
Episode
Advanced User Guide
e 2017
 Episode 7.4 Advanced User Guide

 Advanced User Guide | 221533 Jun

Copyrights and Trademark Notices
Copyright © 2017 Telestream, LLC. All rights reserved worldwide. No part of this
publication may be reproduced, transmitted, transcribed, altered, or translated into any
languages without the written permission of Telestream. Information and
specifications in this document are subject to change without notice and do not
represent a commitment on the part of Telestream.

Telestream, CaptionMaker, Episode, Flip4Mac, FlipFactory, Flip Player, Lightspeed,
ScreenFlow, Switch, Vantage, Wirecast, Gameshow, GraphicsFactory, MetaFlip, and
Split-and-Stitch are registered trademarks and MacCaption, e-Captioning, Pipeline,
Post Producer, Tempo, TrafficManager, VidChecker, and VOD Producer are trademarks
of Telestream, LLC. All other trademarks are the property of their respective owners.

QuickTime, MacOS X, and Safari are trademarks of Apple, Inc. Bonjour, the Bonjour logo,
and the Bonjour symbol are trademarks of Apple, Inc.

MainConcept is a registered trademark of MainConcept LLC and MainConcept AG.
Copyright 2004 MainConcept Multimedia Technologies.

Microsoft, Windows 7 | 8 | Server 2008 | Server 2012, Media Player, Media Encoder, .Net,
Internet Explorer, SQL Server 2005 Express Edition, and Windows Media Technologies
are trademarks of Microsoft Corporation.

This product is manufactured by Telestream under license from Avid to pending patent
applications.

This product is manufactured by Telestream under license from VoiceAge Corporation

Dolby and the double-D symbol are registered trademarks of Dolby Laboratories.

Other brands, product names, and company names are trademarks of their respective
holders, and are used for identification purpose only.

3

Third Party Library Notices
The following notices are required by third party software and libraries used in Episode.
The software may have been modified by Telestream as permitted by the license or
permission to use the software.

X264

Episode includes software whose copyright is owned by, or licensed from, x264 LLC.

SharpSSH2

SharpSSH2 Copyright (c) 2008, Ryan Faircloth. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Diversified Sales and Service, Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SQLite

The SQLite website includes the following copyright notice: http://www.sqlite.org/
copyright.html. In part, this notice states:

Anyone is free to copy, modify, publish, use, compile, sell, or distribute the original
SQLite code, either in source code form or as a compiled binary, for any purpose, com-
mercial or non-commercial, and by any means.

Libxml2

Libxml2 by xmlsoft.org is the XML C parser and toolkit developed for the Gnome
project. The website refers to the Open Source Initiative website for the following

http://www.sqlite.org/copyright.html
http://www.sqlite.org/copyright.html

4

licensing notice for Libxml2: http://www.opensource.org/licenses/mit-license.html.
This notice states:

Copyright (c) 2011 xmlsoft.org

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

PCRE

The PCRE software library supplied by pcre.org includes the following license
statement:

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax and seman-
tics are as close as possible to those of the Perl 5 language. Release 8 of PCRE is distrib-
uted under the terms of the “BSD” licence, as specified below. The documentation for
PCRE, supplied in the “doc” directory, is distributed under the same terms as the soft-
ware itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2010 University of Cambridge. All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2010, Google Inc. All rights reserved.

http://www.opensource.org/licenses/mit-license.html

5

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the University of Cambridge nor the name of Google Inc. nor the
names of their contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

Boost C++ Libraries

The Boost C++ Libraries supplied by boost.org are licensed at the following Web site:
http://www.boost.org/users/license.html. The license reads as follows:

Boost Software License—Version 1.0—August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a
copy of the software and accompanying documentation covered by this license (the
“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all cop-
ies of the Software, in whole or in part, and all derivative works of the Software, unless
such copies or derivative works are solely in the form of machine-executable object
code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

http://www.boost.org/users/license.html

6

Libevent

The libevent software library supplied by monkey.org is licensed at the following
website: http://monkey.org/~provos/libevent/LICENSE. The license reads as follows:

Libevent is covered by a 3-clause BSD license. Below is an example. Individual files may
have different authors.

Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The FreeType Project

The FreeType Project libraries supplied by freetype.org are licensed at the following
website: http://www.freetype.org/FTL.TXT. The license reads in part as follows:

Copyright 1996-2002, 2006 by David Turner, Robert Wilhelm, and Werner Lemberg

We specifically permit and encourage the inclusion of this software, with or without
modifications, in commercial products. We disclaim all warranties covering The Free-
Type Project and assume no liability related to The FreeType Project.

 Finally, many people asked us for a preferred form for a credit/disclaimer to use in com-
pliance with this license. We thus encourage you to use the following text:

Portions of this software are copyright © 2011 The FreeType Project (www.free-
type.org). All rights reserved.

http://monkey.org/~provos/libevent/LICENSE
http://www.freetype.org/FTL.TXT
http://www.freetype.org
http://www.freetype.org

7

Samba

Samba code supplied by samba.org is licensed at the following website: http://
samba.org/samba/docs/GPL.html. The license is a GNU General Public License as
published by the Free Software Foundation and is also listed at this website: http://
www.gnu.org/licenses/. Because of the length of the license statement, the license
agreement is not repeated here.

Ogg Vorbis

The Ogg Vorbis software supplied by Xiph.org is licensed at the following website:
http://www.xiph.org/licenses/bsd/. The license reads as follows:

© 2011, Xiph.Org Foundation

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

•Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

•Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

•Neither the name of the Xiph.org Foundation nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

This software is provided by the copyright holders and contributors “as is” and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall the
foundation or contributors be liable for any direct, indirect, incidental, special, exem-
plary, or consequential damages (including, but not limited to, procurement of substi-
tute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (includ-
ing negligence or otherwise) arising in any way out of the use of this software, even if
advised of the possibility of such damage.

LibTIFF

The LibTIFF software library provided by libtiff.org is licensed at the following website:
www.libtiff.org/misc.html. The copyright and use permission statement reads as follows:

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation
for any purpose is hereby granted without fee, provided that (i) the above copyright
notices and this permission notice appear in all copies of the software and related doc-
umentation, and (ii) the names of Sam Leffler and Silicon Graphics may not be used in
any advertising or publicity relating to the software without the specific, prior written
permission of Sam Leffler and Silicon Graphics.

http://www.libtiff.org/misc.html
http://samba.org/samba/docs/GPL.html
http://samba.org/samba/docs/GPL.html
http://www.xiph.org/licenses/bsd/

8

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT
ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

zlib

The zlib.h general purpose compression library provided zlib.net is licensed at the
following website: http://www.zlib.net/zlib_license.html. The license reads as follows:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including com-
mercial applications, and to alter it and redistribute it freely, subject to the following
restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you
wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepre-
sented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly, Mark Adler

LAME

The LAME MPEG Audio Layer III (MP3) encoder software available at
lame.sourceforge.net is licensed under the GNU Lesser Public License (LGPL) at this
website www.gnu.org/copyleft/lesser.html and summarized by the LAME developers at
this website: lame.sourceforge.net/license.txt. The summary reads as follows:

Can I use LAME in my commercial program?

Yes, you can, under the restrictions of the LGPL. The easiest way to do this is to:

1. Link to LAME as separate library (libmp3lame.a on unix or lame_enc.dll on windows).

2. Fully acknowledge that you are using LAME, and give a link to our web site,
www.mp3dev.org.

3. If you make modifications to LAME, you *must* release these modifications back to
the LAME project, under the LGPL.

*** IMPORTANT NOTE ***

The decoding functions provided in LAME use a version of the mpglib decoding engine
which is under the GPL. They may not be used by any program not released under the
GPL unless you obtain such permission from the MPG123 project (www.mpg123.de).
(yes, we know MPG123 is currently under the LGPL, but we use an older version that

http://www.mpg123.de
http://www.gnu.org/copyleft/lesser.html
http://lame.sourceforge.net/license.txt
http://www.mp3dev.org

9

was released under the former license and, until someone tweaks the current MPG123
to suit some of LAME's specific needs, it'll continue being licensed under the GPL).

10
MPEG Disclaimers
MPEGLA MPEG2 Patent

ANY USE OF THIS PRODUCT IN ANY MANNER OTHER THAN PERSONAL USE THAT
COMPLIES WITH THE MPEG-2 STANDARD FOR ENCODING VIDEO INFORMATION FOR
PACKAGED MEDIA IS EXPRESSLY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE
PATENTS IN THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM
MPEG LA, LLC, 6312 S. Fiddlers Green circle, Suite 400E, Greenwood Village, Colorado
80111 U.S.A.

MPEGLA MPEG4 VISUAL

THIS PRODUCT IS LICENSED UNDER THE MPEG-4 VISUAL PATENT PORTFOLIO LICENSE
FOR THE PERSONAL AND NON-COMMERCIAL USE OF A CONSUMER FOR (i) ENCODING
VIDEO IN COMPLIANCE WITH THE MPEG-4 VISUAL STANDARD (“MPEG-4 VIDEO”) AND/
OR (ii) DECODING MPEG-4 VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A
PERSONAL AND NON-COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO
PROVIDER LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION INCLUDING THAT RELATING TO PROMOTIONAL, INTERNAL
AND COMMERCIAL USES AND LICENSING MAY BE OBTAINED FROM MPEG LA, LLC. SEE
HTTP://WWW.MPEGLA.COM.

MPEGLA AVC

THIS PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE
PERSONAL AND NON-COMMERCIAL USE OF A CONSUMER TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO
THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL AND NON-
COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED
TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY
OTHER USE. ADDITIONAL INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE
HTTP://WWW.MPEGLA.COM.

MPEG4 SYSTEMS

THIS PRODUCT IS LICENSED UNDER THE MPEG-4 SYSTEMS PATENT PORTFOLIO LICENSE
FOR ENCODING IN COMPLIANCE WITH THE MPEG-4 SYSTEMS STANDARD, EXCEPT THAT
AN ADDITIONAL LICENSE AND PAYMENT OF ROYALTIES ARE NECESSARY FOR
ENCODING IN CONNECTION WITH (i) DATA STORED OR REPLICATED IN PHYSICAL MEDIA
WHICH IS PAID FOR ON A TITLE BY TITLE BASIS AND/OR (ii) DATA WHICH IS PAID FOR ON
A TITLE BY TITLE BASIS AND IS TRANSMITTED TO AN END USER FOR PERMANENT
STORAGE AND/OR USE. SUCH ADDITIONAL LICENSE MAY BE OBTAINED FROM MPEG LA,
LLC. SEE <HTTP://WWW.MPEGLA.COM> FOR ADDITIONAL DETAILS.

HTTP://WWW.MPEGLA.COM
HTTP://WWW.MPEGLA.COM
HTTP://WWW.MPEGLA.COM

11
Limited Warranty and Disclaimers
Telestream, LLC (the Company) warrants to the original registered end user that the
product will perform as stated below for a period of one (1) year from the date of
shipment from factory:

Hardware and Media. The Product hardware components, if any, including equipment
supplied but not manufactured by the Company but NOT including any third party
equipment that has been substituted by the Distributor for such equipment (the
“Hardware”), is free from defects in materials and workmanship under normal
operating conditions and use.

Warranty Remedies
Your sole remedies under this limited warranty are as follows:

Hardware and Media. The Company will either repair or replace (at its option) any
defective Hardware component or part, or Software Media, with new or like new
Hardware components or Software Media. Components may not be necessarily the
same, but will be of equivalent operation and quality.

Software. If software is supplied as part of the product and it fails to substantially
confirm to its specifications as stated in the product user's guide, the Company shall, at
its own expense, use its best efforts to correct (with due allowance made for the nature
and complexity of the problem) such defect, error or nonconformity.

Software Updates. If software is supplied as part of the product, the Company will
supply the registered purchaser/licensee with maintenance releases of the Company’s
proprietary Software Version Release in manufacture at the time of license for a period
of one year from the date of license or until such time as the Company issues a new
Version Release of the Software, whichever first occurs. To clarify the difference
between a Software Version Release and a maintenance release, a maintenance release
generally corrects minor operational deficiencies (previously non-implemented
features and software errors) contained in the Software, whereas a Software Version
Release adds new features and functionality. The Company shall have no obligation to
supply you with any new Software Version Release of Telestream software or third party
software during the warranty period, other than maintenance releases.

Restrictions and Conditions of Limited Warranty
This Limited Warranty will be void and of no force and effect if (i) Product Hardware or
Software Media, or any part thereof, is damaged due to abuse, misuse, alteration,
neglect, or shipping, or as a result of service or modification by a party other than the
Company, or (ii) Software is modified without the written consent of the Company.

Limitations of Warranties
THE EXPRESS WARRANTIES SET FORTH IN THIS AGREEMENT ARE IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No oral

12
or written information or advice given by the Company, its distributors, dealers or
agents, shall increase the scope of this Limited Warranty or create any new warranties.

Geographical Limitation of Warranty. This limited warranty is valid only within the
country in which the Product is purchased/licensed.

Limitations on Remedies. YOUR EXCLUSIVE REMEDIES, AND THE ENTIRE LIABILITY OF
TELESTREAM, LLC WITH RESPECT TO THE PRODUCT, SHALL BE AS STATED IN THIS
LIMITED WARRANTY. Your sole and exclusive remedy for any and all breaches of any
Limited Warranty by the Company shall be the recovery of reasonable damages which,
in the aggregate, shall not exceed the total amount of the combined license fee and
purchase price paid by you for the Product.

Damages
TELESTREAM, LLC SHALL NOT BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF YOUR USE OR INABILITY TO USE THE PRODUCT, OR THE BREACH OF
ANY EXPRESS OR IMPLIED WARRANTY, EVEN IF THE COMPANY HAS BEEN ADVISED OF
THE POSSIBILITY OF THOSE DAMAGES, OR ANY REMEDY PROVIDED FAILS OF ITS
ESSENTIAL PURPOSE.

Further information regarding this limited warranty may be obtained by writing:
Telestream
848 Gold Flat Road
Nevada City, CA 95959

You can call Telestream at (530) 470-1300.

Part number: 221533

Publication Date: June 2017

13
Contents
Preface 17

Support | Information | Assistance 17
Company and Product Information 17
Mail 17
International Telestream Distributors 17
We'd Like to Hear From You! 17

Audience and Assumptions 18
How this Guide is Organized 19

Episode Overview 19
Using the JSON-RPC Interface 19

Episode Overview 21

XML-RPC and CLI License Requirements 22
Episode Interfaces 23

Watch Folder and Deployment Interface 23
XML-RPC and CLI Interfaces 23

XML-RPC Interface 24
Command Line Interface 24

JSON Interface 24
Episode Architecture 25

Node 26
Worker 26
Watch 26
IOServer 27
Assistant 27
ClientProxy 27

Episode Processes 28
Managing Back-end Processes (MacOS) 28
Managing Back-end Processes (Windows) 28
Back-end Process Configuration 29

Episode Concepts and Components 30
Workflows, Tasks, and Sources 30

Workflows 30

Contents14
Tasks 31
Sources 32
Post-deployment Processing Tasks 33

Variables 34
Episode Tags 35

Creating Tasks, Sources, Workflows & Submissions 37

Creating Tasks 38
Setting Task Priority 40

XML-RPC and CLI Priority Commands 40
Creating Sources 41
Creating Workflows and Submissions 42

Using Advanced Features 45

Advanced Features 46
Advanced Sources 46
Advanced Encoding 46
Advanced Post-Deployment Tasks 46

Advanced Clustering 50
Clustering Configuration 51
Avoiding Bonjour 53
Using a Specific Ethernet Interface 53
Setting Bonjour IP Lookup to No 54

Shared Storage 54
Named Storage 55

Named Storage Simple Example 55
Named Storage Cluster Example 55

Using the Command Line Interface 57

Starting the CLI Interpreter [Windows] 58
Starting Episode Services in Windows 58

Other Alternatives 58
Starting Episode Control in Windows 59

Starting the CLI Interpreter [MacOS] 60
Starting Episode Services in MacOS 60

Other Alternatives 60
Starting Episode Control in MacOS 60

Determining if Episode is Running 61
Using the CLI Interpreter 62

Executing Commands 62
Return Codes 62

Displaying Episode Variables 62
Displaying Episode Tags 62
Executing Commands to a Cluster 63
Displaying CLI Help 63

Help Command Syntax 63
Writing Help to a Text File 63

Contents 15
Using the XML-RPC Interface 65

Overview 66
Restart the XML-RPC Service 67
Communicating with Episode via the XML-RPC API 67
Overview of XML-RPC File Structure 68

Example 68
High-level Element Definitions 69
Commands and Constraints 70
Tag Name Mappings 72
Data Types 73
Primitive Data Types 74
In-place Complex Data Structure Definitions 74
Complex Data Structure Compacts 76
Inherited Complex Data Structures 77

Using the JSON-RPC Interface 79

Overview 80
Objects and Arrays 80
Values 81

Strings 81
Numbers 81
Binary Data 81

Programming Languages and Libraries 82
JSON-RPC File Structure 82

High-level Element Definitions 82
Request Elements 82
JSON Request Message Structure 82
Response Elements 83
JSON Response Message Structure 83

Example Requests with HTTP Headers and Responses 84
Example getVersion 84
Example statusTasks2 with params 84

Program Examples 85
Example Class for HTTP Calls—jsonrpc.rb file 85
Example Test Version—jsonTestVersion.rb file 86
Example Test Status Tasks2—jsonTestStatusTasks2.rb file 87

Demo Web Page with Job Monitoring 88

Contents16

17
Preface
Support | Information | Assistance
Web Site. www.telestream.net/telestream-support/episode/support.htm

Support Web Mail. www.telestream.net/telestream-support/episode/contact-
support.htm

Company and Product Information
For information about Telestream or its products, please contact us via:

Web Site. www.telestream.net

Sales and Marketing Email. info@telestream.net

Mail
Telestream
848 Gold Flat Road
Nevada City, CA. USA 95959

International Telestream Distributors
See the Telestream Web site at www.telestream.net for your regional authorized
Telestream distributor.

We'd Like to Hear From You!
If you have comments or suggestions about improving this document, or other
Telestream documents - or if you've discovered an error or omission, please email
us at techwriter@telestream.net.

http://www.telestream.net/telestream-support/episode/support.htm
http://www.telestream.net/telestream-support/episode/contact-support.htm
http://www.telestream.net/telestream-support/episode/contact-support.htm
http://www.telestream.net
mailto:info@telestream.net
http://www.telestream.net
mailto:techwriter@telestream.net

Preface
Audience and Assumptions

18
Audience and Assumptions
This guide is intended for those who are planning, developing, or implementing
automated digital media transcoding and integration solutions with Episode.

This guide is written assuming that you possess a general working knowledge of
digital media processing, of Episode, and that you have a general knowledge of
how to use command line and XML-RPC interfaces, and computer programming, as
appropriate.

This guide does not describe how to use Episode user interface. For information
about that, see the Episode User Guide.

Preface
How this Guide is Organized

19
How this Guide is Organized
This guide is organized into several high-level topics. Click on a heading below to
jump to the topic:

Episode Overview
This topic introduces you to Episode’s capabilities and its architecture and
components, which are important to determining how best to approach a given
automation or integration project; as well as concepts upon which Episode is built.

Creating Tasks, Sources, Workflows & Submissions
This topic describes how to create tasks and sources in the various interfaces.
Likewise, the topic of creating workflows and submissions is described from a high-
level perspective, taking into account the various interface distinctions.

Using Advanced Features
This topic describes Episode’s advanced features, which are not available in the
Episode GUI program, and can only be used with the CLI or XML-RPC API.

Using the Command Line Interface
This topic describes Episode’s Command Line Interface (CLI). The CLI can be used to
control Episode in an interactive command line environment, and also for
lightweight automation of simple Episode tasks which can be accomplished
without traditional programming, using batch files or scripting languages.

Using the XML-RPC Interface
This topic introduces you to Episode’s XML-RPC interface—you’ll learn how to
access the XML-RPC documentation and how to approach programming your own
interface using the XML-RPC commands..

Using the JSON-RPC Interface
This topic explains the JSON interface and how to program your own interface to
use the Episode JSON commands.

Preface
How this Guide is Organized

20

21
Episode Overview
This chapter describes the architecture, components, and major features of
Episode, from a system integrator/developer’s perspective.

These topics are covered:

■ XML-RPC and CLI License Requirements

■ Episode Interfaces

■ Episode Architecture

■ Episode Processes

■ Episode Concepts and Components

■ Variables

■ Episode Tags

Episode Overview
XML-RPC and CLI License Requirements

22
XML-RPC and CLI License Requirements
You can use the Episode XML-RPC and CLI interface without special licensing, but
you need the appropriate license for the Episode features you are accessing. See
the Episode Format Support document on the Telestream.net web site for details.

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well.

If you don’t have the required licenses as described below, please contact your
Telestream representative or contact Telestream directly—see Company and
Product Information.

Note: You cannot execute an MBR task (Multi-bitrate) in the CLI unless no Episode
license is active (you’re using it in demo mode), or the Episode Engine license is
active. In demo mode, MBR tasks watermark the output.

If you have any license activated other than the required ones, the MBR task halts
with the error: Queued: No available license feature. De-activate the license, then
use MBR in demo mode.

http://www.telestream.net/pdfs/datasheets/Episode6_Format_Support.pdf

Episode Overview
Episode Interfaces

23
Episode Interfaces
There are several ways you can use Episode, by utilizing different interfaces. Each
interface provides distinct advantages, exposes certain features, and is best-suited
to certain applications.

• Graphic User Interface

• Watch Folder and Deployment Interface

• XML-RPC Interface

• Command Line Interface

• JSON Interface

The Episode graphic user interface program, implemented for both MacOS X and
Windows, is described in detail in the Episode User’s Guide.

Topics
■ Watch Folder and Deployment Interface

■ XML-RPC and CLI Interfaces

■ Command Line Interface

■ JSON Interface

Watch Folder and Deployment Interface
The watch folder and deployment interface is a file-based interface. This interface
offers easy, file-based integration—no development is required.

You typically use the Episode GUI program to create your workflows with watch
folders (for input file integration) and deployments (for output file integration) and
then drop files into the watch folder for processing, and fetch output files from the
watch folder for utilization.

XML-RPC and CLI Interfaces
The XML-RPC and CLI interfaces are available for both MacOS X and Windows. This
guide provides an overview of these interfaces.

Note: For detailed information on the XML-RPC interface or the CLI, refer to the
XMLRPC.html file or the CLI.html file on the Telestream.net web site. Links to these
documents are also provided in the Episode Online Help, which can be accessed
from the Episode Help menu.

Episode Overview
Episode Interfaces

24
XML-RPC Interface
The XML-RPC interface is a standard, language-agnostic, HTTP interface intended
for use by integrating it into computer programs.

Note: For information about the XML-RPC standard, see www.xmlrpc.com.

The programmatic interface enables the most robust and flexible integration
opportunities, and Telestream recommends that you utilize the XML-RPC interface
when creating program-based integration solutions.

Command Line Interface
The Command Line Interface is primarily a user-driven method, for interacting with
Episode by typing commands to perform specific tasks. The CLI can also be
implemented in scripts and batch files—typically for lightweight automation tasks,
where traditional programming is overkill.

The CLI can be used interactively in the Command program in Windows and the
Terminal application in MacOS.

JSON Interface
The JSON interface is very similar to the XML-RPC interface and uses many of the
same commands, repackaged for the JSON framework. The last chapter in this
guide covers the JSON interface.

http://www.xmlrpc.com

Episode Overview
Episode Architecture

25
Episode Architecture
Episode consists of a number of processes. These processes are divided into two
groups: front-end and back-end processes. Front-end processes consist of user/
integration interfaces, graphic user interface (GUI), and the Command Line
Interface (CLI) and XML-RPC interface.

Back-end processes consist of those background processes which perform the
work in Episode, depending on the usage and configuration of the Episode node(s)
and cluster.

Episode front-end and back-end processes.

The background processes are always running by default on Windows, and started
and stopped by default when the GUI (Episode.app) is started or quit on MacOS. In
Episode for Windows, a number of Windows services are installed which are
responsible for starting and stopping background processes. On MacOS, Episode
uses launchd to run the processes.

Note: You can configure background services in the Episode GUI program. For
details, see the User’s Guide: Using Episode > Setting Preferences > Advanced.

Episode Overview
Episode Architecture

26
Topics
■ Node

■ Worker

■ Watch

■ IOServer

■ Assistant

■ ClientProxy

Node
A node is the main background process in an Episode system. Its main functions are
to schedule, distribute and execute jobs, serve the front-end submissions and
requests, and maintain both the history database and the active database of jobs.

In a cluster, the node can take on the role as a master node, in which case it is
responsible for communicating with and distributing jobs to other nodes in the
cluster.

Worker
A worker is a process which is designed to execute one task, such as encoding a file,
uploading a file to an FTP server, etc. It is a temporal process which executes exactly
one task and terminates. A worker is always spawned by a node, and exits when the
task is done.

Although a worker is not a background process, it is still a part of the Episode back-
end. In a cluster, workers are spawned by the local node on command from the
master node, and the worker always connects to the master node to receive its
work description. It also receives key information about other nodes in the cluster,
such as information on how to access files used in the task, files that may reside on
other machines or shared storage. The worker also reports progress, logs messages
and status back to the master node, which broadcasts them to all monitoring
(connected) front-end processes.

Watch
The watch process (formerly called monitor process, now deprecated) is responsible
for running one watch folder source configuration. It is, like a worker, a temporal
process spawned by a node. Watch processes are not distributed in a cluster so all
watches run on the master node. The watch reports file URLs back to the master
node which takes appropriate actions, typically to spawn a new started workflow
instance from the associated template workflow. The watch's logging messages are
reported to the master node, which broadcasts them to all front-end processes.

Episode Overview
Episode Architecture

27
IOServer
The IOServer process is used to enable file transfers and remote encoding, without
requiring shared storage. See Shared Storage for how to optimize a clustered setup
with shared storage.

Assistant
The Assistant process performs common internal tasks for the Episode front-end
such as browsing. It has no significant role in the system from the perspective of the
end user.

ClientProxy
The ClientProxy process is the front-end’s gateway to a node (or a cluster). It assists
the front-end to create/read/write configuration files, build workflows, and prepare
it all for submission to a node (local or remote). The ClientProxy is always the
gateway for the local computer’s front-end only, but can contact any remote public
node—for example another node in cluster-mode.

Episode ClientProxy connections.

The ClientProxy keeps any connection alive after the first connection request by the
front-end. ClientProxy gets status updates from the node it is connected to and
caches history for a configurable time period (default: 6 hours). This is mainly for
the purpose of integration status polling. For example, a finished job (successful or
failed) is accessible for a reasonable time after it is finished without sending history
requests to the node.

Episode Overview
Episode Processes

28
Episode Processes
This topic describes how to manage back-end processes on both MacOS and
Windows, and how to configure them.

Topics
■ Managing Back-end Processes (MacOS)

■ Managing Back-end Processes (Windows)

■ Back-end Process Configuration

Managing Back-end Processes (MacOS)
On MacOS, Episode’s background processes include:

• EpisodeNode

• EpisodeClientProxy

• EpisodeIOServer

• EpisodeAssistant

• EpisodeXMLRPCServer

These processes are launched by using launchd (man launchd, man
launchd.plist, man launchctl). When you start these processes via the CLI
(and the Episode GUI client starts them), they generate plist files in the directory
~/Library/Application Support/Episode/ and start up. When you shut down these
processes you (or the Episode GUI program does so automatically on exit), remove
the launchd job by label.

Note: Be sure to supply the path to the command, and enclose it in quotes to
permit spaces in the path. For example, from the root: ‘/Applications/Episode.app/
Contents/Resources/engine/bin/Episodectl’ launch start.

If the processes are installed—that is, symbolic links are created in ~/Library/
LaunchAgents/—the back-end processes are started when the user logs in. If you
want the processes to launch when you start the computer, you have to manually
copy or link the files into /Library/LaunchAgents/.

 It is a good idea to copy the files so a new launchd setting can be added to the
plist file, the UserName directive that tells launchd which user to run the processes
as, see man launchd.plist for more information.

Managing Back-end Processes (Windows)
On Windows, Episode’s background processes include:

• EpisodeNode.exe

• EpisodeClientProxy.exe

• EpisodeIOServer.exe

Episode Overview
Episode Processes

29
• EpisodeAssistant.exe

• EpisodeXMLRPCServer.exe.

Each process has a corresponding Windows service installed. The processes are
started and stopped via this service, either through the Windows Services control
panel or through the Episode CLI, using these commands:

Note: Be sure to supply the path to the command, and enclose it in double
quotes to permit spaces in the path. For example, from the root: “C:\Program
Files\Telestream\Episode 7\bin\episodectl.exe’ launch start.

• episodectl.exe launch start

• episodectl.exe launch stop

• episodectl.exe launch list

• episodectl.exe launch restart

Note: On a computer with UAC enabled, when attempting to start, restart, stop,
or list services, Windows may display an error: “Failed to open service (access is
denied”. To resolve the problem, disable UAC.

Back-end Process Configuration
All back-end processes have a configuration file in XML format, except the temporal
worker and watch processes. Some configuration options are either available in the
Episode GUI program or configurable through the CLI, but most are not.

If a configuration setting is edited manually, the affected process has to be
restarted in order for the change to take effect.

The processes that you may need to configure are the Node and the ClientProxy
services, and in some cases the IOServer process.

Documentation for most settings is located directly inside the configuration files.

Documentation for CLI-configurable settings is available using these commands:

• episodectl node -h

• episodectl proxy -h

• episodectl ioserver -h

Note: Be sure to provide a fully-qualified path to the episodectl command, and
use quotes (Mac OS X) or double quotes (Windows) if there are spaces in the path.

See the Episode User’s Guide for information regarding configuration settings
available in the Episode GUI program.

Configuration File Directory by Operating System

Operating System Configuration File Directory

MacOS ~/Library/Application Support/Episode/

Windows C:\ProgramData\Telestream\Episode 7\

Episode Overview
Episode Concepts and Components

30
Episode Concepts and Components
To the user of the Episode graphic user interface program, Episode acts like a single
application. This is a convenient ruse—Episode is functionally a collection of
services and servers, utilized by Episode (the graphic user interface client program),
to configure and operate Episode. As you can see, the term Episode refers not only
to the graphic user interface client, but also the entire collection of services that
comprise the Episode system.

In addition to Episode, you can utilize Episode system via other clients—programs
that utilize the XML-RPC interface, plus the command line interpreter client.
Understanding Episode concepts and components, along with an architectural
understanding of how they relate, helps you get the most out of Episode.

Workflows, Tasks, and Sources
These components are the building blocks of Episode.

Topics
■ Workflows

■ Tasks

■ Sources

■ Post-deployment Processing Tasks

Workflows
An Episode workflow is a collection of Episode tasks and task interdependencies.

Workflows, as described (and displayed) in the Episode User’s Guide, are always
comprised of a Source, Encode, and a Deployment task—this is the pattern always
used in every workflow.

Episode workflow pattern as shown in the GUI.

From a system perspective, this is a bit of a misnomer. In actuality, the Source task is
not actually a part of the workflow—it is a separate template (as defined) and
process (when executing) that resolves the input dependency for the Encode task,
and submits jobs to the actual workflow: the Encoder, Deployment task, and
optional Post-deployment task, as defined in the target workflow.

Episode Overview
Episode Concepts and Components

31
Episode actual workflow pattern as used in an API.

Tasks
A task in Episode is a specific unit of work to perform—for example, encode a file, or
copy a file. Tasks exist in the context of a workflow, and have two states: a template
(or definition), and a process, when executing.

A task can range from complex, such as encoding a file, to very simple, such as
deleting a file. These are the types of Episode tasks:

– Encode

– Transfer (Deploy in GUI)

– Execute

– Mail

– MBR

– Move

– Delete

– Localize

All tasks have a configuration, which describes how to perform the work. A Delete
task, for example, must be provided a valid string, which identifies which file it
should delete, while an Encoder task must be provided the format it should use to
encode a file.

Tasks are always one of four types: Source, Encoder, Deployment, and Post-
deployment Processing. Post-deployment Processing tasks are not exposed in the
Episode GUI program; they can only be configured and used in an API.

Tasks may be independent of other tasks, or they may depend on other tasks.

Tasks are the building blocks of a workflow.

As an illustration, this example workflow is comprised of three tasks—a file localize
task, an encode task, and a deployment task. Each of these tasks has a
configuration specific to its task type.

Note: This distinction is important to understand and take into consideration
when utilizing the APIs to implement Episode solutions and utilize them.

Episode Overview
Episode Concepts and Components

32
The encoder task has a configuration dependency—the URL of the localized input
file. Similarly, the deployment task also has a dependency - the URL of the file
created by the encode task. The encode and deployment tasks also have task
dependencies - the previous task executing and exiting successfully.

Tasks that are not connected downstream of another task (such as this example’s
file task), may have unconnected run-time dependencies, which must be set and
supplied externally. For example, if you have a watch folder source task, it creates a
run-time dependency of a file for input. When the file is supplied (dropped into a
folder), that dependency is resolved and a job is submitted.

The file task requires a fully-qualified path to the input file which it should localize.
To supply this path, you could use an external monitor system via the XML-RPC
interface, or you could call the file task from the command line interface to supply
the required path, or the path could be supplied by Episode itself.

The order of task execution is controlled by task interdependencies. These can be
the result of another task (for example, success or failure), or by a delivered value
from another task—the URL of a produced file, for example. In the following figure,
the Encode task delivers the URL of the encoded output file to the Transfer task.

Simplest Episode workflow.

When Episode is directed to process a workflow (for example, the user clicks the
Submit button in the Episode client application) there is always an Episode Source
accompanying it (this combination of source and workflow is referred to as an
Episode Submission).

Sources
There are four types of Episode Sources:

– File List

– Watch Folder

– EDL

– Image Sequence

Ultimately, an Episode source specifies which file(s) the workflow should operate
on and how it should interpret the files. For example, an Image Sequence source
specifies that the files should be interpreted as frames in a movie, whereas a File
List source specifies separate movies.

Episode sources always operate on template workflows. Template workflows can
not run by themselves, because they have no source file to operate on. When an
Episode Source operates on a template workflow, a started workflow (which
contains the information about the source-file to work on), is created from the
template workflow.

Episode Overview
Episode Concepts and Components

33
Episode template workflow spawning started workflows.

The tasks in the started workflow are then executed. Template workflows are
displayed in the left panel of the Episode client application’s Status window. Started
workflows are displayed in the right panel of the Status window.

For most types of submissions, the template workflow exists only temporarily. For
example, when an Episode Submission with a File List source is submitted:

1. The template workflow in the submission is created

2. For each file in the file list a started workflow is spawned

3. The template workflow is discarded

4. The tasks in the started workflows are executed.

For submissions containing watch sources, the template workflow exists as long as
the watch folder exists. For each file the watch picks up, a started workflow is
created.

Post-deployment Processing Tasks
Post-deployment tasks are also part of a workflow. These are optional, advanced
feature tasks (such as email notification and execute tasks) that you can only define
and execute via one of the APIs.

Episode Overview
Variables

34
Variables
Sometimes it's desirable (or necessary) to add dynamic elements to a workflow. A
basic dynamic example—and one which is part of every workflow by default—is to
create an output name that is based on the name of the source file and the type of
Encoder task used to encode the file.

The file-naming pattern in this example is a configuration in the Transfer task,
which specifies how to construct the output file name. Variables may be used in a
wide range of other task configurations. Examples include mail message
construction, execute task environment variables and arguments, etc.

Execute episodectl variables for a description of all variables.

Episode Overview
Episode Tags

35
Episode Tags
The concept of tags in Episode is used to enable an easy way of controlling
execution of tasks in a cluster. For example, you can use a tag to control which
node, computer, or even group of computers a certain task should run on.

Tags are used primarily by the Execute task (or Script task), an advanced feature
which is often dependent on the operating system, scripting software, or
languages that are on the platform where the node is installed.

Tags are used to control workflow execution.

Nodes can only be configured using the CLI, directly on the target node; they can
be configured on one or more machines in a cluster. Workflows (or tasks in a
workflow) are then configured to only run on machines with a certain tag, or to not
run on a machine with a certain tag (in both CLI and XML-RPC interfaces).

Execute episodectl tags for configuration directives and examples.

Episode Overview
Episode Tags

36

37
Creating Tasks, Sources,
Workflows & Submissions
The purpose of this chapter is to functionally describe how to create tasks and
sources in the various interfaces. Likewise, the topic of creating workflows and
submissions is described from a high-level perspective, taking into account the
various interface distinctions.

These topics are covered:

■ Creating Tasks

■ Setting Task Priority

■ Creating Sources

■ Creating Workflows and Submissions

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, from the root: ‘Applications/Episode.app/Contents/
Resources/engine/bin/episodectl’ launch start.

On Windows, from the root: “C:\Program Files\Telestream\Episode
7\bin\episodectl.exe” launch start.

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).

Creating Tasks, Sources, Workflows & Submissions
Creating Tasks

38
Creating Tasks
To create a task, you create a task configuration file. This file specifies what the task
should do when it is executed. These configuration files are saved as .epitask files (a
file with an epitask extension).

Note: Beginning with Episode 6.4, the Uploader task has been renamed Transfer
in both the CLI and the XML-RPC interfaces, although the term Uploader still can
be used, and remains backward-compatible.

These task files can be created in all interfaces with a few exceptions—see the
tables below:

Creating Tasks in the Episode GUI Program

Tasks Command Default Save Location

Encoder New Task > New Encoder OS X:
~/Library/Application Support/
Episode/User Tasks/Encoders/

File > New > Encoder Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Encoders\

Drag Encoder template into
drop area

Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Encoders\

Transfer New Task > New
Deployment

OS X:
~/Library/Application Support/
Episode/User Tasks/Deployments/

File > New > Deployment Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Deployments\

Drag folder into drop area Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Deployments\

Creating Tasks using the Episode CLI

Tasks CLI Command Default Save Location

Transfer episodectl task transfer Current working directory

Execute episodectl task execute

Mail episodectl task mail

MBR episodectl task mbr

Creating Tasks, Sources, Workflows & Submissions
Creating Tasks

39
For detailed information about these tasks, see the CLI documentation using the
CLI command episodectl task -h.

Task configuration files are saved in XML format so they can be easily edited,
although manual editing is not recommended unless necessary.

Some tasks can be created on-the-fly when performing a submission through the
CLI or XML-RPC interfaces. For example, a destination (output) directory can be
specified instead of a Transfer task file, in which case a default configuration will be
created automatically for that destination directory.

Certain common configuration values, such as naming convention for the output
file, have specific options in the submission commands. For example, the
--naming option in the CLI and the naming property in the XML-RPC interface.
These configuration names and values are also referred to as variables. See
Variables for more information.

Creating Tasks using the Episode XML-RPC Interface

Tasks XML-RPC Method Default Save Location

Transfer taskCreateTransfer File content returned in response

Execute taskCreateExecute

Mail taskCreateMail

MBR taskCreateMBR

Creating Tasks, Sources, Workflows & Submissions
Setting Task Priority

40
Setting Task Priority
Priority is only one of the parameters considered when the Node schedules tasks
for execution. Other parameters are license requirements, platform requirements,
user defined Tags, and a sequential number given to each workflow when it is
submitted—that acts as a tie-breaker when everything else is equal. When priority
and other requirements are equal, the sequence number makes it like a workflow
queue: the first submitted workflow is the first to be distributed for execution.

Two different priorities can be configured prior to workflow submission: a task
priority and a (template) workflow priority. The workflow priority is used as an
initial task priority adjustment when the workflow is spawned (when the workflow
and its tasks are created). It is possible to change the (template) workflow priority
for a persistent workflow. That is, for a workflow attached to a watch folder source,
but for spawned (started) workflows, the priority is a read-only constant value. After
a workflow is spawned, the task(s) priority is the only priority that can be altered
and it is the priority used when scheduling tasks for execution.

Two different priorities are implemented because it enables the user to decide
which is more important—individual tasks (for example, a certain Encode task) or
the source file, or where the source file came from. For example, a certain customer
or a certain watch process.

XML-RPC and CLI Priority Commands
For workflows, priority is always set/configured at the time of submission. In the
GUI you use the priority control.

In XML-RPC the priority option is available in the submitBuildSubmission and
submitSubmission commands.

In the CLI, --priority is used. All creatable tasks (taskCreateTransfer |
taskCreateExecute | taskCreatemMail | taskCreateMBR) have the --
priority option.

Since there currently is no way to create Encode tasks using the CLI and not
changeable via XML-RPC, there is a command for setting priority in an existing
Encode epitask file: episodectl.exe task set <path to existing task
file> --priority <priority>.

During run-time (after submission time/workflow spawning), the task(s) priority
may be changed with the XML-RPC command jobSetPriority, and the CLI
command episodectl.exe job set-priority, The initial task priority
adjustment can be set on workflows attached to watch processes with the XML-RPC
command monitorSetPriority and the CLI command episodectl.exe
watch-folder set-priority (formerly episodectl.exe monitor set-
priority, now deprecated).

Creating Tasks, Sources, Workflows & Submissions
Creating Sources

41
Creating Sources
Episode supports several types of sources: File List, Watch Folder, EDL and Image
Sequence. Except for EDL and Image Sequence sources, which are not available in
the Episode GUI program, all sources can be created in all interfaces.

Note: Sources are saved in the Episode GUI program as .epitask files, although
they are not strictly tasks by definition. In the CLI, sources are saved as files with
the .episource file extension.

Some sources can be created on-the-fly when performing a submission through
the CLI or XMLRPC interfaces. For example, a list of source files will automatically
create a File List source, and a directory could automatically create a default Watch
Folder configuration for that directory.

Creating Sources using the Episode GUI Program

Sources Command Default Save Location

File List Drag files into source
drop area

MacOS X:
~/Library/Application Support/Episode/
User Tasks/Sources/

Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Sources\

Watch
Folder

Drag folder into source
drop area

Windows:
C:\ProgramData\Telestream\Episode
7\User Tasks\Sources\

Creating Sources using the Episode CLI

Sources Command Default Save Location

File List episodectl source filelist Current working directory

Watch Folder episodectl source watch-folder

EDL episodectl source edl

Image
Sequence episodectl source iseq

Creating Sources using the Episode XML-RPC Interface

Sources Command Default Save Location

File List sourceCreateFileList File content returned in response

Watch Folder sourceCreateMonitor

EDL sourceCreateEDL

Image
Sequence sourceCreateISEQ

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

42
Creating Workflows and Submissions
Workflows are created interactively in the Episode GUI program. Using the CLI and
XML-RPC interface, they are created on-the-fly – that is, the workflow configuration
is part of the submission command. The command in the CLI is episodectl
workflow submit; in XMLRPC, it is submitBuildSubmission.

Note: When submitting a submission with submitSubmission (XMLRPC) or
episodectl ws -s... (CLI), you can optionally override the source in the prebuilt
submission with another provided source. The overriding source must be the
same source type as the source in the prebuilt submission.

For example, if the prebuilt submission (the submission specified after -s in the
CLI) has a file-source, it can only be replaced by another file-source (not a watch-,
edl-, nor iseq-source).

Episode has three distinct groups of (user-specifiable) tasks: Encoders,
Deployments, and Post-deployment tasks.

Encoder, Deployment, and Post-Deployment tasks

A workflow is built as a tree, branching out from Encoder actions to Deployment to
Post-deployment actions. In the Episode GUI program, you specify a Deployment
for each Encoder task. However, in CLI and XML-RPC, the default behavior is that
you specify a Deployment for all Encoders.

During task execution, Deployments that are specified in the submit command are
only executed after every Encoder in the submission has executed. Likewise, Post-
deployment tasks in the submit only run after every Deployment in the submission
has executed. Thus, depending on the number of Encoders or Deployments in the
submit, the Deployments and Post-deployment tasks might be automatically
replicated to the empty branches, for the workflow to execute correctly.

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

43
This effect of copying tasks should be taken into consideration when polling for
status.

Workflows use a tree structure in CLI and XML-RPC.

The execution of Post-deployment tasks are always controlled by the success or
failure of a Deployment task. A Deployment task is passed a failure status if either
the deployment fails or if the preceding Encode task fails. It is passed the success
status only if both the preceding Encode task succeeds and the Deployment
succeeds. In other words, a Post-deployment configured to run on success will only
run if all preceding tasks succeeds and a Post-deployment configured to run on
failure will run if any preceding task fails.

Below is an example CLI submission command (with options on separate lines for
clarity only) with a typical workflow – two Encoders, a single Deployment task, and
one Execute task that runs in case of failure and one in case of success. It also has a
Mail task that sends an email in case of failure. The submission is accompanied by a
single source file. Also, notice the copying/branching of the Deployment task and
the Post-deployment tasks.

episodectl workflow submit
--file source.mov
--encoder H264.epitask Flash.epitask
--destination MySAN.epitask
--execute SuccessScript.epitask success FailureScript.epitask
failure
--mail EMail.epitask failure

This command produces a workflow like this in the Episode GUI program:

Creating Tasks, Sources, Workflows & Submissions
Creating Workflows and Submissions

44
Example workflow.

After workflows are submitted, two kinds of IDs can be retrieved. One ID is the
template workflow ID – the parent ID of the whole submission – from which any
number of started workflows may be spawned. The other IDs are the individual
started workflow IDs. The IDs can be used to obtain status about the submission's
components, a group of workflows (parent-ID/template ID) individual workflows
(started workflow ID) or the individual tasks within those workflows. The IDs may
also be used to stop workflows.

45
Using Advanced Features
This chapter describes Episode’s advanced features.

These topics are covered:

■ Advanced Features

■ Advanced Clustering

■ Shared Storage

■ Named Storage

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, from the root: ‘Applications/Episode.app/Contents/
Resources/engine/bin/episodectl’ launch start.

On Windows, from the root: “C:\Program Files\Telestream\Episode
7\bin\episodectl.exe” launch start.

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).

Using Advanced Features
Advanced Features

46
Advanced Features
Certain Episode features are termed advanced features and may be available only in
the CLI or API, or may require the Episode Pro or Engine license. If you don’t have
the required license, please contact your Telestream representative, or contact
Telestream directly—see Company and Product Information.

Workflow jobs using advanced features available only in the XML/RCP or CLI
interface are displayed in the Episode graphic user interface’s status window, but
they cannot be displayed in the workflow editor—if you attempt to display them,
Episode displays a dialog indicating they cannot be displayed.

For detailed information about the XML-RPC interface or the CLI, refer to the
XMLRPC HTML or CLI HTML descriptions on the Telestream.net web site.

Advanced Sources
• Image Sequence Input. Enables you to submit image sequences, including

DPX, TGA, TIFF, JPEG and PNG formats, or create watch folders to watch for image
sequences and submit them to a workflow for transcoding.

Note: For a detailed list of supported image sequence formats, see the published
Episode Format Support sheet at Telestream.net.

• Edit Decision List (EDL) Conforming. Enables you to create and submit an Epi-
sode EDL source which identifies a set of source files to be combined into a sin-
gle output file. Each file in the EDL can be trimmed based on time-code or time.

When using EDL’s as a source, your workflow must observe these constraints:

• You can’t add intro/outro to encoders

• Both video and audio tracks must be present

• Encoder can not copy tracks

• Encoders must not have streaming enabled.

Advanced Encoding
• Microsoft Smooth Streaming. Enables you to create multi-bitrate Microsoft

Smooth-Streaming packages for Web and Microsoft-compatible devices.

• Apple HLS Streaming. Enables you to create multi-bitrate segmented stream-
ing packages for Web and Apple devices.

Advanced Post-Deployment Tasks
The following tasks can be executed from the Mac or Windows command line using
the Episode command line interface. When entries contain spaces, remember to
enclose them in single quotes for Mac (‘), double quotes for Windows (“). Also recall
that Windows uses backslashes, Mac forward slashes. For details of CLI operation,
please see Using the Command Line Interface (page 57).

Using Advanced Features
Advanced Features

47
• Email Notification Task. Enables you to send custom email notifications as part
of your workflow, after the deployment task executes. See the table below.

• Execute Task. Trigger user-written or 3rd party scripts (or programs) as part of
your workflow to expand the functionality available in your workflow, after the
deployment task executes.

Note: On Windows, Execute tasks sometimes do not function as expected. These
failures may occur because of incorrect permissions, file extensions associated
with the wrong application, or the task being run in a process spawned by a
service running under the local system user. Using a variable such as
%USERNAME% may also cause a failure. Lastly, the --parse-progress
argument is not supported on Windows.

Mail Notification Example CLI Commands

Mail Tasks Enter these commands

E-mail on Job Success

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
7\bin\

Create mail task ./episodectl task mail

User name for outgoing mail -u username@domain.com

Password for outgoing mail -p PASSWORD

Server for outgoing mail -s mailservername.domain.com

From mail sender address -f username@domain.com

To mail address -t username@domain.com

Mail subject (can use $variables) --subject ‘$source.file$ encoded successfully’

Mail message --message ‘Task completed successfully’

(Windows: use double quotes--” “.)

Name the epitask --name ENCODE_SUCCESS

Save the epitask in... -o /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/

E-mail on Job Failure

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
7\bin\

Create mail task ./episodectl task mail

Using Advanced Features
Advanced Features

48
User name for outgoing mail -u username@domain.com

Password for outgoing mail -p PASSWORD

Server for outgoing mail -s mailservername.domain.com

From mail sender address -f username@domain.com

To mail address -t username@domain.com

Mail subject (can use $variables) --subject ‘ERROR: $source.file$ encode failed’

(Windows: use double quotes--” “)

Mail message --message ‘Task failed and needs attention’

(Windows: use double quotes--” “)

Name the epitask --name ENCODE_FAILED

Save the epitask in... -o /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/

Mail Notification Example CLI Commands (continued)

Mail Tasks Enter these commands

Using Advanced Features
Advanced Features

49
CLI Workflow Commands

(Note: In Windows, leave out ./
and use back slashes in all paths)

Start from this directory:
Mac: /Applications/Episode.app/Contents/
Resources/engine/bin/
Win: C:\Program Files\Telestream\Episode
7\bin\

Submit a workflow ./episodectl ws

Choose an episubmission file
(which includes source, encoder,
and destination)...OR...

Choose a source file

-s /Users/myuser/Desktop/CLI/MailTask/
myworkflow.episubmission

-f /Users/myuser/Desktop/CLI/MailTask/
filename.mov

Choose a previously saved
encode epitask

-e /Users/myuser/Desktop/CLI/MailTask/
EncodeOP1a.epitask

Select destination directory for
encoded file

-d /Users/myuser/Desktop/CLI/MailTask/
output/

Select previously created epitask
to send email when workflow is
successful

-x /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/ENCODE_SUCCESS.epitask success

Select epitask to send email when
workflow has failed

-x /Users/myuser/Desktop/CLI/MailTask/mail-
tasks/ENCODE_FAIL.epitask failure

To see progress in the CLI -wv

List available mail task options ./episodectl task mail -h

Mail Notification Example CLI Commands (continued)

Mail Tasks Enter these commands

Using Advanced Features
Advanced Clustering

50
Advanced Clustering
A cluster consists of nodes (EpisodeNode process). A node is considered private
when it is in default mode, and public when it is in cluster mode. When the node is
public, it is remotely accessible for clients and other nodes that may be part of the
same cluster. A cluster consists of one or many nodes, but clients can only
communicate with the master node. In a low-volume implementation, even a one
node cluster (on a dedicated computer) can be used to encode files for multiple
clients running on desktop computers.

A cluster can be created either by using Bonjour or by specifying IP addresses or
host names. The choice of method is mostly dependent on how dynamic a cluster
should be. If computers are joined ad-hoc where participating computer can easily
come and go, we suggest using Bonjour. If a cluster is mostly static—the cluster is
made up of dedicated computers that are considered permanent over time, it's
usually better to join them together by address.

Topics
■ Clustering Configuration

■ Avoiding Bonjour

■ Using a Specific Ethernet Interface

Using Advanced Features
Advanced Clustering

51
Clustering Configuration
The node's configuration identifies it as a master or participant. It also specifies if it
should use Bonjour to find a cluster master, publish itself on Bonjour (that is, be
visible on the network), or contact a master node by address. You can manually edit
the node's configuration file or use the CLI to configure the node at run-time. If the
configuration is edited, the node process has to be restarted to pick up the new
configuration.

There are six main clustering configuration settings in a node:

– Active—If the node is in cluster mode, i.e. public mode.

– Backup—If the node should be the master.

– Name—The name of the cluster to be a part of.

– Search—If Bonjour should search for the master of the cluster.

– Publish—If the node should publish itself on Bonjour.

– Hosts—The address of the master node of the cluster.

These configuration values are in the <cluster> element in the Node.xml file. For
details, see Back-end Process Configuration.

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">
...

<cluster>
<active>no</active>
<name>Episode Cluster</name>
<backup>no</backup>
<search>yes</search>
<publish>yes</publish>
<listen-port>40420</listen-port>
<listen-interface>All</listen-interface>
<listen-version>All</listen-version>
<hosts>

<host></host>
</hosts>
<dead-host-time>60000</dead-host-time>
<stale-host-time>6000</stale-host-time>

</cluster>
...

</node-configuration>
...

To set up a cluster with the CLI, create a new cluster on the node you’re using as
master, with the command:

episodectl node create MyCluster

Using Advanced Features
Advanced Clustering

52
Now the configuration settings should look like this, and the node is ready to serve
client requests:

<active>yes</active>
<name>MyCluster</name>
<backup>yes</backup>
<search>yes</search>
<publish>yes</publish>
<hosts>

<host></host>
</hosts>

To determine what is published on Bonjour, execute episodectl status
clusters.

To view the status of an individual node, execute episodectl node info
[address] where address is the IP address or hostname of the node to contact
(default: local).

To view the overall status of a cluster: Execute
 episodectl status nodes --cluster MyCluster

or
episodectl status nodes [address]

where address is the IP or hostname of a node in the cluster.

If you want to join another node to the cluster, go to that computer and execute
one of the following commands:

To use Bonjour to find the master, execute episodectl node join MyCluster

To specify the address to the master node, execute episodectl node join
--connect [address] where address is the IP or hostname of the master node.

Use the configuration option use-bonjour-IP-lookup to control how IP
addresses for Bonjour Episode nodes are resolved. If false (default), Episode expects
the operating system to resolve the IP address using the hostname of the
EpisodeNode found on Bonjour. If true, Episode resolves the IP address using the
Bonjour service.

Setting use-bonjour-IP-lookup to true can resolve some connectivity issues, in
particular ones where the user has restricted the EpisodeNode to only listen on
specific network interfaces.

Using Advanced Features
Advanced Clustering

53
Avoiding Bonjour
When creating a cluster, execute the CLI episodectl command with these options:
episodectl node create MyCluster --search no --publish no
- or -
edit the configuration files manually to specify the Ethernet interface you want to
use, and turn off Bonjour Lookup (see below.)

Then, restart the node using: episodectl launch restart - node.

When joining other nodes, add these options in the join command as well:
episodectl node join --connect [master address] --search no
--publish no.

Note: In order to use the Episode graphic interface program on a node that does
not employ Bonjour, the node has to be part of the cluster since you cannot
connect by IP address.

Using a Specific Ethernet Interface
Enter the address of desired interface when joining nodes to the cluster. If you want
the node to only accept incoming connections on a specific interface, you need to
change the <listen-interface> setting in the Node.xml file. Since the node
should always listen on the loopback interface too, that interface should be
specified—separating them by a semicolon:

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<cluster>

...
<listen-interface>lo0;en0</listen-interface>
...

</cluster>
...
</node-configuration>

It is also possible to specify an IP address (which must be done on Windows):

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<cluster>

...
<listen-interface>127.0.0.1;10.0.0.1</listen-interface>
...

</cluster>
...
</node-configuration>

If the IOServer is used (instead of configuring a shared storage), you may do the
same in its configuration file—IOServer.xml (see Back-end Process Configuration.)

Using Advanced Features
Shared Storage

54
Setting Bonjour IP Lookup to No
Finally, set the Bonjour IP lookup option to No, in the assistant.xml and node.xml
files:

...
<use-bonjour-IP-lookup>no</use-bonjour-IP-lookup>
...

Shared Storage
If you are planning to use shared storage, you should configure the File Cache in
the Episode GUI program, and also configure the <resource-base-path> in the
Node.xml configuration file (see Back-end Process Configuration.) This cache path
should be configured to point to the shared storage. Otherwise, Episode's IOServer
will be used to access each nodes local file cache in a cluster.

<?xml version="1.0" encoding="UTF-8"?>
<node-configuration version="11" format="untyped">

...
<node>

...
<resource-base-path>/Path/to/Storage</resource-base-path>
...

</node>
...

</node-configuration>

Due to the difference in how file resources are identified on Windows and MacOS
file systems, it is not possible for Episode on Windows to identify a shared storage
referenced in a MacOS manner as shared storage, and vice versa. If you want
Episode to use shared storage between MacOS and Windows, you should use
Named Storage instead.

Using Advanced Features
Named Storage

55
Named Storage
The Named Storage feature allows you to define a storage location, such as a SAN,
with a user-configurable name so that the same physical location can be used
across Mac and Windows platforms even though the local path to that storage is
different on each machine. Named Storage can be used within a cluster to permit
access to files by multiple machines of either platform belonging to the cluster.

Named Storage is implemented using CLI commands and is also available in the
Episode Windows and Mac user interfaces. To access help for using Named Storage
via the CLI, enter the following CLI command:

Windows: episodectl ns --help

Mac: ./episodectl ns --help

Named Storage Simple Example
Windows Machine1 accesses a media location on a SAN using a windows path S:\

Mac Machine2 accesses the same location using a mac path /Volumes/MediaSAN/

In order for Episode to recognize both locations as the same physical storage, the
CLI Named Storage feature must be used. You enter a CLI command on each
machine that gives the physical location a name common to both machines. Then
when that location is used, the system compares lists of named storage and
matches them up so that the IO Server is not used and the files are moved directly
from that storage. These are the commands you use for the two Windows and Mac
example machines:

On Windows Machine1: episodectl ns --add MediaSAN S:\

On Mac Machine2: ./episodectl ns --add MediaSAN /Volumes/MediaSAN/

Named Storage Cluster Example
You can also set up Named Storage to work with an Episode cluster, as this example
illustrates. Adjust details shown in the example to fit your situation and network.

Note: Named storage must be defined on all machines before they join the
cluster.

Starting Conditions
1. A network location is mounted on a Mac with the volume name “studioshares”.

2. Note the folder level where the “root” of this mounted volume is located:
smb://<servername>/<folder1>/<folder2>/studioshares/

3. Also note that once mounted, the path to this location on this machine is this:
/Volumes/studioshares/

Using Advanced Features
Named Storage

56
4. On Windows, you need to establish and note the full network path to this same
location. In this example, “studioshares” is a shared folder on the server:
\\<servername>\<folder1>\<folder2>\studioshares\

Named Storage Setup
1. On the Mac, define the named storage:

./episodectl node storage --add stgservices /Volumes/
studioshares/stgservices/

2. On Windows, define the same named storage but use the full network path:

episodectl node storage --add stgservices
\\<server-name>\<folder1>\<folder2>\studioshares\stgser-
vices\

Note: If there are any required user credentials for this server, add them as part of
the path when defining the named storage:
\\<user>:<password>@<servername>\<folder1>\<folder2>\studiosha
res\stgservices\

The key detail to remember regarding the named storage defined path is that it
must end in the same directory on all machines. In this case it’s “stgservices”.

3. Create the cluster.

4. Join or submit to cluster all client machines.

The cluster should now be operational and the named storage accessible to all
machines in the cluster.

Note: If you need to add new named storage to an existing cluster, you must take
down the cluster first and ensure that all machines are working alone. Then you
can add new named storage to each machine, create a new cluster, and join or
submit to cluster all the machines that you want to include in the cluster.

57
Using the Command Line
Interface
This chapter generally describes the Command Line Interface (CLI) for Episode.

The CLI is implemented on both Windows and MacOS; while use of the CLI is
generally identical, accessing and running the CLI interpreter are different, and
these differences are noted as appropriate.

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well.

Note: For license requirements, see XML-RPC and CLI License Requirements.

These topics are covered:

■ Starting the CLI Interpreter [Windows]

■ Starting the CLI Interpreter [MacOS]

■ Determining if Episode is Running

■ Using the CLI Interpreter

Notes: When executing a CLI command, be sure to supply the path to the
command, and enclose it in double quotes to permit spaces in the path.

Be sure to provide a fully-qualified path to the episodectl command, and use quotes
(Mac OS X) or double quotes (Windows) if there are spaces in the path.

For example, on Mac OS X, enter this path from the root (changed in Episode 7):
‘/Applications/Episode.app/Contents/Resources/engine/bin/episodectl’ launch start

On Windows, enter this path from the root:
“C:\Program Files\Telestream\Episode 7\bin\episodectl.exe” launch start

A folder is defined as a path ending with a path separator. On Windows, if you
quote the string, you must either escape the backslash (\\) or use slash (/) as the last
separator.

When using ! (exclamation) characters in bash arguments, they must be escaped,
because bash parses the command before episodectl and will throw errors.

On Windows, you can only execute episodectl launch (and control the Episode
system services) in the CLI if Windows UAC is disabled (turned off).

Using the Command Line Interface
Starting the CLI Interpreter [Windows]

58
Starting the CLI Interpreter [Windows]
Before you can use the CLI interpreter or use the CLI in other ways on the Windows
platform, the Client Proxy service must be running. Usually, you start all Episode
services when your computer starts, even though you may not need them. By
default, all Episode services are set to start up automatically when you install
Episode. After installation, you should restart your computer to start all Episode
services.

Based on your requirements, you can make sure your services are started by
following these guidelines.

Starting Episode Services in Windows
The easiest way to start all Episode services is to start the Episode program:

Go to Start > All Programs > Telestream > Episode 7 > Episode 7.

When you start the Episode GUI program, all Episode services are started if they are
not currently running. After starting Episode, you can stop the Episode GUI
program if you choose; all Episode services remain running until explicitly stopped
or the computer is shut down.

Note: Often, you’ll keep Episode (the graphic user interface program) running so
that you can use it to determine job status, refer to workflows, etc., as you interact
with Episode via the CLI.

Other Alternatives
If your services are set to startup type Manual (or are not started), you can start
them in the following ways:

• Start each Episode service manually in the Control panel

• Set each Episode service startup type to automatic in the Control panel

• Start each (or all) service using the CLI Launch command.

Using the Command Line Interface
Starting the CLI Interpreter [Windows]

59
Starting Episode Control in Windows
Episode Control—the CLI Interpreter program—is installed by default in
C:\Program Files\Telestream\Episode 7\bin\episodectl.exe.

If you installed Episode in another location, modify the commands below
accordingly.

Note: This topic assumes you are familiar with the Command window and its
features. If you’re not familiar with the Command window features, read a
Command window help document.

To start Episode Control, follow these steps:

1. Click Start to display the Search Programs and Files text field. Enter cmd and
press Enter to display the Command window.

2. Navigate to the Episode bin folder, type the following, and press Enter:
cd "C:\Program Files\Telestream\Episode 7\bin\"
Quotes are necessary because of spaces in the path.

3. To use the CLI, type episodectl along with your function and any arguments to
execute the Episode command. For details, see Using the CLI Interpreter.

Note: If your Episode services are not running, before proceeding, execute
episodectl launch start with the proper arguments (see Determining if Episode is
Running).

Using the Command Line Interface
Starting the CLI Interpreter [MacOS]

60
Starting the CLI Interpreter [MacOS]
Before you can use the CLI interpreter or use the CLI in other ways, at least the
Client Proxy services must be running. Usually, you’ll start all Episode services, even
though you may not need them. By default, all Episode services are set to startup
type Automatic when you install Episode. After installation, you should restart your
computer to start all Episode services.

Based on your requirements, you can make sure your services are started by
following these guidelines.

Starting Episode Services in MacOS
To start all Episode services, start the Episode application from the dock bar or go to
Applications > Episode and double-click the Episode application.

When you start the Episode application, all Episode services are started, if they are
not currently running. After starting Episode, you can stop Episode (the graphic
user interface program) if you choose; all Episode services will remain running until
explicitly stopped or the computer is shut down.

Note: Often, you’ll keep Episode (the graphic user interface program) running so
that you can use it to determine job status, refer to workflows, etc., as you interact
with Episode via the CLI.

Other Alternatives
If your services are set to startup type Manual (or are not started), you can start
them in the following ways:

• Start each Episode service manually in the Control panel

• Set each Episode service startup type to automatic in the Control panel

• Start each (or all) service using the CLI Launch command.

Starting Episode Control in MacOS
Episode Control—the CLI Interpreter program—is installed in the Episode
application bundle.

To start Episode Control, follow these steps:

1. Open a Terminal window (Applications > Utilities > Terminal).

2. Navigate to Episode’s bin folder so you can execute the Episode Control
program:
/Applications/Episode.app/Contents/Resources/engine/bin/.

3. Type the following command and press Enter:
cd /Applications/Episode.app/Contents/Resources/engine/bin

4. In the bin folder, type the following with your function and any arguments to
execute the Episode command: ./episodectl

Note: If typing the full path is inconvenient you can add the directory to your
PATH, or put a link to episodectl in one of the directories in your PATH.

Using the Command Line Interface
Determining if Episode is Running

61
Determining if Episode is Running
Before you submit jobs for encoding or to query an Episode node, make sure that
Episode is running.

To determine that Episode is running on your local computer, execute one of these
commands (for Windows, leave off the ./):
./episodectl launch list
./episodectl ll

In response, the system should display a list of the running Episode processes (on
Windows, the PIDs are not shown):

EpisodeXMLRPCServer is running with PID 32420
EpisodeClientProxy is running with PID 32415
EpisodeAssistant is running with PID 32410
EpisodeIOServer is running with PID 32405
EpisodeNode is running with PID 32400

If Episode is not started, start it in one of two ways:

Start the Episode graphic user interface program

OR

In the CLI, execute one of these commands (for Windows leave off the ./):
./episodectl launch start
./episodectl ls

Using the Command Line Interface
Using the CLI Interpreter

62
Using the CLI Interpreter
This topic describes generally how to interact with the CLI interpreter.

Executing Commands
To execute a command in Episode Control, execute Episode Control with the
appropriate command and parameters. Make sure your command interpreter or
terminal window is in the directory where Episode Control (Episodectl.exe) is
located:

[Windows] C:\Program Files\Telestream\Episode 7\bin\

[MacOS] /Applications/Episode.app/Contents/Resources/engine/bin/

Enter the program name, followed by the command and parameters and press
Enter to execute the command.

Note: In MacOS, precede the program name with ./ as in the following example:
./episodectl node create --name HDCluster

For Windows, the ./ should be left out.

Return Codes
Episode Control returns 0 when a command completes successfully, and returns 1
when most errors occur. When an error occurs, Episode Control returns an error
message as well. Some commands return special return codes, which are described
in the help page for the command.

Note: Return codes of processes in a UNIX-like environment do not display in the
interpreter. To display the return code of the latest run process, enter echo $? in
Terminal.app.

Displaying Episode Variables
To display the variables that can be set or read in conjunction with tasks, enter
either of these two commands (for Windows, leave off the ./):

./episodectl variables

./episodectl v

Displaying Episode Tags
To display the tags that can be used in conjunction with clusters, enter either of
these two commands (for Windows, leave off the ./):

./episodectl tags

./episodectl t

Using the Command Line Interface
Using the CLI Interpreter

63
Executing Commands to a Cluster
The default target in the CLI is always the local node if nothing else is explicitly
specified. You need to use -c with CLI commands when intended for cluster-wide
execution— join, submit, watch-folder, status monitors, etc. Otherwise, the CLI will
only execute the command in the local node.

Displaying CLI Help
To display help (man pages) in Episode Control, execute Episode Control with the
command keyword help, or whelp. The whelp command displays the help text
the full width of the console window. When displaying help on a command, you
can specify the -h option. You can filter help contents by command or command
and sub-command, as shown below.

Help Command Syntax
./episodectl help | whelp [<command>] | [<command>] [<sub
command>] | all

Example (for Windows, leave off the ./):

./episodectl help all returns the entire help set.

./episodectl help watch-folder returns the help text for the watch-folder
command.

Writing Help to a Text File
To write help to a file, add > <filename.txt> to the command.

Example (for Windows, leave off the ./):
./episodectl help all > EpisodeCtl_Help.txt

This command writes the entire help text to this text file: EpisodeCtl_Help.txt.

Using the Command Line Interface
Using the CLI Interpreter

64

65
Using the XML-RPC
Interface
This chapter describes Episode’s XML-RPC interface.

The following topics are covered:

■ Overview

■ Restart the XML-RPC Service

■ Communicating with Episode via the XML-RPC API

■ Overview of XML-RPC File Structure

Note: When utilizing the CLI to execute unlicensed features in demo mode, add
the -demo flag. In the XML-RPC interface, you can add -demo to
submitSubmisssion and submitBuildSubmission to use unlicensed features in demo
mode as well. For license requirements, see XML-RPC and CLI License
Requirements.

Using the XML-RPC Interface
Overview

66
Overview
The XML-RPC server is enabled by default and ready to use as a server for external
integration. On its host node, however, it is a client to the Episode system and has
the same role as the GUI client.

In the XML-RPC server, users may target nodes other than the local node—
providing multiple ways to use the server to target other Episode nodes/clusters.

Episode uses Bonjour to find the XML-RPC servers and relate them to cluster and
nodes, and targets different XML-RPC servers when targeting different clusters/
nodes. This means that any cluster or private node having an active XML-RPC server
is reachable.

Alternatively, you can use an XML-RPC server as the proxy for all calls to any Episode
cluster. This XML-RPC server can run locally on the client (as long as Episode has
been installed), on a dedicated server or on another server in one of the clusters
that has been configured.

When sending method calls to the XML-RPC server, you can specify target-node-info
to target clusters other than the local cluster/node where the XML-RPC server is
running. In this case the XML-RPC server will only be able to target clusters and the
local node, not other private nodes. This approach is easier from an
implementation standpoint and may be the most intuitive way of starting XML-RPC
interaction with Episode. All traffic will be routed through this server and if the
integration is sensitive to network load or if the system relies on dedicated network
setups for different clusters this option is probably not the best approach.

Using the XML-RPC Interface
Restart the XML-RPC Service

67
Restart the XML-RPC Service
If you should need to do so, you can restart the XML-RPC service using the Episode
command line interface. To restart the service, open a terminal window (MacOS), or
a command prompt window (Windows), and run the following command:

[MacOS]: /Applications/Episode.app/Contents/Resources/engine/bin/episodectl
launch restart -x

[Windows 32-bit]: C:\Program Files\Telestream\Episode7\bin\episodectl launch
restart -x

[Windows 64-bit]: C:\Program Files (x86)\Telestream\Episode7\bin\episodectl
launch restart -x

Communicating with Episode via the XML-RPC API
To communicate with Episode via the XML-RPC API, you need to use an XML-RPC
client library in your program.

The library you choose depends on (among other things), the language you’re
using to write your client programs.

XML-RPC libraries handle low-level HTTP request/response communications with
the Episode XML-RPC server, and package method calls and returns into
standardized XML-RPC message structures so they can be easily integrated with
your program, in the language of your choice.

If you are not familiar with developing XML-RPC-based client programs, please see
http://www.xmlrpc.com for information on the XML-RPC standard.

The following XML-RPC client libraries have been tested with Episode:

• Redstone XML-RPC Library: http://xmlrpc.sourceforge.net/

– Language: Java

– Platform: N/A (Independent)

– License: LGPL

• Cocoa XML-RPC Framework: http://github.com/corristo/xmlrpc

– Language: Objective C

– Platform: MacOS, iOS

– License: MIT

• XML-RPC.NET: http://www.xml-rpc.net/

– Language: .NET

– Platform: Microsoft Windows

– License: MIT X11

http://www.xmlrpc.com
http://xmlrpc.sourceforge.net/
http://github.com/corristo/xmlrpc
http://xmlrpc.sourceforge.net/

Using the XML-RPC Interface
Overview of XML-RPC File Structure

68
Overview of XML-RPC File Structure
Episode XML-RPC API files use the elements described in this section.

Note: Other files may be referenced to define complex parameter structures as
specified by an inherit attribute. These parameters expect a data structure that is
defined in another constraint XML as their value. The name of the XML containing
the constraint definition for these values is cited in a comment above the
parameter’s constraint tag.

Example
Each XML-RPC method is defined by a command element. The child nodes of the
command element define the method's parameter and return structures. This
structure consists of the following element hierarchy:

Typical XML-RPC method <command> element
<command ... <!-- The method --> >
<send> <!-- The parameters -->
<constraint ... >
...

</constraint>
...

</send>
<reply> <!-- The returns -->
<constraint ... >
...

</constraint>
</reply>

...
</command>

Using the XML-RPC Interface
Overview of XML-RPC File Structure

69
High-level Element Definitions
<command>: Defines a method.

Elements

<name>: The internal Episode method namespace

<send>: Defines the method's parameter structure

<constraint>: Defines a single key/value pair argument (hash map)

Attributes

property-name: Argument key

compact: Argument value data type

inherit: Argument value's inherited data type for complex data types

optional: Signifies whether or not this argument is required

<reply>: Defines method's return structure (hash map)

<option>: Defines one possible set of key-value pairs in an exclusive set

<constraint>: See above

Using the XML-RPC Interface
Overview of XML-RPC File Structure

70
Commands and Constraints
Command name attributes specify the internal method in the Episode namespace.
The public XML-RPC method names are not the same. The public name is also the
value of the <XMLRPC> element in command_doc.xml.

Method parameter and return structures always have an XML-RPC hash map (called
a <struct> element) as their top level element. This <struct> element contains a set
of key/value pairs that adhere to the constraint definitions for that method.

Constraints define the keys that will or can be present in the map, as well as the
expected data type of their values. Complex value structures can be defined either
using a multi-level 'compact' attribute, or using an 'inherit' attribute. See Data
Types for more details.

Special Cases

There are a few special cases with optional constraints and the 'target-node-info'
constraint. This parameter and 2 of its nested values are invisibly optional, even
though they do not specify an optional attribute.

For any command that accepts the 'target-node-info' complex data structure
parameter, it can always be omitted. If omitted, the Client Proxy service will always
direct the call to the local host.

Also, when building a target-node-info structure, the iid and persistent values in the
target-node-info map can also be omitted. These values are used by Episode
internally, and suitable defaults will be generated automatically if they are omitted.

For an example of the 'target-node-info' argument structure, see the Inherited
complex data structures section.

Option Sets

<option> element sets can be found in both parameter and return structure
definitions. These elements imply that only one of the structures in that set of
<option> elements can or will be present.

Some definitions combine option sets with standard constraints.

An example of this can be found in the <reply> from the proxy.process.log.get
command:

Constraint definition using option sets
<reply>
<!-- Common options for all entities -->
<constraint property-name="error" compact="type:string"

optional="yes"/>
<constraint property-name="log-to-file" compact="type:bool"

optional="yes"/>
<constraint property-name="log-to-file-report-verbosity"

compact="range:int(0..7)" optional="yes"/>
<option>
<!-- Options for node|xmlrpc|io|proxy|assistant -->
<constraint property-name="system-log" compact="type:bool"

Using the XML-RPC Interface
Overview of XML-RPC File Structure

71
optional="yes"/>
<constraint property-name="system-log-report-verbosity"

compact="range:int(0..7)" optional="yes"/>
<constraint property-name="log-directory"

compact="type:string" optional="yes"/>
<constraint property-name="stdout-stderr-re-direct"

compact="type:bool" optional="yes"/>
<constraint property-name="rotation-max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="rotation-max-size"

compact="range:int(1024..)" optional="yes"/>
</option>
<option>
<!-- Options for watch folders -->
<constraint property-name="rotation-max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="rotation-max-size"

compact="range:int(1024..)" optional="yes"/>
</option>
<option>
<!-- Options for tasks -->
<constraint property-name="max-files"

compact="range:int(1..)" optional="yes"/>
<constraint property-name="clean-interval"

compact="range:int(5..604800)" optional="yes"/>
</option>

</reply>

In this example, the three constraints at the top of the reply (error, log-to-file, and
log-to-file-report-verbosity) are not part of the option set. The presence of these
constraints follows the same rules as constraints in any other <send> or <reply>
block. However, only one of the value sets contained in the following 4 <option>
blocks can be present.

This means that in a <struct> returned from this method, the error, log-to-file, and
log-to-file-report-verbosity keys could always be present. However, if the rotation-
max-files key was also present, the only other key that could exist in the map would
be rotation-max-size (because it is defined in the same <option> block as rotation-
max-files). Any keys defined in other options blocks would not be allowed in this
return.

Using the XML-RPC Interface
Overview of XML-RPC File Structure

72
Tag Name Mappings
The tag names used to define data structures in the constraint definitions can
usually be directly mapped to XML-RPC message structure tags as follows:

Constraint tags: <send>, <reply>, <db>, <dbmv>.
<dbmv> is a unique case. See below for details.
XML-RPC message element: <struct> (hash map)

Constraint tag: <list>
XML-RPC message element: <array>

See Primitive Data Types for mappings of primitive data types as values.

Note: <dbmv> is a unique <struct> definition used in returns. These <struct>
elements use a variable keyset, rather than a fixed keyset defined by constraints. In
these cases, both the key, and its value contain data that is part of the return.
Unless you obtained the key for which you are looking for a value in one of these
<struct> elements in a previous call, you will need to iterate the pairs to retrieve
the desired data, rather than specifying a key to lookup in the map.

An example of this can be seen in the clusters constraint for the return from the
proxy.network.info.bonjour command:

Constraint definition using <dbmv> tags
<constraint property-name="clusters">
<dbmv> <!-- key is cluster name -->
<list>
<db>
constraint property-name="host" compact="type:string"/>
<constraint property-name="host-IPv4"
compact="type:string"/>

<constraint property-name="host-IPv6"
compact="type:string" optional="yes"/>

<constraint property-name="port" compact="type:string"/>
<constraint property-name="os" compact="type:string"/>
<constraint property-name="id" compact="type:string"/>
<constraint property-name="is-master"
compact="type:bool"/>

<constraint property-name="is-backup"
compact="type:bool"/>

<constraint property-name="num-nodes" compact="type:int"/>
<constraint property-name="tsp-compatible"
compact="type:bool"/>

</db>
</list>

</dbmv>
</constraint>

In this case, the key for each pair in the returned <struct> is the cluster name string,
and the value is an <array> of <struct> elements containing the system
information values for each system in that cluster, as defined by the constraints. All
usages of the <dbmv> element should be commented to specify the data that will
be returned as the map's keyset.

Using the XML-RPC Interface
Overview of XML-RPC File Structure

73
Data Types
The data type of the values expected/returned by a parameter are defined in one of
four ways:

• A compact attribute denoting a primitive data type

• A compact attribute denoting a complex data structure

• An inherit attribute denoting an inherited complex data type

• In-place in the XML as child nodes of the constraint element

Using the XML-RPC Interface
Overview of XML-RPC File Structure

74
Primitive Data Types
Primitive data types, like constraint child tags, can be directly translated to native
XML-RPC data types and message elements. Below is a list of the compact attribute
values for primitive data types, and mappings to their XML-RPC counterparts.

Note: Episode’s implementation of the XML-RPC server does not surround string
values with <string> tags. The server will accept message with or without <string>
tags around these values, but your client must be compatible with this message
structure in order to properly communicate with the server.

In-place Complex Data Structure Definitions
Many constraints use in place definitions for complex data structure values. These
structures are defined by a series of child nodes under the constraint element.
These XML tag names can be directly translated to XML-RPC message elements
using the mappings defined in Tag Name Mappings.

Here is an example of an in-place complex data structure definition:

Typical in-place complex data structure element
<constraint property-name="task-username-tags" optional="yes">
<list>
<db>
<!-- This should be a user defined task name -->
<constraint property-name="name" compact="type:string"/>
<!-- The tag to set as a run requirement for the task -->
<constraint property-name="tag" compact="type:string"/>
<!-- This optional property indicates if the task should
run or should NOT run on the specified tag (if the tag is
present on the Node). The default is run (true). -->

<constraint property-name="run" compact="type:bool"
optional="yes"/>

</db>
</list>

</constraint>

Using the information in the mappings section, we can build the XML-RPC message
structure that would be sent for this parameter under the top level struct, adhering
to this constraint definition:

Primitive data types in CLI and XML-RPC

XML-RPC Data Type CLI Tag Name XML-RPC Element

bool Boolean <boolean>

integer Integer <i4>

string String <string>

binary Base 64 encoded <base64>

Using the XML-RPC Interface
Overview of XML-RPC File Structure

75
XML-RPC argument structure
...
<member>
<name>user-name-tags</name>
<value>
<array>
<data>
<value>
<struct>
<member>
<name>name</name>
<value>
<string>Task Name</string>

</value>
</member>
<member>
<name>tag</name>
<value>
<string>sometag</string>

</value>
</member>
<member>
<name>run</name>

<value>
<Boolean>1</Boolean>

</member>
</struct>

</value>
</data>

<array>
</value>

</member>
...

Using the XML-RPC Interface
Overview of XML-RPC File Structure

76
Complex Data Structure Compacts
A compact can also specify a multi-level complex data structure. These compact
values use a combination of constraint child node tag names, and primitive data
type identifiers to specify a complex structure.

Here is an example of a complex compact value, and its translation to an XML-RPC
message:

compact="type:list(type:string)"

This compact specifies a value consisting of a list of strings. We know that a list
maps to an XML-RPC <array>, so the XML-RPC value structure for this argument
would look something like this:

XML-RPC structure of a multi-level compact
<array>
<data>
<value>
<string>Some String</string>

</value>
...

</data>
</array>

Using the XML-RPC Interface
Overview of XML-RPC File Structure

77
Inherited Complex Data Structures
Some constraints do not have a 'compact' attribute, but instead use an 'inherit'
attribute. The inherit attribute denotes that this constraint expects a complex data
structure for its value that is defined elsewhere. Constraints using an 'inherit'
attribute should be commented with the location of the constraint definition for
that complex structure.

We can see an example of this with the "target-node-info" constraint that is used by
many of the commands:

Example of constraint using target-node-info data type
...
<!-- Info about target node to submit to - default localhost see
proxy-constraints.xml for description of target node info
structure -->
<constraint property-name="target-node-info"

inherit="target-node-info"/>
...

Following the XML comment, we can find the definition of the target-node-info
structure in 'proxy-constraints.xml':

Definition of target-node-info constraint
...
<constraint property-name="target-node-info">
<db>
<constraint property-name="persistent"

compact="type:bool"/>
<constraint property-name="iid" compact="type:string"/>
<!-- If neither host/port nor cluster is specified, the

local node is used regardless of its state. If it's a cluster
participant, get redirected to the master node. -->

<constraint property-name="host" compact="type:string"
optional="yes"/>

<!-- If no port is specified, the default port is used -->
<constraint property-name="port" compact="type:string"

optional="yes"/>
<!-- Try to find a node using bonjour -->
<constraint property-name="cluster-name"

compact="type:string" optional="yes"/>
<constraint property-name="timeout" compact="type:int"

optional="yes"/>
</db>

</constraint>
...

From here, we can treat any constraint specifying an 'inherit="target-node-info"'
attribute as if it had an in-place complex data structure definition that matches that
of the target-node-info constraint specified in another file.

Using the XML-RPC Interface
Overview of XML-RPC File Structure

78

79
Using the JSON-RPC
Interface
This chapter describes Episode’s JSON-RPC interface for direct programmatic control
of the Episode feature set.

The following topics are covered:

■ Overview

■ JSON-RPC File Structure

■ Program Examples

■ Demo Web Page with Job Monitoring

Using the JSON-RPC Interface
Overview

80
Overview
The JSON-RPC interface is enabled by default and ready to use for external
integration of Episode to other systems and software.

• The Episode JSON service starts on default port 8080.

• Available Episode JSON-RPC commands are essentially the same as the XML-RPC
commands described in the chapter on Using the XML-RPC Interface.

The JSON-RPC service conforms to JSON-RPC 2.0 Transport: HTTP. JSON, which
stands for JavaScript Object Notation, provides a human readable data-interchange
format for querying and controlling Episode. JSON uses a text format based on the
JavaScript Programming Language. Although JSON is language independent, it
follows conventions similar to the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and others.

For more information about the JSON standard, visit these web sites:

http://www.jsonrpc.org/

http://www.simple-is-better.org/json-rpc/transport_http.html

Objects and Arrays
JSON employs two main data structures: objects and arrays.

Objects follow these conventions:

• Consist of an unordered list of name and value pairs.

• Begin with a left brace ({) and end with a right brace (}).

• Include a colon after each name (:).

• Separate name/value pairs with a comma (,).

Arrays follow these conventions:

• Comprise ordered collections of values.

• Begin with a left bracket ([) and end with a right bracket (]).

• Separate values by a comma (,).

http://www.jsonrpc.org/
http://www.simple-is-better.org/json-rpc/transport_http.html

Using the JSON-RPC Interface
Overview

81
Values
Values can consist of a string in double quotes, a number, a true or false or null, an
object, or an array. Nested values are permitted. You can add whitespace between
any pair of tokens.

Strings

A string consists of a sequence of Unicode characters in double quotes, using
backslash escapes. A character is represented as a single character string.

Numbers

A number is very much like a C or Java number, except that the octal and
hexadecimal formats are not used.

Binary Data

Binary data is treated as strings. When sending such a value as a parameter with
JSON-RPC, it should be prefixed with "#bin#", without the quotation marks. Without
the prefix, our JSON-RPC client will treat the value as a regular string.

Here is a small example of how a JSON command looks with a binary (base64)
value. The value is truncated for ease.

{
"jsonrpc": "2.0",
"method": "submitBuildSubmission",
"id": 1,
"params":
{ "workflow-name":"json workflow", "file-
list":["C:\Users\Username\Videos\Sources\video.mov"],
"tasks":["#bin#PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZQo=..."],
"destination-dirs":["C:\Users\Username\Videos\Output\"] }

}

Using the JSON-RPC Interface
JSON-RPC File Structure

82
Programming Languages and Libraries
You can choose from many popular programming languages to work with the
JSON-RPC API. To communicate with Episode via the JSON-RPC API, you will need
to use a JSON-RPC client library in your program. The JSON web site includes lists of
many available libraries:

http://www.jsonrpc.org/

JSON-RPC libraries handle low-level HTTP request/response communications with
the Episode JSON-RPC service and package method calls and returns into
standardized JSON-RPC message structures so they can be easily integrated with
your program, in the language of your choice.

JSON-RPC File Structure
Episode JSON-RPC API files use the elements shown in the following definitions
and examples. Also see the XML-RPC chapter for command descriptions.

High-level Element Definitions
The elements present in requests and responses are described below.

Note that every request must be made using the HTTP POST method with Content-
Type set to application/json.

Request Elements

POST / HTTP/1.1: HTTP method required at the start of every request.

Host: Episode JSON-RPC server host address and port, such as localhost or
127.0.0.1.

Content-Length: Number of bytes in the content request/response.

Content-Type: application/json

Request Message: Described in the next topic below.

JSON Request Message Structure

Request Message: Includes a request, ID, and parameters in this pattern:
{"jsonrpc":"2.0","method":"request","id":number,"params":{param}}

"jsonrpc": Always set to "2.0",

"method": Identifies the desired method to execute.

"id": Set to a unique id string or integer. If omitted, the request is treated as a
notification and the server response is also omitted.

"params": Include any method parameters.

http://www.jsonrpc.org/

Using the JSON-RPC Interface
JSON-RPC File Structure

83
Response Elements

HTTP/1.1 200 OK: Response method and status—OK or error message.

Server: EpisodeJSONRPCServer identifies the responding service.

Connection: Status of the server connection.

Access-Control-Allow-Origin: Used by the client to enable cross-site HTTP
requests. Asterisk (*) tells the client that is possible to access the server from any
domain.

Access-Control-Allow-Headers: Indicates headers the Episode JSON service will
accept.

Allow: Indicates methods the Episode JSON service will accept.

Content-Type: application/json; charset=UTF-8.

Content-Length: Number of characters in the response.

Response Message: Described in the next topic below.

JSON Response Message Structure

Response Message: Includes the request ID, the JSON version, and additional data
in this format: {"id": 1, "jsonrpc": "2.0", "result": {"API": 2, "product": "6.5.0" } }

"id": Same unique id string or integer used in the request. If omitted in the request,
the server omits it in the response also.

"jsonrpc": Always set to "2.0",

"result": Contains the method response. Present only if no error occurred.

"error": Contains an error object. Present only if an error occurred.

Using the JSON-RPC Interface
JSON-RPC File Structure

84
Example Requests with HTTP Headers and Responses
Each JSON-RPC method is defined by the structure shown in these examples:

Example getVersion

POST / HTTP/1.1
Host: localhost:8080
Content-Length: 58
Content-Type: application/json
{"jsonrpc":"2.0","method":"getVersion","id":1,"params":{}}

Response:
HTTP/1.1 200 OK
Server: EpisodeJSONRPCServer
Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,
Content-Type, Accept
Allow: OPTION, POST
Content-Type: application/json; charset=UTF-8
Content-Length: 71
{"id": 1, "jsonrpc": "2.0", "result": {"API": 2, "product":
"6.5.0" } }

Example statusTasks2 with params

POST / HTTP/1.1
Host: localhost:8080
Content-Length: 74
Content-Type: application/json

{"jsonrpc":"2.0","method":"statusTasks2","id":3,"params":{"hist
ory":true}}

Response:
HTTP/1.1 200 OK
Server: EpisodeJSONRPCServer
Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Origin, X-Requested-With,
Content-Type, Accept
Allow: OPTION, POST
Content-Type: application/json; charset=UTF-8
Content-Length: 5006

{"id": 3, "jsonrpc": "2.0", "result": {"statuses": {"WOFL-
5DA24888-9AA5-406..

Using the JSON-RPC Interface
Program Examples

85
Program Examples
The following examples show test files created using the Ruby scripting language.

To run a Ruby script you will need to get Ruby from www.ruby.org.

Example Class for HTTP Calls—jsonrpc.rb file
The following jsonrpc.rb file is a small example JSON-RPC wrapper.

require 'net/http'
require 'json'

A class used to make JSONRPC calls over HTTP
class JSONRPC

 # Used to send a command on the server
 # string url for server
 # string method with server method
 # hash with params server parameters
 def self.call(url, method, params, id)
 @toSend = {
 "jsonrpc" => "2.0",
 "id" => id,
 "method" => method,
 "params" => params
 }.to_json
 return self.raw_post(url, @toSend)
 end

 # Used to execute a command on the server
 # string url for server
 # string method with server method
 # hash with params server parameters
 def self.notification(url, method, params)
 @toSend = {
 "jsonrpc" => "2.0",
 "method" => method,
 "params" => params
 }.to_json
 return self.raw_post(url, @toSend)
 end

 # Used to make raw json posts
 # string url for server
 # string json with arguments
 def self.raw_post(url, json)
 uri = URI.parse(url)
 http = Net::HTTP.new(uri.host, uri.port)
 req = Net::HTTP::Post.new(uri.path, initheader = {'Content-Type' =>'application/json'})
 req.body = json
 resp = http.request(req)
 return resp
 end

end

http://www.ruby.org

Using the JSON-RPC Interface
Program Examples

86
Example Test Version—jsonTestVersion.rb file
require "test/unit"
require 'net/http'
require 'pp'
require 'json'
require_relative 'jsonrpc'

class TestJSONVersion < Test::Unit::TestCase
 def setup

 end

 # Test case
 def test_version
 # Request id any identifier
 id = 1;

 # Make request url, method, params, id
 raw_response = JSONRPC.call("http://localhost:8080/", "getVersion", {}, id)

 # Parse json
 response = JSON.parse(raw_response.body)

 # Use pp to print response, uncomment line below
 # pp response

 # check if reply is ok
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("result"), "No result present in response")
 end

 # An error occurred on the server while parsing the JSON text.
 # -32600 Invalid Request The JSON sent is not a valid Request object.
 # -32603 Internal error Internal JSON-RPC error.
 # -32000 to -32099 Server error Reserved for implementation-defined server-errors.
 # -32601 Method not found The method does not exist / is not available.
 def test_bugus
 id = "string id";
 res = JSONRPC.call("http://localhost:8080/", "dummyMethod", {}, id)
 response = JSON.parse(res.body)
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("error"), "No error present in response")
 assert_equal(-32601, response['error']['code'], "Expected error code -32601")
 end

 # -32700 Parse error Invalid JSON was received by the server.
 def test_parse_error
 res = JSONRPC.raw_post("http://localhost:8080/", "{{{\"d\":[ososososososos], lpldpdl plp lpl
pldp lpdlp{{not valid json pp}}")
 response = JSON.parse(res.body)
 assert_equal(-32700, response['error']['code'], "Expected error code -32700")
 end

 def test_notification
 res = JSONRPC.notification("http://localhost:8080/", "getVersion", {})
 assert_equal(nil, res.body, "Expected empty response on notification")
 end

 def teardown
 #void
 end

end

Using the JSON-RPC Interface
Program Examples

87
Example Test Status Tasks2—jsonTestStatusTasks2.rb file
require "test/unit"
require 'net/http'
require 'pp'
require 'json'
require_relative 'jsonrpc'

class TestJSONStatusTasks2 < Test::Unit::TestCase
 def setup

 end

 # Test case
 def test_basic_statustasks2
 # Request id any identifier (string or number)
 id = 2;

 # Make request url, method, params, id
 raw_response = JSONRPC.call("http://localhost:8080/", "statusTasks2", {"history" => true}, id)

 # Parse json
 response = JSON.parse(raw_response.body)

 # Use pp to print response, uncomment line below
 # pp response

 # check if reply is ok
 assert(response.has_key?("jsonrpc"), "No key jsonrpc")
 assert_equal("2.0", response["jsonrpc"], "Key jsonrpc MUST be '2.0'")
 assert_equal(id, response["id"], "Response id must be equal to the sent id")
 assert(response.has_key?("result"), "No result present in response")
 assert(response["result"].has_key?("statuses"), "No statuses present in result")
 end

 def teardown
 #void
 end

end

Using the JSON-RPC Interface
Demo Web Page with Job Monitoring

88
Demo Web Page with Job Monitoring
The JSON interface includes a Demo.html web page that provides a functioning job
status monitoring feature.

To access the page:

1. Navigate to this location:

– Mac: Applications/Episode.app/Contents/Resources/engine/API/JSONRPC/
HTML/demo.html

– Win: C:\Program Files\Telestream\Episode 7\API\JSONRPC\HTML\demo.html

2. Double-click the HTML file to open the Demo page in your default browser.

3. Enter the server address of your Episode installation.

4. Select a node from the Episode nodes listed in the Available nodes menu.

5. Click Connect to view the job status list.

Job Monitoring on the Demo Web Page

	Episode Advanced User Guide
	Contents
	Preface 17
	Episode Overview 21
	Creating Tasks, Sources, Workflows & Submissions 37
	Using Advanced Features 45
	Using the Command Line Interface 57
	Using the XML-RPC Interface 65
	Using the JSON-RPC Interface 79

	Preface
	Support | Information | Assistance
	Company and Product Information
	Mail
	International Telestream Distributors
	We'd Like to Hear From You!

	Audience and Assumptions
	How this Guide is Organized
	Episode Overview
	Using the JSON-RPC Interface

	Episode Overview
	XML-RPC and CLI License Requirements
	Episode Interfaces
	Watch Folder and Deployment Interface
	XML-RPC and CLI Interfaces
	XML-RPC Interface
	Command Line Interface

	JSON Interface

	Episode Architecture
	Node
	Worker
	Watch
	IOServer
	Assistant
	ClientProxy

	Episode Processes
	Managing Back-end Processes (MacOS)
	Managing Back-end Processes (Windows)
	Back-end Process Configuration

	Episode Concepts and Components
	Workflows, Tasks, and Sources
	Workflows
	Tasks
	Sources
	Post-deployment Processing Tasks

	Variables
	Episode Tags

	Creating Tasks, Sources, Workflows & Submissions
	Creating Tasks
	Setting Task Priority
	XML-RPC and CLI Priority Commands

	Creating Sources
	Creating Workflows and Submissions

	Using Advanced Features
	Advanced Features
	Advanced Sources
	Advanced Encoding
	Advanced Post-Deployment Tasks

	Advanced Clustering
	Clustering Configuration
	Avoiding Bonjour
	Using a Specific Ethernet Interface
	Setting Bonjour IP Lookup to No

	Shared Storage
	Named Storage
	Named Storage Simple Example
	Named Storage Cluster Example

	Using the Command Line Interface
	Starting the CLI Interpreter [Windows]
	Starting Episode Services in Windows
	Other Alternatives

	Starting Episode Control in Windows

	Starting the CLI Interpreter [MacOS]
	Starting Episode Services in MacOS
	Other Alternatives

	Starting Episode Control in MacOS

	Determining if Episode is Running
	Using the CLI Interpreter
	Executing Commands
	Return Codes

	Displaying Episode Variables
	Displaying Episode Tags
	Executing Commands to a Cluster
	Displaying CLI Help
	Help Command Syntax

	Writing Help to a Text File

	Using the XML-RPC Interface
	Overview
	Restart the XML-RPC Service
	Communicating with Episode via the XML-RPC API
	Overview of XML-RPC File Structure
	Example
	High-level Element Definitions
	Commands and Constraints
	Tag Name Mappings
	Data Types
	Primitive Data Types
	In-place Complex Data Structure Definitions
	Complex Data Structure Compacts
	Inherited Complex Data Structures

	Using the JSON-RPC Interface
	Overview
	Objects and Arrays
	Values
	Strings
	Numbers
	Binary Data

	Programming Languages and Libraries

	JSON-RPC File Structure
	High-level Element Definitions
	Request Elements
	JSON Request Message Structure
	Response Elements
	JSON Response Message Structure

	Example Requests with HTTP Headers and Responses
	Example getVersion
	Example statusTasks2 with params

	Program Examples
	Example Class for HTTP Calls—jsonrpc.rb file
	Example Test Version—jsonTestVersion.rb file
	Example Test Status Tasks2—jsonTestStatusTasks2.rb file

	Demo Web Page with Job Monitoring

