta data. Here is a simple
 example of how to create a XML file with some meta data from a Execute task. Copy
 the example script over here...
 $ cp
 /Applications/Episode.app/Contents/MacOS/engine/API/scriptMetaDataGeneration.rb .

 This script uses the environment variables EPISODE_OUTPUT_PATH, EPISODE_DURATION,
 EPISODE_SOURCE_FILENAME, and MY_DESCRIPTION. The EPISODE_ variables should be
 configured with Episode variable values, and MY_DESCRIPTION has a default value but
 should be specified at submission-time. The script is testable with the following
 command
 $ env EPISODE_OUTPUT_PATH=~/EpisodeAPI/source.mov EPISODE_DURATION=01-23-45
 EPISODE_SOURCE_FILENAME=source ruby scriptMetaDataGeneration.rb

 This should have produced the file ~/EpisodeAPI/source.mov.xml, look at content
 $ cat source.mov.xml

 Output:
 <?xml version="1.0" encoding="UTF-8"?>
 <SomeMetaDataXML>
 <File>
 <Name>source</Name>
 <Description>No description supplied</Description>
 <Duration>01:23:45</Duration>
 </File>
 </SomeMetaDataXML>
 $

 Now it's time to create the Execute task for the meta data generation
 $ episodectl.exe tx scriptMetaDataGeneration.rb --env EPISODE_OUTPUT_PATH
 '$deployment.outfile-path$' EPISODE_DURATION '$encoder.output-duration-hms$'
 EPISODE_SOURCE_FILENAME '$source.filename$' --name MetaDataGenerator -o tasks/

 Output:
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

158
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/MetaDataGenerator.epitask
 $

 Now I think it's time to clear all the output files... it's a real mess in there at
 the moment...
 $ rm output/*

 And then submit a test workflow. Insert a custom description
 $ episodectl.exe ws -f source.mov -e encoder.epitask -d output/ -x
 tasks/MetaDataGenerator.epitask --set-type Execute env{MY_DESCRIPTION} 'Nothing more
 than a simple test' -wv

 This should have produced the file ~/EpisodeAPI/output/source-encoder.mov.xml
 $ cat output/source-encoder.mov.xml

 Output:
 <?xml version="1.0" encoding="UTF-8"?>
 <SomeMetaDataXML>
 <File>
 <Name>source</Name>
 <Description>Nothing more than a simple test</Description>
 <Duration>00:00:03</Duration>
 </File>
 </SomeMetaDataXML>
 $

 task mail

 The Mail task is probaly mostly useful for sending a notification if a encoding
 should fail, let's create a Mail task with a nice error message. The default port
 587 is used (please see http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
 about port 587). The automatically created name is also used, as well as using SSL.
 The assumption in this example's message is that the Encode task failed (and not the
 deployment).
 $ episodectl.exe tmail -u username -p password -s smtp.server.com -f
 EpisodeEngine@mycompany.com -t episode.admin@mycompany.com -j 'Error: $source.file$
 failed to encode' -m 'Please run this command to see why "episodectl status tasks
 $workflow.id$ --filter-name $encoder.name$ -o task.message"' -o tasks/

 Output:
 Task configuration written to:
 /Users/tomasa/EpisodeAPI/tasks/episode.admin@mycompany.com.epitask
 $

 task mbr

 MBR is short for Multi Bit Rate and which currently supports Apple's HTTP Live
 Streaming, DASH Streaming, and Microsoft's Smooth Streaming. A MBR workflow consists
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

159
 of at least one MBR task and one Encode task (and a deployment...). To utilize the
 streaming technoligies better, at least 3 different Encode tasks with different bit
 rates should be used. Encode tasks can only be created in the Episode GUI
 application and should be configured to output the container format TIFO (Telestream
 Intermediate Format) which is the format that the MBR task can take as input.

 Apple's HTTP Live Streaming and DASH Streaming can be produced on both Mac OS X and
 Microsoft Windows platforms, while Microsoft's Smooth Streaming can only be produced
 on the Windows platform. "Produced" in this context means that the MBR task configured
 to output Smooth Streaming must run on a Windows machine. The individual Encode
 tasks can of course run on either platform as usual.

 We begin with creating three MBR tasks, one for each streaming technology. The
 default fragment duration for each is used. As package name, the source filename is
 specified
 $ episodectl.exe tmbr HTTPStreaming --name HLS --package-name
 '$source.filename$' -o tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/HLS.epitask
 $

 $ episodectl.exe tmbr SmoothStreaming --name MSS --package-name
 '$source.filename$' -o tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/MSS.epitask
 $

 $ episodectl.exe tmbr DASHStreaming --name DASH --package-name
 '$source.filename$' -o tasks/

 Output:
 Task configuration written to: /Users/tomasa/EpisodeAPI/tasks/DASH.epitask
 $

 Now we need some Encode tasks configured to output TIFO files as input for the MBR
 tasks. There are 3 Encode tasks configured for this in
 /Applications/Episode.app/Contents/MacOS/engine/API/ named "H264 1Mbit TIFO.epitask", "H264
 768kbit TIFO.epitask", and "H264 512kbit TIFO.epitask". Let's copy them over here...
 $ cp /Applications/Episode.app/Contents/MacOS/engine/API/H264* tasks/

 When submitting a MBR workflow with multiple MBR tasks, the CLI will match the paths
 of the Encode tasks and build the workflow so that the same Encodes are only done
 one time and not one time for each streaming format. Let's try that, but before we
 submit the workflow, let's try something different to be able to view the result
 better, we set the number of jobs the node will execute down to 0 (zero)
 $ episodectl.exe node jobs --set 0

 Now we'll go ahead and submit the workflow. Notice that the --mbr option is used
 three times! We insert a custom naming convention here too
 $ episodectl.exe ws -f source.mov --mbr tasks/HLS.epitask tasks/H264\ 1Mbit\
 TIFO.epitask tasks/H264\ 768kbit\ TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask
 --mbr tasks/MSS.epitask tasks/H264\ 1Mbit\ TIFO.epitask tasks/H264\ 768kbit\
 TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask --mbr tasks/DASH.epitask tasks/H264\
 1Mbit\ TIFO.epitask tasks/H264\ 768kbit\ TIFO.epitask tasks/H264\ 512kbit\
 TIFO.epitask -d output/ --naming '$source.filename$-$mbr.name$' -wv
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

160
 Output should look something like this (irrelevant columns are not present here...):

 Filename Task Name Task Type

 Running (0 of 0)

 Queued (7 of 7)

 source.mov H264 1Mbit TIFO Encode
 source.mov H264 512kbit TIFO Encode
 source.mov H264 768kbit TIFO Encode
 source.mov HLS MBR
 source.mov MSS MBR
 source.mov DASH MBR
 source.mov output Transfer
 source.mov output Transfer

 History (0 of 0)

 Here we can see that there are only three Encode tasks, which will set their output
 files as input to both MBR tasks. You can of course put different encodes into each
 MBR format in the way you like. Let's get the work started again
 $ episodectl.exe node jobs --set-recommended

 Notice OS X: If you're on OS X, the Smooth Streaming task will display this message "Waiting
 for node with Windows operating system to become available". To get rid of the
 workflow, open up a new Terminal window or tab and simply stop/cancel all workflows.
 These commands will do that
 $ episodectl.exe workflow stop --all
 $ episodectl.exe wp --all
 $ episodectl.exe job cancel --all
 $ episodectl.exe jcan --all

 Best practice

 Specifying the rather long command line for submitting the MBR workflows can be
 avoided by dividing the commands into several steps. Since it's likely that the same
 workflow will be used over and over again with different source files, we can
 optimize things a bit. We will simply start with creating the workflow and save it
 to disk with a "dummy source" that is going to be replaced with a real source for all
 subsequent submissions we do. We will do the same submission command as earlier, but
 we will tell Episode to write it to disk (with a dummy source) instead of actually
 submitting it. To reduce data size and also speed up Episode's reading/parsing of
 the workflow each time we later submit it, we save it in binary format ("bin")
 $ episodectl.exe ws -f DummySource --mbr tasks/HLS.epitask tasks/H264\ 1Mbit\
 TIFO.epitask tasks/H264\ 768kbit\ TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask
 --mbr tasks/MSS.epitask tasks/H264\ 1Mbit\ TIFO.epitask tasks/H264\ 768kbit\
 TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask -d output/ --naming
 '$source.filename$-$mbr.name$' --name MBRWorkflow -o workflows/ --format bin

 Output:
 Submission configuration written to:
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

161
 /Users/tomasa/EpisodeAPI/workflows/MBRWorkflow.episubmission
 $

 The workflow is now ready to be used thousands of times with different source files,
 or even a different source type, a Monitor, a EDL, or a Image Sequence. Let's try a
 source file, notice that option --submission, short -s is used in the submission
 command to specify that a workflow (or submission file) is used as input
 $ episodectl.exe ws -s workflows/MBRWorkflow.episubmission -f source.mov -wv

 Very much easier, wasn't it?

 Notice: When saving workflows for later submissions, some things are not saved.
 These include all variable override options --set-name, --set-type, --set-list-name,
 --set-list-type and the utility option --split as well as workflow --priority and --demo
 .

 task set

 In this example, we will illustrate a very similar scenario as the documented
 examples in the episodectl.exe priority documentation. Please read that before going
 ahead with this example. We begin with copying the MBR tasks, rename them, and set
 priority on them. We pretend that the 1Mbit task is our most important broadcast
 version which we always want to run first, then we want to run the 768kbit task for
 the Web, and last, we want to run the 512kbit task as a archive version. Remember,
 this is just a illustrative example!
 $ cp tasks/H264\ 1Mbit\ TIFO.epitask tasks/Broadcast.epitask

 $ cp tasks/H264\ 768kbit\ TIFO.epitask tasks/Web.epitask

 $ cp tasks/H264\ 512kbit\ TIFO.epitask tasks/Archive.epitask

 $ episodectl.exe tset tasks/Broadcast.epitask --name Broadcast --priority 3

 $ episodectl.exe tset tasks/Web.epitask --name Web --priority 2

 $ episodectl.exe tset tasks/Archive.epitask --name Archive --priority 1

 To better see what's going on, we once again set the number of jobs in the node to 0
 $ episodectl.exe node jobs --set 0

 Then, open up a new shell window (Terminal window), resize it to have at least 150
 columns so we can see the status well. In the new window, execute the command
 $ episodectl.exe status tasks --all -wv

 Go back to the first window and submit a workflow with the default workflow priority
 (0)
 $ episodectl.exe ws -f source.mov -e tasks/Broadcast.epitask tasks/Web.epitask
 tasks/Archive.epitask -d output/

 Output should look something like this (irrelevant columns are not present here...)

 Filename Task Name Task Type Priority

 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

162
 Running (0 of 0)

 Queued (6 of 6)

 source.mov Broadcast Encode 3
 source.mov Web Encode 2
 source.mov Archive Encode 1
 source.mov output Transfer 0
 source.mov output Transfer 0
 source.mov output Transfer 0

 Submit a new workflow with priority 100
 $ episodectl.exe ws -f source.mov -e tasks/Broadcast.epitask tasks/Web.epitask
 tasks/Archive.epitask -d output/ --priority 100

 Output should now look something like this

 Filename Task Name Task Type Priority

 Running (0 of 0)

 Queued (12 of 12)

 source.mov Broadcast Encode 103
 source.mov Web Encode 102
 source.mov Archive Encode 101
 source.mov output Transfer 100
 source.mov output Transfer 100
 source.mov output Transfer 100
 source.mov Broadcast Encode 3
 source.mov Web Encode 2
 source.mov Archive Encode 1
 source.mov output Transfer 0
 source.mov output Transfer 0
 source.mov output Transfer 0

 Now we want to do as the last example in the episodectl.exe priority documentation,
 to have the workflow-internal priority have effect "outside" the workflow, to have all
 Broadcast tasks always run first, then Web tasks, and then Archive tasks, regardless
 of workflow priority. We still want a granularity of 100 different workflow
 priorities to prioritize the source files or monitors with, so we must set a task
 priority of more than 100 for the Archive task and the difference between the task
 priorities must also be more than 100... we use larger and more even numbers...
 $ episodectl.exe tset tasks/Broadcast.epitask --priority 600

 $ episodectl.exe tset tasks/Web.epitask --priority 400

 $ episodectl.exe tset tasks/Archive.epitask --priority 200

 Now, remove all the old workflows
 $ episodectl.exe wp --all

 And submit again with priority 100, then let's say 50, and finally 0
 $ episodectl.exe ws -f source.mov -e tasks/Broadcast.epitask tasks/Web.epitask
 tasks/Archive.epitask -d output/ --priority 100
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

163
 $ episodectl.exe ws -f source.mov -e tasks/Broadcast.epitask tasks/Web.epitask
 tasks/Archive.epitask -d output/ --priority 50

 $ episodectl.exe ws -f source.mov -e tasks/Broadcast.epitask tasks/Web.epitask
 tasks/Archive.epitask -d output/ --priority 0

 Output should now look something like this (deployments doesn't really matter, so
 they've been taken away...)

 Filename Task Name Task Type Priority

 Running (0 of 0)

 Queued (18 of 18)

 source.mov Broadcast Encode 700
 source.mov Broadcast Encode 650
 source.mov Broadcast Encode 600
 source.mov Web Encode 500
 source.mov Web Encode 450
 source.mov Web Encode 400
 source.mov Archive Encode 300
 source.mov Archive Encode 250
 source.mov Archive Encode 200

Creating sources
================

 There are currently 4 types of sources, a file source (a single file or a list of files), a monitor
 source, a EDL source, and a iseq source (Image Sequence).

 Before we start with examples, we need some more source files. Up until now, we have only
 used the ~/EpisodeAPI/source.mov file but let's find some more source files and copy them
 into our input/ sub directory. In the following examples, the source files will be referred
 to as "file1.mov", "file2.mov", "file3.mov", and "file4.mov".

 One more thing, since we are working with sources now (and not specifically tasks), we can
 create a simple workflow so we don't need to specify the individual tasks anymore, let's
 create the most simple workflow with a dummy source that we will replace with newly created
 sources
 $ episodectl.exe ws -f DummySource -e encoder.epitask -d output/ -o workflows/ --name
 simple

 Output:
 Submission configuration written to:
 /Users/tomasa/EpisodeAPI/workflows/simple.episubmission
 $

 source filelist
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

164

 The creation function for a file source, i.e. the command source filelist exists
 mostly for consistency. The only use case I can think of is to organize source files
 in saved lists for later use, i.e. later submissions. Anyway, create some source
 file lists for different customers as an example
 $ episodectl.exe sfl input/file1.mov input/file2.mov --name BatchForCustomerA -o
 input/

 Output:
 Source configuration written to:
 /Users/tomasa/EpisodeAPI/input/BatchForCustomerA.episource
 $

 $ episodectl.exe sfl input/file3.mov input/file4.mov --name BatchForCustomerB -o
 input/

 Output:
 Source configuration written to:
 /Users/tomasa/EpisodeAPI/input/BatchForCustomerB.episource
 $

 Then, a few days later when we have forgotten which files belonged to which
 customer, we can submit the lists we created for each of our customers "A" and "B".
 $ episodectl.exe ws --file-source input/BatchForCustomerA.episource -s
 workflows/simple.episubmission

 $ episodectl.exe ws --file-source input/BatchForCustomerB.episource -s
 workflows/simple.episubmission

 source monitor

 Directory monitoring is a very popular feature, often called "Watch folders" or "Hot
 folders", even though there is nothing special with the directory (or "folder") but
 rather a configuration in the software that is going to monitor the directory. The
 monitor configuration in Episode is quite extensive and may look a bit frightening
 due to all the different filtering options but don't panic, everything is optional
 except for the directory we want to monitor.

 Let's begin by creating a few direcotries for testing

 $ mkdir monitor
 $ mkdir monitor/projectA
 $ mkdir monitor/projectA/temporary
 $ mkdir monitor/projectB
 $ mkdir monitor/failed
 $ mkdir monitor/processed

 Let's create a simple monitor for the directory ~/EpisodeAPI/input/. We are always
 located in ~/EpisodeAPI/ in these examples. Since we will only deal with a reliable
 storage here (the local disk), and use small source files, we speed up the reporting
 time of the monitor a bit from the default by lowering the safe-delay.
 $ episodectl.exe smon monitor/ --safe-delay 3 -o input/
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

165
 Output:
 Source configuration written to:
 /Users/tomasa/EpisodeAPI/input/monitor.episource
 $

 You may notice that the name of the monitor became "monitor", that is because the
 default name given to a monitor is the directory name of the directory it will
 monitor, which in the example here happened to be "monitor". If you created a monitor
 for /Users/Shared/, the default generated name would be "Shared".

 Now we can submit this monitor together with our "simple" workflow we created earlier
 $ episodectl.exe ws --monitor input/monitor.episource -s
 workflows/simple.episubmission

 To verify that the monitor is up and running, we can use the command status monitors
 (sm), we use the option --visual (-v) to get a human readable output
 $ episodectl.exe sm -v

 Example output:

 __

 MONI-8A344F14-6191-4812-8887-1C4786A894A2

 __

 Name: monitor

 Submission name: monitor

 URL:
 tsrc:/Users/tomasa/EpisodeAPI/monitor/#node-id,ClientProxy%40computer
 Workflow ID: WOFL-5183AEA6-72C7-4292-87ED-340D574B4239

 Workflow Priority: 0

 Running: yes

 Stop reason:

 To test the monitor, we may be interested in a couple of things, first status of
 course but maybe also a log of what the monitor is doing... now we need two
 additional shell windows. In the first window, run episodectl.exe st --all -wv and
 in the second one, run episodectl.exe mg which is short for monitor log.

 To be able to see any result, we can link or copy a file into the monitored
 directory
 $ ln source.mov monitor/

 Example output from monitor log command:
 MONI-8A344F14-6191-4812-8887-1C4786A894A2 (Info): New file discovered:
 source.mov
 MONI-8A344F14-6191-4812-8887-1C4786A894A2 (Info): File source.mov seems ripe,
 checking if we can open it
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

166
 MONI-8A344F14-6191-4812-8887-1C4786A894A2 (Info): File source.mov seems ripe,
 reporting as ready
 $

 When dealing with monitors, it's important to be able to detect when something is
 wrong. The monitor boolean status "running" (yes/no) only indicates that the monitor
 is running (as the name suggests), it will not indicate that it is having problems
 until it has given up and stops itself. Problems in this case means having a problem
 listing the directory it is configured to monitor, or a sub directory if it is
 configured to list recursively. It may be due to a non-responding server
 (SMB/FTP/EpisodeIOServer), the directory is not mounted, the monitor (which runs as
 the user running Episode) does not have permission to list the directory, or of
 course that the directory does not in fact exist at all.

 So, how long is the monitor running with problems before giving up?

 Actually quite long by default. There are a number of configurations for controlling
 this, they all begin with "retry-". --retry-delay-start, --retry-delay-factor, --retry-delay-max
 , --retry-max-attempts. "max-attmpts" is the number of times the monitor will retry
 listing the directory and is default set to 40. "delay-start" is the initial delay in
 seconds before doing the next attempt, default 20 seconds. "delay-factor" is the
 integer factor to multiply the current delay (initially delay-start) with, default
 2, i.e. double the delay. "delay-max" is the maximum delay in seconds that the monitor
 will wait, default 3600 seconds, i.e. 1 hour. Since doubling the waiting time each
 retry, we will reach the maximum in 40, 80, 160, 320, 640, 1280, 2560, 5120 bam!, max
 reached in 8 retries which means that we have 32 (minus one for a initial immediate
 retry) retries left which means that the monitor will default run for well over 30
 hours before giving up!

 To see how the monitor behaves, we create a monitor that will fail a little quicker
 than the default configuration. We configure it to monitor a non-existing directory
 and lower the retry options a bit
 $ episodectl.exe smon bogus/ --retry-delay-start 2 --retry-delay-factor 1
 --retry-max-attempts 2 -o input/

 Output:
 Source configuration written to: /Users/tomasa/EpisodeAPI/input/bogus.episource
 $

 Before we submit this monitor, let's do a couple of things. First, all errors (and
 not just errors...) are by default logged to ASL (Apple System Log) on OS X, and to
 Windows Event Log. In Windows, the log is viewable through the Windows Event Viewer.
 On OS X, the log is easist accessed through the application Console.app. In the
 Terminal, you can use the command syslog to query the log in different ways, for
 example, to get all log messages sent by Episode, you can use the command ("Seq" means
 "Substring equals", see man syslog)
 $ syslog -k Sender Seq Episode

 We can also let the node create log files for the monitors, let's try that too
 $ episodectl.exe node log --monitors yes

 Now we are ready to submit the monitor
 $ episodectl.exe ws --monitor input/bogus.episource -s
 workflows/simple.episubmission

 This monitor should give up after about 6 seconds but error messages should show up
 in the logs during that time
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

167
 Let's see how the log file looks now (you will have a different filename than shown
 below)
 $ cat ~/Library/Logs/Episode/Monitors/bogus-\[A2F0BA0CA058\].log

 Output:
 [Some date] (INFO) Starting up Monitor Plug-In
 [Some date] (WARNING) Error while trying to list directory '' (Failed to list
 /Users/tomasa/EpisodeAPI/bogus (No such file or directory)). 2 tries left
 [Some date] (WARNING) Error while trying to list directory '' (Failed to list
 /Users/tomasa/EpisodeAPI/bogus (No such file or directory)). 1 tries left
 [Some date] (WARNING) Error while trying to list directory '' (Failed to list
 /Users/tomasa/EpisodeAPI/bogus (No such file or directory)). 0 tries left
 [Some date] (ERROR) Failed to list directory '' (Reached max retries, giving up)
 [Some date] (ERROR) Failed to list directory '' (Reached max retries, giving up)

 If watching monitor status now, the output should look something like this
 $ episodectl.exe sm -v

 Example output:

 __

 MONI-73C5E364-3370-4F1A-9BBD-DC5843AF2F04

 __

 Name: bogus

 Submission name: bogus

 URL:
 tsrc:/Users/tomasa/EpisodeAPI/monitor/#node-id,ClientProxy%40computer
 Workflow ID: WOFL-3B244A04-DBCC-45A8-875D-4EAB0177F3AA

 Workflow Priority: 0

 Running: no

 Stop reason: Failed to list directory '' (Reached max retries,
 giving up)

 I think we're done with the bogus monitor now, remove it (using the monitor remove
 command and option --name with argument "bogus")
 $ episodectl.exe mr -n bogus

 Now let's try and use our project directories we created earlier. We want to monitor
 "projectA" and "projectB" directories. We also want to be able to have sub directories
 in the project directories that the monitor should ignore, the directory "temporary"
 is used to illustrate this. In addition to that we want the processed files to be
 moved into one of the directories "processed" or "failed", depending on the transcoding
 and deployment result. The monitor must be informed to not report any files in those
 directories either since that would make the monitor report files indefinitely, just
 like if a "Same as Source" deployment is used with a monitor, no good idea!

 So, how do we tell the monitor to ignore those directories ("failed" and "processed",
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

168
 and every project sub directory)?

 Let's start with the project sub directories. We basically have three options,
 either we can set the "recursion depth" of the monitor to exactly 1 (which includes
 the project directories, but nothing deeper). The word and the monitor option --recursive
 in this case means recursively traverse down a directory structure for a specified
 number of recursions, i.e reach a specified depth in the structure. The second
 option is to add ignore-filters that mathces the sub directory names (or files). The
 third option is to add include-filters that matches the project directories. We will
 try option 1 and 2, but let's start with the most simple, recursion depth of 1. Then
 we must add ignore-filters for the directories "processed" and "failed" because they are
 also at directory depth 1.
 $ episodectl.exe smon monitor/ --recursive 1 --workflow-failure deploy
 --move-source monitor/failed/ --workflow-success --move-source monitor/processed/
 --directory-is-ignore processed failed --safe-delay 3 -o input/

 Submit the monitor and a workflow
 $ episodectl.exe ws --monitor input/monitor.episource -s
 workflows/simple.episubmission

 We copy the source.mov file into each directory, renaming them at the same time.
 Hopefully, only the project files are reported, and when the source files are moved,
 they should be ignored.

 $ cp source.mov monitor/projectA/sourceA.mov; cp source.mov
 monitor/projectB/sourceB.mov; cp source.mov monitor/projectA/temporary/temp.mov

 Here is a example output from the episodectl.exe monitor log command we started
 earlier (removed some irrelevant lines)
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): New file discovered:
 projectA/sourceA.mov
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): New file discovered:
 projectB/sourceB.mov
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File projectA/sourceA.mov
 seems ripe, reporting as ready
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File projectB/sourceB.mov
 seems ripe, reporting as ready
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): New file discovered:
 processed/sourceA.mov
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File projectA/sourceA.mov
 removed
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File processed/sourceA.mov
 seems ripe, reporting as ready
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): Ignore file:
 processed/sourceA.mov (matching ignore: 'directory-is')
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): New file discovered:
 processed/sourceB.mov
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File projectB/sourceB.mov
 removed
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): File processed/sourceB.mov
 seems ripe, reporting as ready
 MONI-CE48696A-D394-4F17-ADE3-3C0C1C856469 (Info): Ignore file:
 processed/sourceB.mov (matching ignore: 'directory-is')

 Now, we try and use the filtering instead. Notice that filtering is case sensitive
 so if, for example, we want to allow project directories to be named "Project..." as
 well as "project..." we must specify both versions (notice though that in this
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

169
 particular scenario, the previous option with limited recursion depth is
 preferable). If we specify that we will only include directories that contains the
 words "Project" or "project", we can skip the ignore directive for "processed" and "failed"
 since those names does not contain "project"... The next problem is to ignore the "temporary
 " directory. Since the directory filterings matches all directories in the realtive
 path from the monitored base path, i.e. matches both "projectA" and "temporary" in case
 of finding a file there, it will match the directory-contains-include filter. There
 are two options (if we don't want to use file name or extension filters), either to
 explicitly ignore the directory name "temporary" or change the directory structure to
 always place files for Episode in a sub directory with some specific name, "video", "Episode
 ", "transcode", for example.
 First remove the old monitor, we remove all monitors for simplicity (command monitor
 remove option --all)
 $ episodectl.exe mr -a

 Create new monitor (overwrite the previous one)
 $ episodectl.exe smon monitor/ --recursive 5 --workflow-failure deploy
 --move-source monitor/failed/ --workflow-success --move-source monitor/processed/
 --directory-contains-include project --directory-is-ignore temporary --safe-delay 3
 -o input/

 Submit the monitor and a workflow
 $ episodectl.exe ws --monitor input/monitor.episource -s
 workflows/simple.episubmission

 Remove the old processed files...
 $ rm monitor/processed/*

 Copy the files again, which will overwrite the old files which the monitor will
 notice
 $ cp source.mov monitor/projectA/sourceA.mov; cp source.mov
 monitor/projectB/sourceB.mov; cp source.mov monitor/projectA/temporary/temp.mov

 Here is a example output from the episodectl.exe monitor log command we started
 earlier (removed some irrelevant lines)
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File
 projectA/temporary/temp.mov updated
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectA/sourceA.mov
 updated
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectB/sourceB.mov
 updated
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File
 projectA/temporary/temp.mov seems ripe, reporting as ready
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): Ignore file:
 projectA/temporary/temp.mov (matching ignore: 'directory-is')
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectA/sourceA.mov
 seems ripe, reporting as ready
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectB/sourceB.mov
 seems ripe, reporting as ready
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): New file discovered:
 processed/sourceA.mov
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): New file discovered:
 processed/sourceB.mov
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectA/sourceA.mov
 removed
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File projectB/sourceB.mov
 removed
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

170
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File processed/sourceA.mov
 seems ripe, reporting as ready
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): Ignore file:
 processed/sourceA.mov (not matching include: 'directory-contains')
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): File processed/sourceB.mov
 seems ripe, reporting as ready
 MONI-F0049321-6147-4A9A-A04C-91E3CF810E49 (Info): Ignore file:
 processed/sourceB.mov (not matching include: 'directory-contains')

 source edl

 EDL is short for "Edit Decision List" and can be used for a number of things,
 concatenate clips, remove sections of clips, or insert clips into another clip, etc.
 Let's start with a simple concatenation example, concatenate four files and save the
 source in the input/ sub directory

 Create a EDL source
 $ episodectl.exe sedl --clip input/file1.mov --clip input/file2.mov --clip
 input/file3.mov --clip input/file4.mov -o input/ --name EDLConcat

 Output:
 Source configuration written to:
 /Users/tomasa/EpisodeAPI/input/EDLConcat.episource
 $

 Submit the EDL source with the simple workflow
 $ episodectl.exe ws --edl input/EDLConcat.episource -s
 workflows/simple.episubmission

 The "spawn value" of the spawned workflow will be the first file in the list, so for
 example the default naming convention will create a output file that is named "file1-encoder.mov
 " and the CLI's status will show "file1.mov" in the "Filename" column for all tasks in
 this workflow.

 This example will cut out portions of a single file, seconds are used as time
 specifications
 $ episodectl.exe sedl --clip input/file1.mov --in 1.0 --out 2.0 --clip
 input/file1.mov --in 5.2 --out 6.4 --clip input/file1.mov --in 9.5 -o input/ --name
 EDLCut

 This example will insert two seconds of file2.mov and file3.mov into the file1.mov
 at the spots cut out as in previous example
 $ episodectl.exe sedl --clip input/file1.mov --in 1.0 --out 2.0 --clip
 input/file2.mov --out 2.0 --clip input/file1.mov --in 5.2 --out 6.4 --clip
 input/file3.mov --out 2.0 --clip input/file1.mov --in 9.5 -o input/ --name EDLInsert

 source iseq

 The Image Sequence source can take a list of image sequences. Each sequence is
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

171
 always specified with the first file in the sequence that is going to be encoded.
 Since it's beyond the scope of the examples to provide a testable case for image
 sequences, I will use the path /path/to/ instead of the created path's for previous
 examples

 Create a ISEQ source with two sequences
 $ episodectl.exe siseq /path/to/sequence1/file_0001.dpx
 /path/to/sequence2/file_0001.tga -o input/ --name TwoSequences

 Output:
 Source configuration written to:
 /Users/tomasa/EpisodeAPI/input/TwoSequences.episource
 $

 Submit the ISEQ source with the simple workflow
 $ episodectl.exe ws --iseq input/TwoSequences.episource -s
 workflows/simple.episubmission

 Advanced Example

 The Image Sequence source is basically a helper for URL creation. What is actually
 run in the workflow is a URL constructed with the scheme file+iseq and other options
 encoded into the query part of the URL. If you only use the actual start file of a
 image sequence without other options, you can specify a URL with the "file+iseq"
 scheme as a regualr file URL and use in other sources or directly in the workflow
 submit command.

 Here is an example of creating a EDL source that concatenates three image sequences
 (the URLs have empty authority parts, hence the three slashes)
 $ episodectl.exe sedl --clip file+iseq:///path/to/sequence1/file_0001.dpx --clip
 file+iseq:///path/to/sequence2/file_0001.dpx --clip
 file+iseq:///path/to/sequence3/file_0001.dpx -o input/ --name ISEQ-EDL

 Example of submitting a image sequence directly
 $ episodectl.exe ws -f file+iseq:///path/to/sequence/file_1234.dpx -s
 workflows/simple.episubmission

Submitting workflows
====================

 We have been submitting a large number of workflows in the previous examples so let's skip
 the basic commands for doing so, and instead talk about the actual command options and the
 important ones in particular.

 There are bascically two versions of this command, one for building a workflow and
 optionally submit it or save it, and one for submitting a pre-built workflow. Submitting
 pre-built workflows lets you re-use commonly used workflows saved on disk and optionally
 have the source substituted when submitting it. It also supports submitting multiple
 workflows in one command and it is slightly more efficient and requires less cluttered
 commands than re-building the workflow in each submit command.

 Submitting pre-built workflows is done with option --submission, or -s for short.
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

172
 Building workflows on the fly, and either submit them or save them for later use is done
 with options
 --encoder or --mbr
 --destination
 --execute
 --mail
 --workflow-failure
 --workflow-success

 A accompanying source is always required when submitting workflows. When submitting
 pre-built workflows, the source is optionally replaced and for on-the-fly workflows, the
 source must always be specified. If building a workflow on the fly which is saved to disk
 instead of submitted, a "dummy source" can be specified and later substituted with a "real"
 source when submitted using option -s.

 To illustrate the concept I talked about, I will use the MBR tasks created in the task mbr
 example section ("HLS.epitask" and "MSS.epitask") and the regular "encoder.epitask" file. Let's
 pretend that we have customers "A", "B", and "C". Customer A wants Apple's HTTP Live Streaming
 packages. Customer B wants Microsoft's Smooth Streaming packages, and customer C only wants
 our example "encoder.epitask" files.

 Instead of building each workflow for each of our source files, we create/build the
 workflows one time and save them for later. We insert a dummy source called "DummySource" in
 each workflow. We create a default deployment by specifying the path to our "output" directory
 (as opposed to creating a Transfer task in advance). We also insert a custom naming
 convention by overriding the default one, using the helper option --naming instead of
 configuration variable insertion. Then we specify that we will save the workflows in the
 workflows/ directory instead of submitting them and name them appropriately. Finally we use
 the Episode disk file format "bin" to further optimize submission of the thousands of source
 files we (maybe) are going to submit!

 We would like to do one more thing, and that is to place each customers' output in separate
 sub directories. To do that, we could have created a separate Transfer task for each
 customer in advance with the command task transfer and one of the directory creation
 options, for example, option --dest-sub-dirs We could also have used one of the
 configuration variable override/insertion options, for example, option --set-type Transer
 ... in the submit command if we submitted the workflow directly, but since we are saving the
 workflows, and since dynamic variable override directives are not stored in saved workflows,
 we will insert them when we actually submit them.

 $ episodectl.exe ws -f DummySource --mbr tasks/HLS.epitask tasks/H264\ 1Mbit\
 TIFO.epitask tasks/H264\ 768kbit\ TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask -d output/
 --naming '$source.filename$-$mbr.name$' --name CustomerA -o workflows/ --format bin

 Output:
 Submission configuration written to:
 /Users/tomasa/EpisodeAPI/workflows/CustomerA.episubmission
 $

 $ episodectl.exe ws -f DummySource --mbr tasks/MSS.epitask tasks/H264\ 1Mbit\
 TIFO.epitask tasks/H264\ 768kbit\ TIFO.epitask tasks/H264\ 512kbit\ TIFO.epitask -d output/
 --naming '$source.filename$-$mbr.name$' --name CustomerB -o workflows/ --format bin

 Output:
 Submission configuration written to:
 /Users/tomasa/EpisodeAPI/workflows/CustomerB.episubmission
 $
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

173
 $ episodectl.exe ws -f DummySource -e encoder.epitask -d output/ --name CustomerC -o
 workflows/ --format bin

 Output:
 Submission configuration written to:
 /Users/tomasa/EpisodeAPI/workflows/CustomerC.episubmission
 $

 Now we want to encode our "source.mov" file with one command and place the output in separate
 directories. How do we do that? We must use some variable, something that is different in
 each workflow. We have already named the workflows as we want the sub directories to be
 named so that seems to be the perfect fit! We could simply use the variable $workflow.name$
 for the directory creation.

 Technical note: Workflows and Submissions

 A "workflow" and a "submission" seems very similar at first glance, but they differ
 technically. A "workflow" only contains tasks, but not a source. A workflow must
 always be submitted together with a accompanying source, which will result in a "submission
 ". What is always saved on disk is a submission and that's the reason for why we have
 to specify a "dummy source" when saving workflows like in this example (which are
 actually submission files).

 Since this distinction exists, there are also two different names we can use, the
 workflow name and the submission name. By default, if not explicitly specified, the
 workflow name becomes the same as the submission name. When submitting or saving
 workflows (submission files) the option --name is the name of the submission, and
 also the name of the output file (.episubmission file), while the option --workflow-name
 could be used to explicitly name the workflow, if need be.

 So, the two variables $workflow.submission-name$ and $workflow.name$ will by default
 have the same value, unless, as stated, the workflow is explicitly given a different
 name with option --workflow-name

 Ok, let's submit the three workflows, override the dummy source, and insert the variable $workflow.name$
 to be used for direcotry creation (If you're on OS X only, you might want to skip
 CustomerB)
 $ episodectl.exe ws -s workflows/CustomerA.episubmission
 workflows/CustomerB.episubmission workflows/CustomerC.episubmission -f source.mov
 --set-list-type Transfer dest-sub-dirs $workflow.name$

 There is often a requirement to wait for the workflow to finish. Because of that, option --wait
 exists. As the option description states, the CLI will exit with code 0 if the workflow
 finishes successfully and code 1 if anything was not successful.

 There is a script in the CLI example directory. The script could be executed with the same
 arguments as to the CLI. The script will add the option --wait and if anything fails, it
 will use the status tasks command to get and print a error message. Let's try to run the
 script with the encoder task as a source file, just to get an error. Also specify a bogus
 deployment to get another error
 $ ruby /Applications/Episode.app/Contents/MacOS/engine/API/CLI/SubmitWorkflowWaitExit.rb
 ws -e encoder.epitask -f source.mov encoder.epitask -d output/ /Bogus/
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

174
 Output:
 Task "Bogus" failed: "Failed to list /Bogus (No such file or directory)"
 Task "encoder" failed: "initialization failed (no importer found)"
 $

 To be able to get the status or to enable post-submission (run-time) control of the
 workflow(s) we submit, we need to get some ID or IDs back from the submission command.
 Options --id-out, --ids-out, and --monitor-id-out are used for that purpose, just as the
 previous example script does. More examples of this in following sections.

Getting status
==============

 Status can be retrieved for individual tasks or for workflows. Querying status for tasks
 makes it possible to get very detailed information while querying workflow status is very
 efficient and only the actual status can be queried. Before showing examples of integration
 usage, let's look at the human readble status of the CLI, or "visual" status as the options
 are called.

 We have used these options in previous examples but let's try it again. We begin with just
 using the option --visual (or -v for short) to the status tasks command (or st for short)
 $ episodectl.exe st -v

 This gives status for all tasks in "active" workflows, i.e. non-finished or "non-historized"
 workflows (which probably is just empty if trying now). The command by default uses the
 option --all if no IDs are specified. To be able to also see historized workflow's tasks, we
 must use the argument history to option --all, let's try that
 $ episodectl.exe st --all history -v

 Now, if previous examples were tested, within the last hour, it should give a decent list of
 tasks.

 Why within the last hour?

 When the ClientProxy is contacting a Node (submitting to, getting status from, etc.)
 it checks if it already have a open connection to that target and if it has, it also
 has that Node's information cached. If it does not have a open connection to the
 target Node, it will create one. When the connection to the target Node is open and
 active, all updates are broadcasted by the Node to each connected ClientProxy so the
 ClientProxy always has correct information to respond with to the CLI or to the
 XMLRPC server. The Node does not keep any history in memory, it only saves history
 to disk (if configured to save history at all), while the ClientProxy keeps history
 in memory for the configured history-keep-time amount of seconds, which default is
 3600, or one hour.

 There is one more configurable time in the ClientProxy, a connection-keep-time. This
 time is also default 3600 seconds. When a connection times out, the saved history
 for it will also go away and therefore, the history-keep-time shold not be
 configured to be longer than the connection-keep-time. Both times are reset whenever
 there is a request on it from either the CLI, GUI, or XMLRPC server.

 There is a option that can be used together with the visual status to get a continuous
Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

175
 status feedback with updates, option --wait (or -w for short), for example
 $ episodectl.exe st --all history -w -v
 $ episodectl.exe st -wv

 To get the best total status overview of Episode is to open two Terminal windows, resize
 them so they share the full screen horizontally (i.e. splits the screen vertically) and in
 the left window, run
 $ episodectl.exe st --all -wv

 ...and in the right window, run
 $ episodectl.exe st --all history-only -wv

 If you are on OS X, there is a example Apple script that sets up two Terminal windows with
 nice Episode-colors, fonts etc. and executes the above commands in them. It also pops up a
 list of clusters on the network for you to choose from. Open the script up in "AppleScript
 Editor" (which is default)
 $ open /Applications/Episode.app/Contents/MacOS/engine/API/Apple/StatusTerminal.scpt

 Then hit the "Run" button to test it. Notice that you can save it as a "Application" so you can
 double-click it later.

 Here is a example script that pretends that a couple of source files are submitted together
 with a workflow. If any of the source files (any spawned workflow) fails, then all of the
 rest are aborted. The script requests the template workflow ID and polls status with that ID
 until it succeeds or fails. The script first passes all arguments to episodectl, so let's do
 a submission
 $ ruby
 /Applications/Episode.app/Contents/MacOS/engine/API/CLI/PollTemplateStatusAbortOnFailure.rb
 ws -e encoder.epitask -d output/ -f source.mov source.mov

 Example output successful run:
 Idle at the moment...
 Running...
 Running...
 Running...
 Running...
 Running...
 Running...
 Running...
 Idle at the moment...
 Running...
 All finished successfully
 $

 Example output non-successful run:
 Idle at the moment...
 Running...
 Something failed, aborting
 $

 The next example script uses status tasks command to kind of mimic the CLI's visual status
 output
 $ ruby /Applications/Episode.app/Contents/MacOS/engine/API/CLI/StatusTasks.rb

 Example output:
 Filename Task Name Task Type Priority
 Episode 6.5

Using the Command Line Interface
Using the CLI Interpreter

176
 Status Message

 --

 clip1.mov encoder Encode 5
 [==================] Running
 clip1.mov output Transfer 5
 Idle Waiting for...o transfer
 clip2.mov encoder Encode 5
 [=============] Running
 clip2.mov output Transfer 5
 Idle Waiting for...o transfer
 clip3.mov encoder Encode 5
 [------------------] Running
 clip3.mov output Transfer 5
 Idle Waiting for...o transfer
 clip4.mov encoder Encode 2
 [----------------] Running
 clip4.mov output Transfer 2
 Idle Waiting for...o transfer
 clip5.mov output Transfer 2
 Idle Waiting for...o transfer
 clip5.mov encoder Encode 2
 [------------] Running
 clip6.mov output Transfer 0
 Idle Waiting for...o transfer
 clip6.mov encoder Encode 0
 Queued No free Enc... available
 clip7.mov output Transfer 0
 Idle Waiting for...o transfer
 clip7.mov encoder Encode 0
 Queued No free Enc... available
 $
Episode 6.5

177
Using the XML-RPC
Interface
This chapter describes Episode’s XML-RPC interface.

The following topics are covered:

■ Overview

■ Restart the XML-RPC Service

■ Communicating with Episode via the XML-RPC API

■ Overview of XML-RPC File Structure

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well. For license requirements, see XML-RPC and CLI License
Requirements.
 Episode 6.5

Using the XML-RPC Interface
Overview

178
Overview
The XML-RPC server is enabled by default and ready to use as a server for external
integration. On its host node, however, it is a client to the Episode system and has
the same role as the GUI client.

In the XML-RPC server, users may target nodes other than the local node—
providing multiple ways to use the server to target other Episode nodes/clusters.

Episode uses Bonjour to find the XML-RPC servers and relate them to cluster and
nodes, and targets different XML-RPC servers when targeting different clusters/
nodes. This means that any cluster or private node having an active XML-RPC server
is reachable.

Alternatively, you can use an XML-RPC server as the proxy for all calls to any Episode
cluster. This XML-RPC server can run locally on the client (as long as Episode has
been installed), on a dedicated server or on another server in one of the clusters
that has been configured.

When sending method calls to the XML-RPC server, you can specify target-node-info
to target clusters other than the local cluster/node where the XML-RPC server is
running. In this case the XML-RPC server will only be able to target clusters and the
local node, not other private nodes. This approach is easier from an
implementation standpoint and may be the most intuitive way of starting XML-RPC
interaction with Episode. All traffic will be routed through this server and if the
integration is sensitive to network load or if the system relies on dedicated network
setups for different clusters this option is probably not the best approach.
Episode 6.5

Using the XML-RPC Interface
Restart the XML-RPC Service

179
Restart the XML-RPC Service
If you should need to do so, you can restart the XML-RPC service using the Episode
command line interface. To restart the service, open a terminal window (MacOS), or
a command prompt window (Windows), and run the following command:

[MacOS]: /Applications/Episode.app/Contents/Resources/engine/bin/episodectl
launch restart -x

[Windows 32-bit]: C:\Program Files\Telestream\Episode6\bin\episodectl launch
restart -x

[Windows 64-bit]: C:\Program Files (x86)\Telestream\Episode6\bin\episodectl
launch restart -x

Communicating with Episode via the XML-RPC API
To communicate with Episode via the XML-RPC API, you need to use an XML-RPC
client library in your program.

The library you choose depends on (among other things), the language you’re
using to write your client programs.

XML-RPC libraries handle low-level HTTP request/response communications with
the Episode XML-RPC server, and package method calls and returns into
standardized XML-RPC message structures so they can be easily integrated with
your program, in the language of your choice.

If you are not familiar with developing XML-RPC-based client programs, please see
http://www.xmlrpc.com for information on the XML-RPC standard.

The following XML-RPC client libraries have been tested with Episode:

• Redstone XML-RPC Library: http://xmlrpc.sourceforge.net/

– Language: Java

– Platform: N/A (Independent)

– License: LGPL

• Cocoa XML-RPC Framework: http://github.com/corristo/xmlrpc

– Language: Objective C

– Platform: MacOS, iOS

– License: MIT

• XML-RPC.NET: http://www.xml-rpc.net/

– Language: .NET

– Platform: Microsoft Windows

– License: MIT X11
Episode 6.5

http://www.xmlrpc.com
http://xmlrpc.sourceforge.net/
http://github.com/corristo/xmlrpc
http://xmlrpc.sourceforge.net/

Using the XML-RPC Interface
Overview of XML-RPC File Structure

180
Overview of XML-RPC File Structure
Episode XML-RPC API files use the elements described in this section.

Note: Other files may be referenced to define complex parameter structures as
specified by an inherit attribute. These parameters expect a data structure that is
defined in another constraint XML as their value. The name of the XML containing
the constraint definition for these values is cited in a comment above the
parameter’s constraint tag.

Example
Each XML-RPC method is defined by a command element. The child nodes of the
command element define the method's parameter and return structures. This
structure consists of the following element hierarchy:

Figure 12. Typical XML-RPC method <command> element
<command ... <!-- The method --> >
<send> <!-- The parameters -->
<constraint ... >
...

</constraint>
...

</send>
<reply> <!-- The returns -->
<constraint ... >
...

</constraint>
</reply>

...
</command>
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

181
High-level Element Definitions
<command>: Defines a method.

Elements
<name>: The internal Episode method namespace

<send>: Defines the method's parameter structure

<constraint>: Defines a single key/value pair argument (hash map)

Attributes
property-name: Argument key

compact: Argument value data type

inherit: Argument value's inherited data type for complex data types

optional: Signifies whether or not this argument is required

<reply>: Defines method's return structure (hash map)

<option>: Defines one possible set of key-value pairs in an exclusive set

<constraint>: See above
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

182
Commands and Constraints
Command name attributes specify the internal method in the Episode namespace.
The public XML-RPC method names are not the same. The public name is also the
value of the <XMLRPC> element in command_doc.xml.

Method parameter and return structures always have an XML-RPC hash map (called
a <struct> element) as their top level element. This <struct> element contains a set
of key/value pairs that adhere to the constraint definitions for that method.

Constraints define the keys that will or can be present in the map, as well as the
expected data type of their values. Complex value structures can be defined either
using a multi-level 'compact' attribute, or using an 'inherit' attribute. See Data
Types for more details.

Special Cases
There are a few special cases with optional constraints and the 'target-node-info'
constraint. This parameter and 2 of its nested values are invisibly optional, even
though they do not specify an optional attribute.

For any command that accepts the 'target-node-info' complex data structure
parameter, it can always be omitted. If omitted, the Client Proxy service will always
direct the call to the local host.

Also, when building a target-node-info structure, the iid and persistent values in the
target-node-info map can also be omitted. These values are used by Episode
internally, and suitable defaults will be generated automatically if they are omitted.

For an example of the 'target-node-info' argument structure, see the Inherited
complex data structures section.

Option Sets
<option> element sets can be found in both parameter and return structure
definitions. These elements imply that only one of the structures in that set of
<option> elements can or will be present.

Some definitions combine option sets with standard constraints.

An example of this can be found in the <reply> from the proxy.process.log.get
command:

Figure 13. Constraint definition using option sets
<reply>
<!-- Common options for all entities -->
<constraint property-name="error" compact="type:string"

optional="yes"/>
<constraint property-name="log-to-file" compact="type:bool"

optional="yes"/>
<constraint property-name="log-to-file-report-verbosity"

compact="range:int(0..7)" optional="yes"/>
<option>
<!-- Options for node|xmlrpc|io|proxy|assistant -->
<constraint property-name="system-log" compact="type:bool"
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

183
optional="yes"/>
<constraint property-name="system-log-report-verbosity"

compact="range:int(0..7)" optional="yes"/>
<constraint property-name="log-directory"

compact="type:string" optional="yes"/>
<constraint property-name="stdout-stderr-re-direct"

compact="type:bool" optional="yes"/>
<constraint property-name="rotation-max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="rotation-max-size"

compact="range:int(1024..)" optional="yes"/>
</option>
<option>
<!-- Options for watch folders -->
<constraint property-name="rotation-max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="rotation-max-size"

compact="range:int(1024..)" optional="yes"/>
</option>
<option>
<!-- Options for tasks -->
<constraint property-name="max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="clean-interval"

compact="range:int(5..604800)" optional="yes"/>
</option>

</reply>

In this example, the three constraints at the top of the reply (error, log-to-file, and
log-to-file-report-verbosity) are not part of the option set. The presence of these
constraints follows the same rules as constraints in any other <send> or <reply>
block. However, only one of the value sets contained in the following 4 <option>
blocks can be present.

This means that in a <struct> returned from this method, the error, log-to-file, and
log-to-file-report-verbosity keys could always be present. However, if the rotation-
max-files key was also present, the only other key that could exist in the map would
be rotation-max-size (because it is defined in the same <option> block as rotation-
max-files). Any keys defined in other options blocks would not be allowed in this
return.
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

184
Tag Name Mappings
The tag names used to define data structures in the constraint definitions can
usually be directly mapped to XML-RPC message structure tags as follows:

Constraint tags: <send>, <reply>, <db>, <dbmv>.
<dbmv> is a unique case. See below for details.
XML-RPC message element: <struct> (hash map)

Constraint tag: <list>
XML-RPC message element: <array>

See Primitive Data Types for mappings of primitive data types as values.

Note: <dbmv> is a unique <struct> definition used in returns. These <struct>
elements use a variable keyset, rather than a fixed keyset defined by constraints. In
these cases, both the key, and its value contain data that is part of the return.
Unless you obtained the key for which you are looking for a value in one of these
<struct> elements in a previous call, you will need to iterate the pairs to retrieve
the desired data, rather than specifying a key to lookup in the map.

An example of this can be seen in the clusters constraint for the return from the
proxy.network.info.bonjour command:

Figure 14. Constraint definition using <dbmv> tags
<constraint property-name="clusters">
<dbmv> <!-- key is cluster name -->
<list>
<db>
constraint property-name="host" compact="type:string"/>
<constraint property-name="host-IPv4"
compact="type:string"/>

<constraint property-name="host-IPv6"
compact="type:string" optional="yes"/>

<constraint property-name="port" compact="type:string"/>
<constraint property-name="os" compact="type:string"/>
<constraint property-name="id" compact="type:string"/>
<constraint property-name="is-master"
compact="type:bool"/>

<constraint property-name="is-backup"
compact="type:bool"/>

<constraint property-name="num-nodes" compact="type:int"/>
<constraint property-name="tsp-compatible"
compact="type:bool"/>

</db>
</list>

</dbmv>
</constraint>

In this case, the key for each pair in the returned <struct> is the cluster name string,
and the value is an <array> of <struct> elements containing the system
information values for each system in that cluster, as defined by the constraints. All
usages of the <dbmv> element should be commented to specify the data that will
be returned as the map's keyset.
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

185
Data Types
The data type of the values expected/returned by a parameter are defined in one of
four ways:

• A compact attribute denoting a primitive data type

• A compact attribute denoting a complex data structure

• An inherit attribute denoting an inherited complex data type

• In-place in the XML as child nodes of the constraint element
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

186
Primitive Data Types
Primitive data types, like constraint child tags, can be directly translated to native
XML-RPC data types and message elements. Below is a list of the compact attribute
values for primitive data types, and mappings to their XML-RPC counterparts.

Note: Episode’s implementation of the XML-RPC server does not surround string
values with <string> tags. The server will accept message with or without <string>
tags around these values, but your client must be compatible with this message
structure in order to properly communicate with the server.

In-place Complex Data Structure Definitions
Many constraints use in place definitions for complex data structure values. These
structures are defined by a series of child nodes under the constraint element.
These XML tag names can be directly translated to XML-RPC message elements
using the mappings defined in Tag Name Mappings.

Here is an example of an in-place complex data structure definition:

Figure 15. Typical in-place complex data structure element
<constraint property-name="task-username-tags" optional="yes">
<list>
<db>
<!-- This should be a user defined task name -->
<constraint property-name="name" compact="type:string"/>
<!-- The tag to set as a run requirement for the task -->
<constraint property-name="tag" compact="type:string"/>
<!-- This optional property indicates if the task should
run or should NOT run on the specified tag (if the tag is
present on the Node). The default is run (true). -->

<constraint property-name="run" compact="type:bool"
optional="yes"/>

</db>
</list>

</constraint>

Using the information in the mappings section, we can build the XML-RPC message
structure that would be sent for this parameter under the top level struct, adhering
to this constraint definition:

Table 9. Primitive data types in CLI and XML-RPC

XML-RPC Data Type CLI Tag Name XML-RPC Element

bool Boolean <boolean>

integer Integer <i4>

string String <string>

binary Base 64 encoded <base64>
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

187
Figure 16. XML-RPC argument structure
...
<member>
<name>user-name-tags</name>
<value>
<array>
<data>
<value>
<struct>
<member>
<name>name</name>
<value>
<string>Task Name</string>

</value>
</member>
<member>
<name>tag</name>
<value>
<string>sometag</string>

</value>
</member>
<member>
<name>run</name>

<value>
<Boolean>1</Boolean>

</member>
</struct>

</value>
</data>

<array>
</value>

</member>
...
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

188
Complex Data Structure Compacts
A compact can also specify a multi-level complex data structure. These compact
values use a combination of constraint child node tag names, and primitive data
type identifiers to specify a complex structure.

Here is an example of a complex compact value, and its translation to an XML-RPC
message:

compact="type:list(type:string)"

This compact specifies a value consisting of a list of strings. We know that a list
maps to an XML-RPC <array>, so the XML-RPC value structure for this argument
would look something like this:

Figure 17. XML-RPC structure of a multi-level compact
<array>
<data>
<value>
<string>Some String</string>

</value>
...

</data>
</array>
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

189
Inherited Complex Data Structures
Some constraints do not have a 'compact' attribute, but instead use an 'inherit'
attribute. The inherit attribute denotes that this constraint expects a complex data
structure for its value that is defined elsewhere. Constraints using an 'inherit'
attribute should be commented with the location of the constraint definition for
that complex structure.

We can see an example of this with the "target-node-info" constraint that is used by
many of the commands:

Figure 18. Example of constraint using target-node-info data type
...
<!-- Info about target node to submit to - default localhost see
proxy-constraints.xml for description of target node info
structure -->
<constraint property-name="target-node-info"

inherit="target-node-info"/>
...

Following the XML comment, we can find the definition of the target-node-info
structure in 'proxy-constraints.xml':

Figure 19. Definition of target-node-info constraint
...
<constraint property-name="target-node-info">
<db>
<constraint property-name="persistent"

compact="type:bool"/>
<constraint property-name="iid" compact="type:string"/>
<!-- If neither host/port nor cluster is specified, the

local node is used regardless of its state. If it's a cluster
participant, get redirected to the master node. -->

<constraint property-name="host" compact="type:string"
optional="yes"/>

<!-- If no port is specified, the default port is used -->
<constraint property-name="port" compact="type:string"

optional="yes"/>
<!-- Try to find a node using bonjour -->
<constraint property-name="cluster-name"

compact="type:string" optional="yes"/>
<constraint property-name="timeout" compact="type:int"

optional="yes"/>
</db>

</constraint>
...

From here, we can treat any constraint specifying an 'inherit="target-node-info"'
attribute as if it had an in-place complex data structure definition that matches that
of the target-node-info constraint specified in another file.
Episode 6.5

Using the XML-RPC Interface
Overview of XML-RPC File Structure

190
Episode 6.5

191
Using the JSON-RPC
Interface
This chapter describes Episode’s JSON-RPC interface for direct programmatic control
of the Episode feature set.

The following topics are covered:

■ Overview

■ JSON-RPC File Structure

■ Program Examples

■ Demo Web Page with Job Monitoring
 Episode 6.5

Using the JSON-RPC Interface
Overview

192
Overview
The JSON-RPC interface is enabled by default and ready to use for external
integration of Episode to other systems and software.

• The Episode JSON service starts on default port 8080.

• Available Episode JSON-RPC commands are essentially the same as the XML-RPC
commands described in the chapter on Using the XML-RPC Interface.

JSON Basics
The JSON-RPC service conforms to JSON-RPC 2.0 Transport: HTTP. JSON, which
stands for JavaScript Object Notation, provides a human readable data-interchange
format for querying and controlling Episode. JSON uses a text format based on the
JavaScript Programming Language. Although JSON is language independent, it
follows conventions similar to the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and others.

JSON employs two main data structures: objects and arrays.

Objects follow these conventions:

• Consist of an unordered list of name and value pairs.

• Begin with a left brace ({) and end with a right brace (}).

• Include a colon after each name (:).

• Separate name/value pairs with a comma (,).

Arrays follow these conventions:

• Comprise ordered collections of values.

• Begin with a left bracket ([) and end with a right bracket (]).

• Separate values by a comma (,).

Values can consist of a string in double quotes, a number, a true or false or null, an
object, or an array. Nested values are permitted.

A string consists of a sequence of Unicode characters in double quotes, using
backslash escapes. A character is represented as a single character string.

A number is very much like a C or Java number, except that the octal and
hexadecimal formats are not used.

You can add whitespace between any pair of tokens.

For more information about the JSON standard, visit these web sites:

http://www.jsonrpc.org/

http://www.simple-is-better.org/json-rpc/transport_http.html
Episode 6.5

http://www.jsonrpc.org/
http://www.simple-is-better.org/json-rpc/transport_http.html

Using the JSON-RPC Interface
JSON-RPC File Structure

193
Programming Languages and Libraries
You can choose from many popular programming languages to work with the
JSON-RPC API. To communicate with Episode via the JSON-RPC API, you will need
to use a JSON-RPC client library in your program. The JSON web site includes lists of
many available libraries:

http://www.jsonrpc.org/

JSON-RPC libraries handle low-level HTTP request/response communications with
the Episode JSON-RPC service and package method calls and returns into
standardized JSON-RPC message structures so they can be easily integrated with
your program, in the language of your choice.

JSON-RPC File Structure
Episode JSON-RPC API files use the elements shown in the following definitions
and examples. Also see the XML-RPC chapter for command descriptions.

High-level Element Definitions
The elements present in requests and responses are described below.

Note that every request must be made using the HTTP POST method with Content-
Type set to application/json.

Request Elements
POST / HTTP/1.1: HTTP method required at the start of every request.

Host: Episode JSON-RPC server host address and port, such as localhost or
127.0.0.1.

Content-Length: Number of bytes in the content request/response.

Content-Type: application/json

Request Message: Described in the next topic below.

JSON Request Message Structure
Request Message: Includes a request, ID, and parameters in this pattern:
{"jsonrpc":"2.0","method":"request","id":number,"params":{param}}

"jsonrpc": Always set to "2.0",

"method": Identifies the desired method to execute.

"id": Set to a unique id string or integer. If omitted, the request is treated as a
notification and the server response is also omitted.

"params": Include any method parameters.
Episode 6.5

http://www.jsonrpc.org/

Using the JSON-RPC Interface
JSON-RPC File Structure

194
Response Elements
HTTP/1.1 200 OK: Response method and status—OK or error message.

Server: EpisodeJSONRPCServer identifies the responding service.

Connection: Status of the server connection.

Access-Control-Allow-Origin: Used by the client to enable cross-site HTTP
requests. Asterisk (*) tells the client that is possible to access the server from any
domain.

Access-Control-Allow-Headers: Indicates headers the Episode JSON service will
accept.

Allow: Indicates methods the Episode JSON service will accept.

Content-Type: application/json; charset=UTF-8.

Content-Length: Number of characters in the response.

Response Message: Described in the next topic below.

JSON Response Message Structure
Response Message: Includes the request ID, the JSON version, and additional data
in this format: {"id": 1, "jsonrpc": "2.0", "result": {"API": 2, "product": "6.5.0" } }

"id": Same unique id string or integer used in the request. If omitted in the request,
the server omits it in the response also.

"jsonrpc": Always set to "2.0",

"result": Contains the method response. Present only if no error occurred.

"error": Contains an error object. Present only if an error occurred.
Episode 6.5

Using the JSON-RPC Interface
JSON-RPC File Structure

195
Example Requests with HTTP Headers and Responses
Each JSON-RPC method is defined by the structure shown in these examples:

Example getVersion
POST / HTTP/1.1
Host: localhost:8080
Content-Length: 58
Content-Type: application/json
{"jsonrpc":"2.0","method":"getVersion","id":1,"params":{}}

Response:
HTTP/1.1 200 OK
Server: EpisodeJSONRPCServer
Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,
Content-Type, Accept
Allow: OPTION, POST
Content-Type: application/json; charset=UTF-8
Content-Length: 71
{"id": 1, "jsonrpc": "2.0", "result": {"API": 2, "product":
"6.5.0" } }

Example statusTasks2 with params
POST / HTTP/1.1
Host: localhost:8080
Content-Length: 74
Content-Type: application/json

{"jsonrpc":"2.0","method":"statusTasks2","id":3,"params":{"hist
ory":true}}

Response:
HTTP/1.1 200 OK
Server: EpisodeJSONRPCServer
Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,
Content-Type, Accept
Allow: OPTION, POST
Content-Type: application/json; charset=UTF-8
Content-Length: 5006

{"id": 3, "jsonrpc": "2.0", "result": {"statuses": {"WOFL-
5DA24888-9AA5-406..
Episode 6.5

Using the JSON-RPC Interface
Program Examples

196
Program Examples
The following examples show test files created using the Ruby scripting language.

To run a Ruby script you will need to get Ruby from www.ruby.org.

Example Class for HTTP Calls—jsonrpc.rb file
The following jsonrpc.rb file is a small example JSON-RPC wrapper.

require 'net/http'
require 'json'

A class used to make JSONRPC calls over HTTP
class JSONRPC

 # Used to send a command on the server
 # string url for server
 # string method with server method
 # hash with params server parameters
 def self.call(url, method, params, id)
 @toSend = {
 "jsonrpc" => "2.0",
 "id" => id,
 "method" => method,
 "params" => params
 }.to_json
 return self.raw_post(url, @toSend)
 end

 # Used to execute a command on the server
 # string url for server
 # string method with server method
 # hash with params server parameters
 def self.notification(url, method, params)
 @toSend = {
 "jsonrpc" => "2.0",
 "method" => method,
 "params" => params
 }.to_json
 return self.raw_post(url, @toSend)
 end

 # Used to make raw json posts
 # string url for server
 # string json with arguments
 def self.raw_post(url, json)
 uri = URI.parse(url)
 http = Net::HTTP.new(uri.host, uri.port)
 req = Net::HTTP::Post.new(uri.path, initheader = {'Content-Type' =>'application/json'})
 req.body = json
 resp = http.request(req)
 return resp
 end

end
Episode 6.5

http://www.ruby.org

Using the JSON-RPC Interface
Program Examples

197
Example Test Version—jsonTestVersion.rb file
require "test/unit"
require 'net/http'
require 'pp'
require 'json'
require_relative 'jsonrpc'

class TestJSONVersion < Test::Unit::TestCase
 def setup

 end

 # Test case
 def test_version
 # Request id any identifier
 id = 1;

 # Make request url, method, params, id
 raw_response = JSONRPC.call("http://localhost:8080/", "getVersion", {}, id)

 # Parse json
 response = JSON.parse(raw_response.body)

 # Use pp to print response, uncomment line below
 # pp response

 # check if reply is ok
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("result"), "No result present in response")
 end

 # An error occurred on the server while parsing the JSON text.
 # -32600 Invalid Request The JSON sent is not a valid Request object.
 # -32603 Internal error Internal JSON-RPC error.
 # -32000 to -32099 Server error Reserved for implementation-defined server-errors.
 # -32601 Method not found The method does not exist / is not available.
 def test_bugus
 id = "string id";
 res = JSONRPC.call("http://localhost:8080/", "dummyMethod", {}, id)
 response = JSON.parse(res.body)
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("error"), "No error present in response")
 assert_equal(-32601, response['error']['code'], "Expected error code -32601")
 end

 # -32700 Parse error Invalid JSON was received by the server.
 def test_parse_error
 res = JSONRPC.raw_post("http://localhost:8080/", "{{{\"d\":[ososososososos], lpldpdl plp lpl
pldp lpdlp{{not valid json pp}}")
 response = JSON.parse(res.body)
 assert_equal(-32700, response['error']['code'], "Expected error code -32700")
 end

 def test_notification
 res = JSONRPC.notification("http://localhost:8080/", "getVersion", {})
 assert_equal(nil, res.body, "Expected empty response on notification")
 end

 def teardown
 #void
 end

end
Episode 6.5

Using the JSON-RPC Interface
Program Examples

198
Example Test Status Tasks2—jsonTestStatusTasks2.rb file
require "test/unit"
require 'net/http'
require 'pp'
require 'json'
require_relative 'jsonrpc'

class TestJSONStatusTasks2 < Test::Unit::TestCase
 def setup

 end

 # Test case
 def test_basic_statustasks2
 # Request id any identifier (string or number)
 id = 2;

 # Make request url, method, params, id
 raw_response = JSONRPC.call("http://localhost:8080/", "statusTasks2", {"history" => true}, id)

 # Parse json
 response = JSON.parse(raw_response.body)

 # Use pp to print response, uncomment line below
 # pp response

 # check if reply is ok
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("result"), "No result present in response")
 assert(response["result"].has_key?("statuses"), "No statuses present in result")
 end

 def teardown
 #void
 end

end
Episode 6.5

Using the JSON-RPC Interface
Demo Web Page with Job Monitoring

199
Demo Web Page with Job Monitoring
The JSON interface includes a Demo.html web page that provides a functioning job
status monitoring feature.

To access the page:

1. Navigate to this location:

– Mac: Applications/Episode.app/Contents/Resources/engine/API/JSONRPC/
HTML/demo.html

– Win: C:\Program Files\Telestream\Episode 6\API\JSONRPC\HTML\demo.html

2. Double-click the HTML file to open the Demo page in your default browser.

3. Enter the server address of your Episode installation.

4. Select a node from the Episode nodes listed in the Available nodes menu.

5. Click Connect to view the job status list.

Figure 20. Job Monitoring on the Demo Web Page
Episode 6.5

Using the JSON-RPC Interface
Demo Web Page with Job Monitoring

200
Episode 6.5

201
Index
Symbols
.epitask files 38, 41

A
advanced clustering 50
advanced features, using, generally 46
Apple HLS Streaming 46
Assistant process, generally 27

B
backend processes, configuring 29
backend processes, managing (MacOS X) 28
backend processes, managing (Windows) 28
Bonjour Lookup, setting to No 54
Bonjour, avoiding use of 53

C
CLI

MBR task fails-no available license feature 22
CLI help, displaying 63
CLI help, writing to text file 63
CLI interpreter, starting on MacOS X 60
CLI interpreter, starting on Windows 58
CLI interpreter, using, generally 62
CLI, license requirements for 22
CLI, starting 58
ClientProxy process, generally 27
clustering, advanced 50
Cocoa XML-RPC Framework 179
command line interface, generally 24
communicating with the XML-RPC API 179
complex data structure compacts 188

complex data structure definitions 186
copyright notice 2
creating sources 41
creating tasks 38
creating workflows and submissions 42

D
data types, XML-RPC 185
Demo Web Page 199

E
Edit Decision List (EDL) as input 46
Email Notification task 47
Episode Control, starting on MacOS X 60
Episode Control, starting on Windows 59
Episode processes, generally 28
Episode services, starting on MacOS X 60
Episode services, starting on Windows 58
Episode, architecture of 25
Episode, determining if running 61
Ethernet interface, using specific 53
Execute task 47

I
image sequence, using as input 46
inherited complex data structures 189
IOServer process, generally 27

J
Job Monitoring Web Page 199
JSON-RPC Basics 192
JSON-RPC Element Definitions 193
 Episode 6.5

Index202
JSON-RPC Example Requests 195
JSON-RPC File Structure 193
JSON-RPC Interface 191
JSON-RPC libraries 193
JSON-RPC Overview 192
JSON-RPC Program Examples 196

L
License requirements for CLI and XML-RPC 22

M
MacOS X, starting CLI interpreter on 60
MacOS X, starting Episode services on 60
MBR task fails-no available license feature 22
Microsoft Smooth Streaming 46
MPEG disclaimers 9
Multi-bitrate task fails-no available license

feature 22

N
named storage 55
node, generally 26
notices, legal, generally 2

O
Overview, JSON-RPC 192

P
post-deployment tasks, generally 33
primitive data types, translating to XML-RPC data

types 186
priority, setting on a task 40

R
Redstone XML-RPC Library 179

S
shared storage 54
sources, creating 41
sources, generally 32
starting Episode services on MacOS X 60
starting Episode services on Windows 58
starting the CLI interpreter (MacOS X) 60
starting the CLI interpreter (Windows) 58
support, obtaining 17

T
tag name mappings to XML-RPC message struc-

ture tags 184
tags, displaying in CLI 62
tags, generally 35
tasks, creating 38
tasks, generally 31
tasks, setting priority 40
tech support, obtaining 17
Telestream

contacting 11
information about 17
International 17
mailing address 17
sales and marketing 17
technical support 17
Web site 17

trademark notices 2

V
variables, displaying in CLI 62
variables, generally 34

W
warranty 10
Warranty and Disclaimers 10
watch 26
watch folder and deployment interface 23
Windows, starting CLI interpreter on 58
Windows, starting Episode services on 58
worker, generally 26
workflows and submissions, creating 42
workflows, generally 30

X
XML-RPC API, communicating with 179
XML-RPC data types 185
XML-RPC interface, generally 24
XML-RPC Overview 180
XML-RPC, license requirements for 22
XML-RPC.NET 179
Episode 6.5

	Episode 6.5 Advanced User Guide
	Copyrights and Trademark Notices
	Third Party Library Notices
	Limited Warranty and Disclaimers

	Contents
	Episode 6.5 Advanced User Guide 1
	Preface 17
	Episode Overview 21
	Creating Tasks, Sources, Workflows & Submissions 37
	Using Advanced Features 45
	Using the Command Line Interface 57
	Using the XML-RPC Interface 177
	Using the JSON-RPC Interface 191

	Preface
	Support | Information | Assistance
	Company and Product Information
	Mail
	International Telestream Distributors
	We'd Like to Hear From You!

	Audience and Assumptions
	How this Guide is Organized
	Episode Overview

	Episode Overview
	XML-RPC and CLI License Requirements
	Episode Interfaces
	Watch Folder and Deployment Interface
	XML-RPC and CLI Interfaces
	XML-RPC Interface
	Command Line Interface

	Episode Architecture
	Node
	Worker
	Watch
	IOServer
	Assistant
	ClientProxy

	Episode Processes
	Managing Back-end Processes (MacOS)
	Managing Back-end Processes (Windows)
	Back-end Process Configuration

	Episode Concepts and Components
	Workflows, Tasks, and Sources
	Workflows
	Tasks
	Sources
	Post-deployment Processing Tasks

	Variables
	Episode Tags

	Creating Tasks, Sources, Workflows & Submissions
	Creating Tasks
	Setting Task Priority
	XML-RPC and CLI Priority Commands

	Creating Sources
	Creating Workflows and Submissions

	Using Advanced Features
	Advanced Features
	Advanced Sources
	Advanced Encoding
	Advanced Post-Deployment Tasks

	Advanced Clustering
	Clustering Configuration
	Avoiding Bonjour
	Using a Specific Ethernet Interface
	Setting Bonjour IP Lookup to No

	Shared Storage
	Named Storage
	Named Storage Simple Example
	Named Storage Cluster Example

	Using the Command Line Interface
	Starting the CLI Interpreter [Windows]
	Starting Episode Services
	Other Alternatives

	Starting Episode Control

	Starting the CLI Interpreter [MacOS]
	Starting Episode Services
	Other Alternatives

	Starting Episode Control

	Determining if Episode is Running
	Using the CLI Interpreter
	Executing Commands
	Return Codes

	Displaying Episode Variables
	Displaying Episode Tags
	Executing Commands to a Cluster
	Displaying CLI Help
	Help Command Syntax

	Writing Help to a Text File
	Episode 6.5 CLI Listing

	Using the XML-RPC Interface
	Overview
	Restart the XML-RPC Service
	Communicating with Episode via the XML-RPC API
	Overview of XML-RPC File Structure
	Example
	High-level Element Definitions
	Commands and Constraints
	Tag Name Mappings
	Data Types
	Primitive Data Types
	In-place Complex Data Structure Definitions
	Complex Data Structure Compacts
	Inherited Complex Data Structures

	Using the JSON-RPC Interface
	Overview
	JSON Basics
	Programming Languages and Libraries

	JSON-RPC File Structure
	High-level Element Definitions
	Request Elements
	JSON Request Message Structure
	Response Elements
	JSON Response Message Structure

	Example Requests with HTTP Headers and Responses
	Example getVersion
	Example statusTasks2 with params

	Program Examples
	Example Class for HTTP Calls—jsonrpc.rb file
	Example Test Version—jsonTestVersion.rb file
	Example Test Status Tasks2—jsonTestStatusTasks2.rb file

	Demo Web Page with Job Monitoring

	Index

