

Note on License

The accompanying Software is licensed and may not be distributed without writ-
ten permission.

Disclaimer

The contents of this document are subject to revision without notice due to con-
tinued progress in methodology, design, and manufacturing. Telestream shall have
no liability for any error or damages of any kind resulting from the use of this doc-
ument and/or software.

The Software may contain errors and is not designed or intended for use in on-line
facilities, aircraft navigation or communications systems, air traffic control, direct
life support machines, or weapons systems (“High Risk Activities”) in which the
failure of the Software would lead directly to death, personal injury or severe
physical or environmental damage. You represent and warrant to Telestream that
you will not use, distribute, or license the Software for High Risk Activities.

Export Regulations. Software, including technical data, is subject to Swedish
export control laws, and its associated regulations, and may be subject to export
or import regulations in other countries. You agree to comply strictly with all such
regulations and acknowledge that you have the responsibility to obtain licenses to
export, re-export, or import Software.

Copyright Statement

©Telestream, Inc, 2010

All rights reserved.

No part of this document may be copied or distributed.

This document is part of the software product and, as such, is part of the license
agreement governing the software. So are any other parts of the software product,
such as packaging and distribution media.

The information in this document may be changed without prior notice and does
not represent a commitment on the part of Telestream.

Telestream i

Telestream Episode Engine User’s Guide

Trademarks and Patents

• Episode is a registered trademark of Telestream, Inc.

• UNIX is a registered trademark of UNIX System Laboratories, Inc.

• Apple is a trademark of Apple Computer, Inc., registered in the U.S. and
other countries.

• QuickTime is a trademark of Apple Computer, Inc., registered in the U.S.
and other countries.

• Windows Media is a trademark of Microsoft Inc., registered in the U.S. and
other countries.

• RealNetworks, RealAudio, and RealVideo are either registered trademarks
or trademarks of RealNetworks, Inc. in the United States and/or other coun-
tries.

All other trademarks are the property of their respective owners.

MPEG-4 AAC

“Supply of this Implementation of MPEG-4 AAC technology does not convey a
license nor imply any right to use this Implementation in any finished end-user or
ready-to-use final product. An independent license for such use is required.”

MP3

This software contains code from LAME, http://lame.sourceforge.net/.
“Supply of this product does not convey a license nor imply any right to distribute
content created with this product in revenue-generating broadcast systems (ter-
restrial, satellite, cable and/or other networks.), streaming applications (via Inter-
net, Intranets, and/or other networks), other content distribution systems (pay au-
dio or audio-on-demand applications and the like) or on physical media (compact
discs, digital versatile discs, semiconductor chips, hard drives, memory cards and
the like). An independent license for such use is required. For details, please visit
http://mp3licensing.com/.”

OGG Vorbis

This software contains code that is ©2010, Xiph.Org Foundation. “THIS SOFT-
WARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LI-
ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

Telestream ii

http://lame.sourceforge.net/
http://mp3licensing.com/
http://www.xiph.org

Telestream Episode Engine User’s Guide

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.”

PCRE

PCRE is a library of functions to support regular expressions whose syntax and
semantics are as close as possible to those of the Perl 5 language.

Release 7 of PCRE is distributed under the terms of the “BSD” licence, as spe-
cified below. The documentation for PCRE, supplied in the “doc” directory, is
distributed under the same terms as the software itself.

The basic library functions are written in C and are freestanding. Also included
in the distribution is a set of C++ wrapper functions.

The basic library functions

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service, Cambridge, England.

Copyright ©1997–2008 University of Cambridge. All rights reserved.

The C++ wrapper functions

Contributed by: Google Inc.

Copyright ©2007–2008, Google Inc. All rights reserved.

The “BSD” licence

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of the University of Cambridge nor the name of Google
Inc. nor the names of their contributors may be used to endorse or promote
products derived from this software without specific prior written permis-
sion.

Telestream iii

mailto:ph10
mailto:cam.ac.uk

Telestream Episode Engine User’s Guide

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Disclaimer of Warranty on Software

You expressly acknowledge and agree that use of the Software is at your sole risk.
The Software and related documentation are provided “AS IS” and without war-
ranty of any kind and Licensor and the third party suppliers EXPRESSLY DIS-
CLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER LICENSOR NOR
ANY THIRD PARTY SUPPLIER WARRANT THAT THE FUNCTIONS CON-
TAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR
THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED
OR ERROR-FREE. FURTHERMORE, THE TERMS OF THIS DISCLAIMER
AND LIMITATION OF LIABILITY BELOW DO NOT AFFECT OR PREJU-
DICE THE STATUTORY RIGHTS OF A CONSUMER ACQUIRING THE SOFT-
WARE OTHERWISE THAN IN THE COURSE OF A BUSINESS, NEITHER
DO THEY LIMIT OR EXCLUDE ANY LIABILITY FOR DEATH OR PER-
SONAL INJURY CAUSED BY NEGLIGENCE.

Limitation of Liability

LICENSOR AND THE THIRD PARTY SUPPLIERS EXPRESSLY DISCLAIMS
ALL LIABILITY FOR DAMAGES, WHATEVER THEIR CAUSE, INCLUD-
ING DIRECT OR INDIRECT DAMAGE, SUCH AS CONSEQUENTIAL OR
BUSINESS DAMAGE, AMONGST OTHERS CAUSED BY THE NON-FUNC-
TIONING OR MALFUNCTIONING OF THE SOFTWARE. SHOULD LICEN-
SOR OR THE THIRD PARTY SUPPLIERS IN ANY WAY BE LIABLE FOR
DAMAGES, EITHER AS PER THE TERMS OF THIS LICENSE OR OTHER-
WISE, THEN THIS LIABILITY WILL IN NO EVENT EXCEED THE AMOUNT
PAID BY YOU FOR THE SOFTWARE. SOME JURISDICTIONS DO NOT
ALLOW THE LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAM-
AGES SO THIS LIMITATION MAY NOT APPLY TO YOU.

Telestream iv

Contents

Note on License i

1 Using Episode Engine 2

1.1 What happens? 2
1.2 Once more, with details 2

1.2.1 Settings files 2
1.2.2 Input monitoring 3
1.2.3 Transcoding 3

1.3 Monitoring transcoding 4
1.4 Advanced features 4

1.4.1 Watermarks 4
1.4.2 Bumpers and trailers 5
1.4.3 Metadata 5
1.4.4 Scripts . 5
1.4.5 Split-and-stitch 6

2 Engine Admin 7

2.1 Connecting . 7
2.2 Active jobs . 8
2.3 Job history. 9
2.4 Connected nodes 10
2.5 Connected clients 11
2.6 Input Monitors 12
2.7 Message Log . 13

3 Integrating Episode Engine and Final Cut Server 15

3.1 Setup . 15

4 Reference section 25

4.1 Watch folders. 25
4.2 Input monitors 27

4.2.1 File Monitor 27
4.2.2 Image Sequence Monitor 30
4.2.3 FTP Monitor 32
4.2.4 SMB/CIFS Monitor 34
4.2.5 Pipeline File Monitor 35

4.3 Storage depots 36

Telestream v

Telestream Episode Engine User’s Guide

4.4 Shared settings 36
4.5 Hardware acceleration 36
4.6 Optional files . 36

4.6.1 Example 37
4.6.2 Watermarks 37
4.6.3 Bumpers and trailers 38
4.6.4 Metadata 38
4.6.5 Separate audio source files 41

4.7 Event scripts . 44

A Supported formats 48

B engine 55

B.1 Examples . 60

Telestream vi

Telestream Episode Engine User’s Guide

Document conventions

NOTE

Paragraphs marked like this highlight items of particular importance for the proper
function of the software.

TIP

Paragraphs marked like this highlight procedures that can save time or produce
particularly good results.

Paragraphs marked like this warn about features which may cause loss of data or
failed execution if used incorrectly.

Document references, both internal and external, are shown in italics. Example:
See chapter 2 Before You Install.

Literature references are given as numbers in brackets with the full reference in
the Bibliography. Example:
See [2].

Directory names, file names, code examples, and prompts, are shown in plain
typewriter type. Example:
The file printer.ppd can be found in /etc/cups/ppd/.

The names of interface components are given in bold. Example:
Adjust the time limit with the Time limit slider. Select Quit from the Episode
Engine drop-down menu.

Keys to be pressed on the keyboard are displayed in bold typewriter type. Ex-
ample:
Press Return to select the GUI installation.

Examples of extended dialogue will include the shell prompt> .

Command syntax is described in Backus-Naur form.

Copy-pasting from the manual is not guaranteed to work, as the text contains
formatting information which may not be accepted by the target application.

Telestream 1

1 Using Episode Engine

So, you (or someone else) just finished installing Episode Engine and you are
eager to start using it. This manual will tell you how to do it. We begin with a
very quick overview to get you started, and then more fully explain day-to-day
use of Episode Engine. The next chapters shows how to use the Engine Admin
client to control and monitor execution, how to integrate Episode Engine and
Final Cut Server, and how to integrate Episode Engine and Pipeline. Finally
we will magnify all the fine print and give all the details of how things work.

1.1 What happens?

For a transcoding to take place, you need at least one source file and one settings
file. The source file is whatever input you have, video and/or audio. The settings
file is created with the companion product Episode Encoder and defines how the
source file should be transformed into the output file.

Episode Engine can be set up to monitor any number of data sources, so that when
a media file is placed in one of these sources, Episode Engine will automatically
start the transcoding process. The resulting output file is placed in an output folder
from which you can retrieve it or let a script move it to its final destination.

1.2 Once more, with details

1.2.1 Settings files

You can use any of the number of template settings supplied with Episode En-
gine, which cover most of the usual output formats, or you can use Episode En-
coder to develop specialised settings for your particular needs. If you want, you
can make very complex and fine-tuned settings, the art of which we cannot cover
here, but instead refer you to the Episode Encoder User Guide for the details.
Note that mostly settings files do not depend on the input material, so you can
use the same settings file for many different input formats. Each settings file will
generate a specific type of output.

If you are using watch folders (see below) you copy your settings files to the watch
folders where they are to be used, but in the general case, you upload settings files
to the shared settings area on the Episode Engine server, where they also can be
used by others transcoding on the same server.

Telestream 2

Telestream Episode Engine User’s Guide

1.2.2 Input monitoring

Episode Engine uses input monitoring to find media source files. Typically Epi-
sode Engine continuously checks the contents of a folder, on local disk, shared
storage, or on a remote file server, but you can also set up monitoring of a hard-
ware device, such as a digital video camera.

The classical method of input monitoring is watch folders. Media files placed in
watch folders that also contain settings files will be transcoded. The location of
your watch folders was set up during installation, by default the watch folders are
the subfolders of /Users/Shared/Episode Engine/Input/.

A more general method is File Monitors with which you can designate any ar-
bitrary folder to be monitored for media files. When setting up the File Monitor
in Engine Admin you define what settings files to use for transcoding the files
in that folder. Note that you cannot use File Monitors on watch folders, as the
methods conflict.

In a similar manner you can use the FTP and SMB Monitors, which monitor
folders located on ftp and SMB servers, respectively.

Watch folders have some important differences in behaviour to File Monitors,
these differences will be pointed out as needed.

Best practice A good way to organise things is to create separate folders for
the different types of transcodings you need to perform. Consider a production
environment for three different customers: One has a website with continously
updated video clips in three different formats, one generates podcasts for the iPod,
one burns Video CDs and DVDs. You can either set this up so that you monitor
their ftp servers and retrieve files as they are created, or create separate accounts
for the users where they can log in and deposit their material. In each case, the
customers only ever see their own material and you can set the priorities of the
input monitors so that customers with stricter time limits get treated before those
with less urgent requirements. Event scripts (see section 4.7, Event scripts) can
then be used to transfer the finished output files to their final destinations.

1.2.3 Transcoding

A source file will be transcoded into as many output files as there are settings files
associated with the input monitor. The output files will be placed in a folder that
by default will be located under /Users/Shared/Episode Engine/. Files
generated from sources in watch folders will be placed in a folder with the same
name as the input watch folder under /Users/Shared/Episode Engine/
Output/, whereas files from input monitors will be placed in a folder of your
choosing.

The name of the output file is the name of the input file concatenated with the
name of the settings file and the file type extension.

By default source files in a watch folder will be deleted once they have been
transcoded with all associated settings. To retain your source files, you need to
set up archiving, in which case they are moved to an archive folder (by default in

Telestream 3

Telestream Episode Engine User’s Guide

/Users/Shared/Episode Engine/Archive/) after they have been trans-
coded. (See the Episode Engine Admin Guide for how to set up archiving.) Other
input monitors will not delete their source files.

1.3 Monitoring transcoding

In order to monitor the progress of transcoding jobs Episode Engine has a client
called Engine Admin. In a default installation it is in the Applications folder.

On startup you must connect to a named server, since in a large installation you
might have multiple instances of Episode Engine running. Engine Admin will
display all servers on your local network, but you can also give the address of a
server anywhere on the Internet. Of course you have to supply the password to
the server you connect to.

Once you are connected to a server, you can monitor the health of jobs, clients
(the processes involved in transcoding) and the computing nodes. You can also
create input monitors.

1.4 Advanced features

You can get more out of your installation with the advanced features Episode
Engine offers, by adding more information to your output files and by post-
processing them once transcoding is done.

1.4.1 Watermarks

Watermarks are images added to the video to indicate origin, enforce copyright
etc. A settings file can specify that a watermark be added to a video. In this

Telestream 4

Telestream Episode Engine User’s Guide

case, transcoding will not start unless the required watermark file is present in the
monitored folder.

Watermark files can be designated not to be automatically deleted from a watch
folder.

1.4.2 Bumpers and trailers

Bumpers and trailers, also called intros and outros, are short clips added respect-
ively before and after your main material. These may be station signatures, credit
rolls and similar material. You can add bumper and trailer clips to folders in the
same manner as watermark files.

Bumpers and trailers can be designated not to be automatically deleted from a
watch folder.

1.4.3 Metadata

Metadata are data about a media file, author, copyright date, etc. Most output
formats support at least some metadata fields.

Metadata that should be applied to all source files should be defined in a settings
file, but more often one wants to supply metadata on a per-file basis. To do this
you create XML files with the same name as the source file and the extension
.inmeta. You can use Episode Encoder to do this. If an output format does not
support a given metadata field, it will instead be stored in an XML file with the
same name as the the output file and the extension .meta.

To use .inmeta files, this must have been specified in the settings file. If this
has been specified, transcoding will not start unless the required metadata file is
present in the monitored folder.

.inmeta files are deleted from watch folders when transcoding is finished.

1.4.4 Scripts

Episode Engine can be extended by scripts in two ways.

Event scripts take actions when jobs finish or generate error messages, or when
nodes fail. The scripts can be written in any language of your choice, but they are
stored in a single directory, so you cannot write scripts that are specific to a given
input or output folder; rather you should use the environment variables that are
made available to the script to select the action appropriate to the file in question.

Event scripts are restricted to reacting to events, but the Episode Engine Soft-
ware Development Kit lets you write scripts to submit jobs, monitor jobs, list
storage depots, and manage settings files, so that you could, e g, replace the En-
gine Admin with an application of your own, precisely adapted to the needs of
your organisation.

Telestream 5

Telestream Episode Engine User’s Guide

1.4.5 Split-and-stitch

Episode
Engine Pro

If you have the Episode Engine Pro version, you can run in split-and-stitch mode.
This means that source files are split into several parts, each part assigned to a
different cpu, transcoded in parallel and the resulting parts stitched together into
a single output file.

If you use watch folders you indicate that files are to be transcoded with split-
and-stitch by giving the watch folder a name that starts with stitch (not case
sensitive). If you use input monitors, you check the Split n’ Stitch checkbox in
the input monitor window.

Telestream 6

2 Engine Admin

2.1 Connecting

Starting Engine Admin brings up a window with a list of Episode Engine servers
visible through the Bonjour service. Either select one of these or type a name or
IP address of a server in the combo box Engine server. The combo box will
remember your latest connections. After selecting a server, enter the appropriate
password and press Login to connect.

Check Remember this password in my keychain to let the Apple Keychain re-
member your password. For servers on the local network the correct port number
is automatically determined, for external servers you can enter a port number if it
is different from the default one.

The username is currently not modifiable.

You can connect to additional servers with File→New Connection (Command-N)
and disconnect from a server with File→Disconnect (Command-D).

Telestream 7

Telestream Episode Engine User’s Guide

2.2 Active jobs

The Active Jobs tab shows the transcoding jobs currently underway or in queue.
The three buttons All, Queued and Running select whether to see all at a time or
just one category. Entering a string in the search field next to the buttons limits
the display to jobs matching the string.

The column Priority shows the current priority of each job. You can adjust this
priority by clicking on the priority value, which brings up a menu of symbolic
priority values, corresponding to numeric values as follows: Lowest = 0, Low =
250, Normal = 500, High = 750, Highest = 65535. You can also select a job row
and choose a priority from the Jobs menu.

The context menu on the job row also lets you set the priority. You can Abort
(Delete) a job or Stop And Requeue it.

Each job row starts with an Info button (). Clicking on it brings up a window
with detailed information on the job.

Telestream 8

Telestream Episode Engine User’s Guide

2.3 Job history

The Job History tab shows jobs no longer executing, either because they finished
in good order or because they failed in some way. They can also be selected
by category with the buttons All, Failed, and Finished. Entering a string in the

Telestream 9

Telestream Episode Engine User’s Guide

search field by the buttons limits the display to jobs matching the string. Select
Jobs→Clear Job History or press Command-Alt-Backspace to remove the
entries in the list. Select a job and choose Remove in the context menu or press
the Delete button () to remove individual jobs. The history list is automatically
purged after a time period set in the engine.conf file, by default 24 hours.

The Info button () gives the same information as for active jobs.

2.4 Connected nodes

The Connected Nodes tab shows the transcoding nodes connected to this server
process, their uptime and the number of running jobs on each.

Press the info icon () to get a window with more information on the node and
an event log for that node.

Telestream 10

Telestream Episode Engine User’s Guide

2.5 Connected clients

The Connected Clients tab shows all client processes connected to this server.
One of these will always be your own Engine Admin process, Event Action
Daemon, Analyzer, Watcher, and Dynamic Watcher will also always be vis-
ible.

Press the info icon () to get a window with information on and from the client
processes and an event log for that node.

Telestream 11

Telestream Episode Engine User’s Guide

2.6 Input Monitors

The Input Monitors tab shows all input monitors on this server. You can press
the + button or select Input Monitors→Add New Monitor to create a new input
monitor.

You can edit an inactive input monitor by double-clicking the monitor row, press-
ing the Edit button, selecting Edit Monitor in the context menu, or selecting
Input Monitors→Edit Monitor.

You can bring up an info window on an input monitor by clicking the Info button
(), pressing Command-I, selecting Input Monitors→Get Info, or selecting

Telestream 12

Telestream Episode Engine User’s Guide

Get Info in the context menu.

For complete information on all the different types of input monitors and how they
can be configured, see section 4.2, Input monitors.

2.7 Message Log

At the bottom of the window is the Message log showing information on the
processing. Only messages starting from when you connected to your current
server will be shown. Next to the Clear messages button is a light showing the
highest severity of messages in the log.

Clicking the checkbox Show only this level on the right, you can use the menu
to filter messages according to severity level: Debug, Info, Notice, Warning,
Error, Critical, Alert or Emergency.

Telestream 13

Telestream Episode Engine User’s Guide

Clear the message log as well as job info and client info logs by pressing the
button Clear messages or selecting Message Log→Clear Messages.

Telestream 14

3 Integrating Episode Engine and Final Cut
Server

You can use Episode Engine as a transcoding backend to Final Cut Server, ex-
tending the range of output formats available to FCS and increasing the transcod-
ing speed.

3.1 Setup

We will set up FCS to place files to be encoded in a Episode Engine watch folder.

Make sure that FCS can write in the Episode Engine watch folders.

Log in to Final Cut Server as an administrator.

Set up Episode Engine as a rendering device by selecting Devices in the leftmost
column of the window and then clicking the New Device button.

Telestream 15

Telestream Episode Engine User’s Guide

Set the Device Type to Filesystem, Device Name to Engine, and Local Dir-
ectory to the Episode Engine watch folder root, by default /Users/Shared/
Episode Engine/. Click Save Changes to save your device.

Set up references to the watch folders by clicking on Lookup in the leftmost
column of the Administration window. Click on the New lookup button to
bring up a Lookup window. Set the Name to Encode To and the Options to
No Encode.

Click Save Changes to save your lookup.

Telestream 16

Telestream Episode Engine User’s Guide

Set up encodings to use the watch folders by clicking on Metadata Fields in
the leftmost column of the Administration window. Click on the New Metadata
Field button to bring up a Metadata Field window. Set the Name to Encode To
and Category to None. Set Lookup Values to Encode To, i e the lookup you just
created.

Set up a new metadata group by clicking on Metadata Group in the leftmost
column of the Administration window. Click on the New Metadata Group

Telestream 17

Telestream Episode Engine User’s Guide

button to bring up a Metadata Group window. Set Name to Encode. Locate
Encode To in the Fields and press + Add to add it to the metadata fields. Similarly
add View details and Edit details to Actions. Add Media (Media Asset) to
Metadata Sets.

Return to the Administration window. Enter filter in the search box for Meta-
data Group to restrict the metadata groups shown in the window. Double-click
on Asset Filter to open the Asset Filter window.

Locate Encode To in the Available list. Press + Add to add it to the Fields list.

Telestream 18

Telestream Episode Engine User’s Guide

Set up job submission by clicking on Response in the leftmost column of the Ad-
ministration window. Click on the New Response button to bring up a Response
window.

Select Copy in the Response Action menu. Select Create in the leftmost column
of the window. Set the Name to something descriptive, in this example Copy to Flash8.
Fill in the Description field with a longer explanation of the action.

Telestream 19

Telestream Episode Engine User’s Guide

Select Copy in the leftmost column of the window. Select Engine (the device you
created in the first step) in the Destination menu. Click Choose. . . to browse to
the desired watch folder.

Select Set Asset Metadata in the Response Action menu. Select Create in the
leftmost column of the window. Set Name to Set Encode to No Encode.

Telestream 20

Telestream Episode Engine User’s Guide

Select Asset Metadata in the leftmost column of the window. Select Encode in
the top menu on the right. Set Encode To to No Encode.

Select Lookup in the leftmost column of the Administration window. Locate
your Encode To lookup and double-click on it to open its window.

Telestream 21

Telestream Episode Engine User’s Guide

Add Name and Value pairs to the Options. They will correspond to watch folders.

Select Subscription in the leftmost column of the Administration window. Click
the New Subscription button to open the Subscription window.

Telestream 22

Telestream Episode Engine User’s Guide

Select Create in the leftmost column of the Subscription window. Set Name to
a descriptive value. To trigger an encoding when the Encode To changes, select
Modified in the Event Type Filter. Add the Encode To value you set in the Asset
Filter above as well as the Set Encode to No Encode response.

Select Asset Filter in the leftmost column of the Subscription window. Select
the value in the Encode To menu that shall trigger the subscription and check the
Trigger if changed checkbox.

Telestream 23

Telestream Episode Engine User’s Guide

Repeat this for each Name/Value you set up in your lookup above. Be careful to
add Set Encode to No Encode to each subscription response list, otherwise FCS
will keep sending the asset to Episode Engine for transcoding.

Telestream 24

4 Reference section

Here we will go through all the fine print and details of using Episode Engine.
This is where to look if you have problems or want to figure out how to perform
non-standard functions.

4.1 Watch folders

Watch folder root The default root for input watch folders is /Users/Shared/
Episode Engine/Input/. The location is set during installation, but can
be changed in the System Preferences for Episode Engine, or by editing the
services.conf file, as explained in the Administrator’s Guide.

Note that only the first level of folders under the root folder work as watch folders.
Consequently, files placed in /Users/Shared/Episode Engine/Input/
Testwill be transcoded, but files placed in /Users/Shared/Episode Engine/
Input/ or /Users/Shared/Episode Engine/Input/Test/Extraswill
not be seen.

Episode Engine must have write access to watch folders.

Output folder creation Output folders with the same names as the input watch
folders are created under the output folder root. The location of the output folder
root is set during installation but can be changed in the System Preferences for
Episode Engine, or by editing the services.conf file, as explained in the
Administrator’s Guide.

File discovery delay Input watch folders are polled for new files. When a new
file is detected the watcher will check every few seconds to see if the size of the
file has changed. When the size is stable, writing is assumed to have finished and
the file can be safely sent for transcoding. The checking interval can be adjusted
in the services.conf file, as explained in the Administrator’s Guide.

If the process which writes the file allocates the total size from the start and then
“fills in” the contents of the file, Episode Engine is not able to detect this and will
prematurely delete the source file and start transcoding, which will cause errors.

Telestream 25

Telestream Episode Engine User’s Guide

Linking to source files Moving or copying source files to a watch folder con-
sumes both time and storage space. It is considerably more efficient to instead
link to the file. Hard links can only refer to files on the same volume, so a link
on local storage cannot refer to a file on shared storage. Symbolic links instead
contain the name of the referenced file, so they can be used cross-device.

A symbolic link is created like this:

prompt> ln -s /Volumes/RAID/sourcefile.mov \
/Users/Shared/Episode\ Engine/Input/WatchFolder/

File deletion and archiving Source files and any optional (settings, watermark,
metadata, audio, bumper and trailer) files specific to that source file are deleted
when all settings files have been used to generate output; global files will never be
automatically deleted (see section 4.6, Optional files). If a settings file specifies
a watermark, audio, bumper/trailer and/or a metadata file to be used, transcoding
will only start when the required files are present in the watch folder. If you have
enabled archiving in the System Preferences, the files will instead be moved to an
archive folder, by default in /Users/Shared/Episode Engine/Archive/.

File adding order Files should be added to a watch folder in the following
order:

1. Settings files.

2. Metadata, watermark, bumper, trailer, audio sources (see section 4.6, Op-
tional files).

3. Source files.

Priority Different folders can have different priorities for transcoding, so that
you for example can have a special folder for urgent jobs, or give higher priorities
to certain customers. Other jobs will not be placed on hold if a source file is
placed into a high-priority folder, but it will be the first one selected when a node
becomes free. The priority is an integer in the range 1–1000, higher numbers
corresponding to higher priority. You assign a folder a priority value p by adding
the suffix ^p to the folder name. Folders without such a suffix will have a priority
of 500.

Episode
Engine Pro

Split-and-stitch You indicate that files are to be transcoded with split-and-stitch
by giving the watch folder a name that starts with stitch (not case sensitive).

Due to the operation of the split-and-stitch functions, there will be some amount
of bitrate overhead, you should therefore not use split-and-stitching for files with
very low bitrates—these will in general not get much of a transcoding speedup
anyway.

Split-and-stitch operation is not supported for output of hinted streaming files,
multi-bit-rate (MBR) files, and RealMedia files.

Telestream 26

Telestream Episode Engine User’s Guide

4.2 Input monitors

We will describe the File Monitor in detail and for the other input monitors only
describe the aspects in which they differ from the File Monitor.

4.2.1 File Monitor

All input monitors have a name. This name is shown in the Input Monitors list
and also defines the name of the folder in which the output files are stored.

Telestream 27

Telestream Episode Engine User’s Guide

A File Monitor can monitor a folder anywhere on an Apple File System, but you
cannot monitor a watch folder, as source files are deleted from watch folders.

The parameters you can set for the file monitor are the following:

Poll Interval The folder will be checked for new files every t seconds. Note that
only new files in the folder are detected—any files already in the folder
when the monitor is activated will be ignored.

Safety Threshold When a new file is found, an external process may still be
writing to it. Thus the watcher will check again after the safety threshold.
If the file has not changed during that time, it is assumed that it is safe to
start reading from it.

Recursion Depth By default the file monitor will only watch for files in the
folder pointed to by Path, but e g the RED camera places files in direc-
tory structures. Setting Recursion Depth to a value greater than 0 will
search for input files that many directory levels down from the given input
folder. Example: A file monitor on /Users/jrn/video with Recursion
Depth set to 2 watches for files in /Users/jrn/video, /Users/jrn/
video/sub/, and /Users/jrn/video/sub/sub.

Path The path to the monitored folder. The path is shown as a URL in the URL
field below.

Settings All settings that will be used for transcoding files found in the monitored
folder. Press the + button to bring up a browser of the Shared settings
storage from which you can select settings to use. Select a settings row and
press − to delete it from the file monitor.

Note that if you edit a setting in Episode Encoder, it is not automatically
updated in the input monitors. You have to upload it from Episode Encoder
to Episode Engine and then delete it from and re-add it to the settings in
the monitor in order for the new version of the setting to be used in that
monitor.

Note also that settings in the Templates folder are not guaranteed to re-
main in the same location or keep the same name between different ver-
sions of Episode Engine. You should therefore not use settings in the
Templates folder, but instead upload a copy to a private folder which
is retained between installations.

Episode
Engine Pro

Split n’ Stitch If checked, files in the monitored folder will be transcoded with
the split-and-stitch function. Note that split-and-stitching is not possible for
streamable output, multi-bitrate output, and RealMedia output—in these
cases, regular transcoding will be performed instead.

Include Only files which match the inclusion criteria will be transcoded. Inclu-
sion criteria can be given as:

Telestream 28

Telestream Episode Engine User’s Guide

File extensions A space-separated list of file extensions, i e the file types
that will be encoded. E g, mov mp4 means that only files with the
extensions mov or mp4 will be transcoded.

File name contains A space-separated list of strings that have to be present
in the filenames. E g, NTSC PAL means that only files with NTSC or
PAL in their names will be transcoded.

Regular expression A Perl compatible regular expression to match the fi-
lenames. E g, (.*NTSC.*)|(.*PAL.*)) means that only files with
NTSC or PAL in their names will be transcoded.

Ignore Files which match the exclusion criteria will not be transcoded. The cri-
teria are specified as for inclusion. Include and Ignore can be combined,
inclusion being performed first.

Output The default behaviour of Episode Engine is to store output files in the
folder depot/Monitors/monitorname, where depot is the output de-
pot first listed in /usr/local/pwce/etc/depots.conf. You can se-
lect an alternative depot from those defined in the configuration file.

Checking Folder lets you enter a path to a folder where the output files will
be stored.

Priority The priority for jobs originating with this input monitor. Higher-priority
jobs will be transcoded before lower-priority jobs.

Active You have to explicitly activate the input monitor for it to actually start
monitoring. Inactive input monitors are still shown in the Input Monitors
list. Select an input monitor and select Input Monitors→Start Monitor
or Start Monitor from the context menu to activate it. Likewise select
Input Monitor→Stop Monitor or Stop Monitor from the context menu
to inactivate an input monitor.

Telestream 29

Telestream Episode Engine User’s Guide

4.2.2 Image Sequence Monitor

The Image Sequence Monitor works lets you import a series of still images from
a local folder. The supported formats are BMP, DPX, GIF, JPEG, Targa and TIFF.
Only DPX files contain frame rate information, all other formats will be assumed
to be at 25 fps. In other words, if your source material is, for example, a TIFF
sequence, and you set the output frame rate with the Frame Rate or Advanced
Frame Rate filter, the frame rate conversion is done based on an input frame rate
of 25 fps.

Like the File Monitor, the Image Sequence Monitor will only detect files placed
in the monitored folder after the monitor has been activated. When no new files
have arrived in a period equal to three times the Safety Threshold, the sequence

Telestream 30

Telestream Episode Engine User’s Guide

is considered to be finished and it is sent for transcoding.

The image files should be named as 〈name〉〈sequencenumber〉 .〈extension〉. Files
must be added to the monitored folder in sequence and with an increment of 1. If
the sequence is broken, this will interpreted as the start of a new image sequence
and send the previous sequence for transcoding.

The Recursive button specifies that any subfolders of the monitored folder will
also be monitored, generating separate source clips for each subfolder.

Telestream 31

Telestream Episode Engine User’s Guide

4.2.3 FTP Monitor

While one may open an FTP connection in the Finder and access it with a File
Monitor, an FTP Monitor is more efficient and will reconnect if the connection is
lost. The FTP Monitor will only detect files placed in the monitored folder after
the monitor has been activated. In addition to the fields that File Monitor has, FTP
Monitor has additional fields for connecting to and logging in on an FTP server.

Telestream 32

Telestream Episode Engine User’s Guide

Since an FTP connection typically has relatively low bandwidth it is usually not
meaningful to use split-and-stitch for files retrieved from an FTP server, as the file
cannot be split until it has been retrieved in its entirety.

NOTE

Different FTP servers behave slightly differently and it may be that the FTP Mon-
itor does not communicate well with your particular server. Testing is necessary.

Telestream 33

Telestream Episode Engine User’s Guide

4.2.4 SMB/CIFS Monitor

The SMB/CIFS Monitor lets you connect to a Microsoft Windows Network file
server. The SMB/CIFS Monitor will only detect files placed in the monitored
folder after the monitor has been activated. In addition to the fields that File Mon-
itor has, SMB/CIFS Monitor has additional fields for connecting to and logging
in on a Windows Network file server.

Telestream 34

Telestream Episode Engine User’s Guide

NOTE

If a file is copied into a monitored folder, Windows does not update the size
field while copying, causing transcoding to start prematurely and therefore fail-
ing. Move files instead of copying, or set the Safety Threshold high enough
that you can be sure that the file has finished copying before it is retrieved by the
SMB/CIFS Monitor.

4.2.5 Pipeline File Monitor

The Pipeline File Monitor communicates with the Pipeline video capture device.
It has the same fields as the standard File Monitor.

Telestream 35

Telestream Episode Engine User’s Guide

4.3 Storage depots

Storage depots are volumes accessible to both Episode Engine and any media-
producing clients. The storage depots are defined in the XML file /usr/local/
pwce/etc/depots.conf.

4.4 Shared settings

In the default configuration input monitors will find their settings files in /Users/
Shared/Episode Engine/Settings. These settings are common for all
users of the same Episode Engine server. You can upload settings to shared
settings directly from Episode Encoder.

4.5 Hardware acceleration

The Matrox H.264 hardware transcoder can only be used by a single process at a
time. If you are using such hardware you must therefore set the System Prefer-
ences for Episode Engine to allow only a single parallel job on each node.

4.6 Optional files

As explained in section 1.4, Advanced features, the basic media file can be ex-
tended with additional information, such as metadata, watermarks and bumpers/
trailers. These “optional files” are placed in the same folders as the source files to
be transcoded, so to distinguish them from the source files, they must have special
file extensions indicating their role:

.setting, .mbrsetting Settings file

.watermark Watermark file

.bumper, .intro Bumper clip

.trailer, .outro Trailer clip

.inmeta Input metadata

.audio Audio source

In Episode Encoder you indicate in the settings if a file is to be extended with
optional files and you also explicitly name the files to be used, but when exporting
the settings file for use in Episode Engine, the names are dropped and only the
information that optional files will be needed is carried along, so that you are not
restricted to just specifically named file(s).

If the use of any optional file has been requested, transcoding will not begin before
all requisite files are present in the folder. Conversely, if a setting does not require
the presence of a given file, the presence of such a file in the folder does not matter.
Engine Admin will indicate what optional files a settings file requires.

Optional files are either global or specific to a source file. A global file is the
default file, whereas a source-file specific file will be matched with one particular

Telestream 36

Telestream Episode Engine User’s Guide

source file and used for that instead of any global file. Optional files are independ-
ent of each other, so a source file can be transcoded with, e g, a global watermark
file and a specific metadata file.

A global file must have a filename that starts with ! followed by anything and
end with the appropriate extension from the list above, e g !Anyfilename.
trailer. A source-file specific file must have the same name as the source
file, including its extension, plus the appropriate extension from the list above, e g
MyFile.mpg.trailer will match the source file MyFile.mpg. Note that this
naming convention obscures the file type of watermarks and bumper/trailer clips,
but Episode Engine is not dependent on the file extension to determine the file
format.

Global files are never automatically removed from a watch folder, per-source files
are removed along with their matching source file. Settings files are always con-
sidered global, regardless of their names, so they are never removed from watch
folders. Other input monitors do not remove any files.

4.6.1 Example

Consider a monitored folder containing a settings file Example.setting, a GIF
file !general.watermark, and a JPEG file special.mov.watermark.

When the three source files general.mov, special.avi and special.mov
are added to the folder, they will be transcoded with the settings in Example.
setting. These settings specify that a watermark is to be used.

Since its name matches the name of the watermark, special.mov will be water-
marked with special.mov.watermark, while general.mov and special.
avi will be watermarked with the global watermark !general.watermark.

4.6.2 Watermarks

Positioning The size and position of the watermark in the frame is set in Epi-
sode Encoder.

Supported formats

Format Comments
Bitmap 24 bit RGB
GIF
JPEG EXIF metadata also supported
QuickTime
Targa 24 bit RGB, 32 bit RGB
TIFF 24 bit RGB, 32 bit RGB

Telestream 37

Telestream Episode Engine User’s Guide

4.6.3 Bumpers and trailers

Clip contents Bumpers and trailers are transcoded in the same format, size and
frame rate as the output file but will not be otherwise transformed, in particular
they will not be deinterlaced if the output is to be progressive and vice versa.
Bumpers and trailers must have video and audio tracks corresponding to the video
and audio tracks of the output file, i e output with both video and audio requires
bumpers and trailers with both video and audio, but video-only output does not
require audio tracks in the bumper and trailer.

4.6.4 Metadata

Metadata sources Metadata for an output file can come from three different
sources:

1. The Metadata tab in Episode Encoder.

2. The Engine tab in Episode Encoder.

3. An .inmeta file with metadata in XML format.

Metadata from settings The Metadata tab in Episode Encoder contains ex-
actly the tags that are supported by the given output format, the metadata are
therefore written directly to the output file.

Extra metadata fields Metadata from the Engine tab and/or an .inmeta file
are written to the output file for those tags that are supported by the output data
format. They override metadata with the same tags given in the Metadata tab.
Tags which are not supported by the output format are written to a .meta file that
is placed in the output folder together with the output media file.

The use of an .inmeta file requires checking the Use .inmeta File button in
the Engine tab in Episode Encoder. If this option is used there has to be an
.inmeta file in the monitored folder before transcoding can begin.

Naming scheme The .inmeta file must have the same name as the source file
plus the extension .inmeta, e g, a source file sample.mov requires an inmeta
file called sample.mov.inmeta. The .meta file will have the same name as
the output media file plus the extension .meta, e g, an output file called mp4_
qcif_128_meta_sample.mp4 will have a metadata output file called mp4_
qcif_128_meta_sample.mp4.meta.

Example .inmeta file The precise syntax, the Document Type Definition, for
.inmeta files is in /usr/local/pwce/etc/inmeta.dtd.

This is the sample.mov.inmeta file from the Verify package in your distri-
bution. Please use that file instead of copy-pasting the formatted text below.

<!DOCTYPE meta−data SYSTEM "inmeta.dtd">

Telestream 38

Telestream Episode Engine User’s Guide

<meta−data>

<!−−Metadata can be written to the output file, the .meta file or both. The "type"
attribute of the <meta−group> element specifies the destination. You can specify
up to eight metadata fields to be written to the output file: "title", "author",
"artist", "producer", "description", "copyright", "creation date", and "software".
The names of these will be converted to whatever the corresponding field name
is in the particular output format. If a field is not supported by the output format
it will be ignored. Metadata written to the .meta file are not interpreted, but just
written as they are given. −−>

<!−− Values written to both output file and .meta file: −−>
<meta−group type="movie meta">

<meta name="title" value="Example Movie"/>
<meta name="copyright" value="Telestream, Inc"/>
<meta name="software" value="Episode Engine"/>

</meta−group>

<!−− Values written only to the output file: −−>
<meta−group type="movie">

<meta name="author" value="Ingmar Bergman"/>
<meta name="artist" value="Sven Nyqvist"/>
<meta name="producer" value="Harry Schein"/>
<meta name="description" value="A story of love and life lost"/>
<meta name="creation date" value="1984−04−01"/>

</meta−group>

<!−− Values written only to the .meta file: −−>
<meta−group type="meta">

<meta name="database−id" value="123"/>
<meta name="Team" value="The Pops"/>
<meta name="result" value="2−0"/>

</meta−group>

<!−− The data in the <meta−movie−info> element are written as a log to the .meta
file after transcoding. The keys given in the "tokens" attributes determine what
data will be recorded. The different elements specify what will be recorded for
the entire movie, for each track of the movie, and specifically for video, audio
and streaming hint tracks. Note also that the "tokens" list can be split over
multiple elements (as in the two <meta−movie> elements) if that makes the file
more legible. −−>

<meta−movie−info>
<meta−movie tokens="duration bitrate size"/>
<meta−movie tokens="format duration bitrate size tracks"/>
<meta−track tokens="type format start duration bitrate size"/>
<meta−video−track tokens="width height framerate"/>
<meta−audio−track tokens="channels bitspersample samplerate"/>
<meta−hint−track tokens="payload fmtp"/>

</meta−movie−info>

</meta−data>

Example .meta file This is the .meta file generated from the .inmeta file
above, with comments added:

<?xml version="1.0" encoding="UTF−8"?>

Telestream 39

Telestream Episode Engine User’s Guide

<!DOCTYPE meta−data SYSTEM "meta.dtd">
<meta−data version="1.0">

<!−− The metadata specified in the .inmeta file, output in alphabetical order. −−>

<meta name="meta−source" value="inmeta">
<meta name="Team" value="The Pops"/>
<meta name="copyright" value="Telestream, Inc"/>
<meta name="database−id" value="123"/>
<meta name="result" value="2−0"/>
<meta name="software" value="Episode Engine"/>
<meta name="title" value="Example Movie"/>

</meta>

<!−− The path to the output file. −−>
<meta name="movie"

value="/Users/Shared/Episode%20Engine/Output/Test/Input−stream.3gp">

<!−− These elements are based on the tokens lists in the <meta−movie−info>
element of the .inmeta file. The values form a log of the transcoding. −−>

<meta name="format" value=".3gp"/>
<meta name="duration" value="10.54"/>
<meta name="bitrate" value="117.26"/>
<meta name="size" value="158223"/>

<!−− The <meta−track tokens> in the .inmeta file generate a <meta
name="track"> for each track with the requested values. In addition,
<meta−video−track tokens> generate values that are specific for the video
track. −−>

<meta name="track" value="0">
<meta name="type" value="vide"/>
<meta name="format" value="mp4v"/>
<meta name="start" value="0.00"/>
<meta name="duration" value="10.60"/>
<meta name="bitrate" value="36.00"/>
<meta name="size" value="49483"/>
<meta name="width" value="176"/>
<meta name="height" value="144"/>
<meta name="framerate" value="7.36"/>

</meta>

<!−− The <meta−audio−track tokens> in the .inmeta file generate the audio track
specific values. −−>

<meta name="track" value="1">
<meta name="type" value="audi"/>
<meta name="format" value="mp4a"/>
<meta name="start" value="0.00"/>
<meta name="duration" value="10.49"/>
<meta name="bitrate" value="15.00"/>
<meta name="size" value="21307"/>
<meta name="channels" value="1"/>
<meta name="bitspersample" value="16"/>
<meta name="samplerate" value="22050.00"/>

</meta>

<!−− This is the streaming hint track for the video. The "type" to "size" elements
come from the <meta−track> element, "payload" and "fmt" from the

Telestream 40

Telestream Episode Engine User’s Guide

<meta−hint−track> in the .inmeta file. −−>
<meta name="track" value="2">

<meta name="type" value="hint"/>
<meta name="format" value="mp4v"/>
<meta name="start" value="0.00"/>
<meta name="duration" value="10.60"/>
<meta name="bitrate" value="36.00"/>
<meta name="size" value="52532"/>
<meta name="payload" value="96"/>
<meta name="attribute" value="a=fmtp:96

profile−level−id=8;config=000001B008000001B50EA040C0CF000001000000012000845D4C282C2090A31F"/>
</meta>

<!−− The same <meta−hint−track> is used for the audio hint track. −−>
<meta name="track" value="3">

<meta name="type" value="hint"/>
<meta name="format" value="mp4a"/>
<meta name="start" value="0.00"/>
<meta name="duration" value="10.59"/>
<meta name="bitrate" value="15.00"/>
<meta name="size" value="28831"/>
<meta name="payload" value="97"/>
<meta name="attribute" value="a=fmtp:97

profile−level−id=15;object=2;cpresent=0;config=400027103FC0"/>
</meta>

<!−− This </meta> ends the earlier <meta name="movie">. −−>
</meta>

<!−− This ends the metadata document and file. −−>
</meta−data>

4.6.5 Separate audio source files

Combining a single video file and single audio file Sometimes one wishes to
combine video and audio from different sources, but the Episode Encoder user
interface does not let you create such a setting. However, you can manually edit
the settings file to achieve this effect.

A settings file is an XML file, so it can be edited in Textedit, Emacs or whatever
word processor you want, as long as you remember to save in pure text format.
Note that you cannot edit a manually edited settings file in Episode Encoder, as
the file would become corrupted.

In particular and relevant for our current task, a settings file contains clauses
specifying the source file(s). Consider a settings file that contains the following
clause, specifying that a single file is the source for both video and audio:

<importer media="movie" in="file://!SRCFILE!">
<audio−out id="audio_4f70140_importer"/>
<video−out id="video_16e7a10_importer"/>

</importer>

The !SRCFILE! is a tag that represents the source file that is to be transcoded.
A matching audio source file is represented in the settings file by the template

Telestream 41

Telestream Episode Engine User’s Guide

!AUDIOFILE!, so to use separate video and audio sources we would rewrite the
clause as:

<importer media="movie" in="file://!SRCFILE!">
<video−out id="video_16e7a10_importer"/>

</importer>
<importer media="movie" in="file://!AUDIOFILE!">

<audio−out id="audio_4f70140_importer"/>
</importer>

On encoding you would add the audio file along with the video source file to the
watch folder or monitored folder. The audio file is to be named with the full file
name of the video file + the extension .audio, i e, a video file sample.mov
requires the audio file to be named sample.mov.audio.

In this example we have retained the id values of the video and data streams as
they are used by the filters “downstream” in the transcoding process. The id values
will be different for different settings files, but they can be renamed to anything
as long as the names are consistently used in the file.

Creating multiple audio tracks In general, Episode Engine can only output a
single audio track, but MPEG-2 Transport Streams can be output with up to eight
audio tracks.

In this example we will assume that we have two audio sources, one in French,
one in English. As in the previous example, we edit an existing settings file and
take out the audio import into separate clauses:

<importer media="movie" in="!AUDIOFILE_01!">
<audio−out id="audio_01"/>

</importer>
<importer media="movie" in="!AUDIOFILE_02!">

<audio−out id="audio_02"/>
</importer>

You have to create copies of any audio filters in the setting, so that both audio
tracks are correctly transcoded. Keep careful track of the id values connecting the
filters, so that the data are progressed through all filters.

MPEG TS output is indicated in the settings file with a clause like this:

<exporter media="movie" out="!DSTPATH!/!NAME!−!SETTING!.mpg"
type="ts__">

<in id="video_14fb69b0_mp2v_encoder"/>
<in id="audio_14fbd080_mp2a_encoder"/> <!−−We will change this −−>
<option name="audio_pid" value="69"/> <!−−We will change this −−>
<option name="video_pid" value="68"/>
<option name="pcr_pid" value="67"/>
<option name="pmt_pid" value="66"/>
<option name="transport_rate_mode" value="0"/>
<option name="transport_rate" value="10000"/>
<option name="transport_rate_unit" value="1"/>
<option name="pes_mode" value="0"/>
<option name="pes_max_size" value="16348"/>
<option name="program_number" value="1"/>
<option name="language_code" value="0"/> <!−−We will change this −−>

</exporter>

Telestream 42

Telestream Episode Engine User’s Guide

We modify the above to specify two audio tracks in the output:

<exporter media="movie" out="!DSTPATH!/!NAME!−!SETTING!.mpg"
type="ts__">

<in id="video_14fb69b0_mp2v_encoder"/>

<!−− The id from the last filter for the first audio track −−>
<in id="audio_01_mp2a_encoder"/>
<!−− The id from the last filter for the second audio track −−>
<in id="audio_02_mp2a_encoder"/>

<option name="video_pid" value="68"/>
<option name="pcr_pid" value="67"/>
<option name="pmt_pid" value="66"/>
<option name="transport_rate_mode" value="0"/>
<option name="transport_rate" value="10000"/>
<option name="transport_rate_unit" value="1"/>
<option name="pes_mode" value="0"/>
<option name="pes_max_size" value="16348"/>
<option name="program_number" value="1"/>

<!−− Specify the number of audio tracks −−>
<option name="num_audio_tracks" value="2"/>
<option name="audio_01_pid" value="1001"/>
<option name="audio_01_language_code" value="13"/> <!−− French −−>
<option name="audio_02_pid" value="1002"/>
<option name="audio_02_language_code" value="11"/> <!−− English −−>

</exporter>

In our previous example we had a single audio source file, which we could drop
into the watch folder together with the video file, but there is no general mech-
anism for supplying two or more audio source files. We therefore have to supply
the names of the audio files in the settings file. We could do this by explicitly
entering the file names in the importer clauses and then rename the actual files for
each transcoding, thus:

<importer media="movie"
in="/Users/Shared/Episode Engine/Input/TS/Show_french.audio">
<audio−out id="audio_01"/>

</importer>
<importer media="movie"
in="/Users/Shared/Episode Engine/Input/TS/Show_english.audio">
<audio−out id="audio_02"/>

</importer>

However, a more flexible approach may be to use the engine application described
in appendix B, engine. This requires you to start each transcoding with a com-
mand, this may or may not fit with your workflow. In this case we modify the
placeholders in the settings file, here called ts_dual_audio.setting, for
each transcoding.

engine add media --filename /Users/jrn/Movies/Show.mov \
--setting_id ts_dual_audio.setting \
--replace AUDIOFILE_01 /Users/jrn/Movies/Show_french.aiff \

AUDIOFILE_02 /Users/jrn/Movies/Show_english.aiff

The replacement function is general, any tag within ! can be replaced. You can
consider --filename a shorthand for --replace SRCFILE. You could of

Telestream 43

Telestream Episode Engine User’s Guide

course use the same mechanism for the previous example with a single audio
source file, should it be more convenient for you.

4.7 Event scripts

Scripts placed in /usr/local/pwce/evt/ (default location) will be executed
by Episode Engine when given events occur.

The Episode Engine log file will show the return value of your script if not equal
to 0. In order to get any printouts and error messages from the script, create a
file /usr/local/pwce/svc-ctrl/pwevent/log that contains the path to a
file where the script output will be written, e g /tmp/eventlog, and then restart
Episode Engine.

Form-based scripting You can write scripts in any language of your choice, but
if you feel uncomfortable with programming, Episode Encoder will let you fill
in a form to handle the most common issues of moving output files to their final
destinations. See the chapter Engine tab in the Episode Encoder User Guide for
the details.

Script names Scripts must be named on the form 〈digit〉〈digit〉_〈type〉 [〈optionaltext〉] .
The prefix number defines the order in which the scripts will be executed, with
lower numbers executed first. 〈type〉 is job, node, or msg, corresponding to
the type of event that triggered the execution of the script as detailed below.
〈optionaltext〉 can be used to indicate what the script does.

Job scripts A job script is executed when a job finishes. Note that the script
is triggered even if the job finished due to an error. The script is executed in an
environment where the following variables are set:

JOB_CREATION_TIME The time when the job was created.

JOB_ID A unique integer that identifies this job.

JOB_IN_URLS The URLs of all input files for this job, separated by commas.

JOB_NAME Identical to job_media.

JOB_NODE_ID An integer identifying the node that ran the job.

JOB_OUT_FOLDER Identical to job_folder.

JOB_PRIO The priority of the job.

JOB_REAL_TIME The wall-clock time in seconds used for the job.

JOB_REASON One of no−start, bad−com, bad−job, fail, crash, lost, cancel or finish,
depending on how the job finished. If the job finished successfully (finish),
two additional variables will be set:

JOB_OUT_PATH The path to the output file.

Telestream 44

Telestream Episode Engine User’s Guide

JOB_OUT_URL The URL to the output file.

JOB_RUN_COUNT The number of times the job was processed. This should nor-
mally be “1”, but may be up to one higher than the value of max−job−retry
in engine.conf.

JOB_SETTING_NAME Identical to job_setting.

JOB_SOURCE_FILE Identical to job_media.

JOB_START_TIME The time when the job was started.

JOB_STOP_TIME The time when the job was finished.

JOB_OUT_URLS The URLs of all output media files of this job, separated by
commas.

client_host The name of the node that submitted the job.

client_name The name of the client process that submitted the job.

job_folder The name (not full path) of the folder containing the output media
file. This variable is set only if client_name is Watcher, i e if the job originates
in a watch folder. For jobs created by input monitors, this variable is empty.

job_kind A string indicating the type of job, can be regular, split, or stitch.

job_media The name of the input media file. If the job is submitted by the
watcher client, i e if the job originates in a watch folder, only the filename
is given, otherwise the full URL of the file is given.

job_name The name of the job as set by the client.

job_setting The name of the settings file.

monitor_depot The name of the storage depot where the output files are placed,
if this was specified in the input monitor.

monitor_name The name of the input monitor that submitted the job.

monitor_outfolder The name of the folder where the output files are placed,
if this was selected in the input monitor.

owner The username of the user that submitted the job.

Node scripts A “node” script is executed when contact is lost with a node (pos-
sibly due to an orderly shutdown at that node). The script is executed in an envir-
onment where the following variables are set:

NODE_ID The integer identifying the node.

NODE_NAME A string identifying the node, normally its host name.

NODE_STOPTIME The time when contact was lost.

Telestream 45

Telestream Episode Engine User’s Guide

Msg scripts A “msg” script is triggered when a log message of severity up to 3
(= ERROR) has been generated. The script is executed in an environment where
the following variables are set:

MSG_ENTITY One of engine, client or node, indicating what type of entity caused
the log message. For client and node the following variables are also set:

MSG_ENTITY_ID The integer identifying the client or node.

MSG_ENTITY_NAME A string identifying the entity, normally the host name
of the node.

MSG_SEVERITY One of ERROR, CRITICAL, ALERT, or EMERGENCY.

MSG_STRING The actual log message.

MSG_TIME The time when the message was generated.

NOTE

Depending on exactly what processes have processed a job, some of the variable
values may be empty strings.

TIP

Scripts are located centrally, but sometimes it may simplify matters to have scripts
specific to each watch folder/input monitor. You can solve this by placing script
files in the respective output folders and then have a dispatcher script in /usr/
local/pwce/evt/ that locates the specific script and executes it.

Alternatively you can supply parameters in metadata, which can then be read by
the script.

Example A set of example scripts are located in /usr/local/pwce/evt/
examples/.

Below is the example script 00_job. It attempts to move the transcoding output
to an ftp server. If that fails it constructs and sends an email message describing
the problem to an administrator.

The script is written in bash, but any language can be used.

#!/bin/bash

USER="anonymous"
PASSWORD="anonymous"
HOST="example.com"

ADDRESS="ftp://${USER}:${PASSWORD}@${HOST}/"

RETURN_CODE=0

Telestream 46

Telestream Episode Engine User’s Guide

Check if the job completed successfully
if ["$JOB_REASON" == "finish"]; then

Create temp file for FTP server directory listing (to see if upload was successful)
TEMPFILE=‘/usr/bin/mktemp /tmp/ftp_XXXXXX‘
Extract file name to use for naming file on FTP server
FILENAME=‘/usr/bin/basename "$JOB_OUT_PATH"‘
Connect, set binary mode, upload file, list directory, close connection.
/usr/bin/ftp −iv "${ADDRESS}" << EOF

binary
put "${JOB_OUT_PATH}" "${FILENAME}"
ls . "$TEMPFILE"
quit
EOF

Check if the file exists in the FTP directory listing
if /bin/cat "$TEMPFILE" | /usr/bin/grep "$FILENAME" >/dev/null 2>&1; then

FTP upload ok
RETURN_CODE=0

else
FTP upload failed
RETURN_CODE=1

fi
Remove temporary file again
/bin/rm "$TEMPFILE" >/dev/null 2>&1

else
Send mail to admin about the failed job
RECIPIENT="admin@example.com"
MESSAGE="Job ’$JOB_NAME’ with id $JOB_ID dropped with reason:

$JOB_REASON"
/usr/sbin/sendmail $RECIPIENT << EOF

From: "Episode Engine" <noreply@example.com>
Subject: Job ’$JOB_NAME’ failed

$MESSAGE
EOF
fi

exit $RETURN_CODE

Telestream 47

Appendix A Supported formats

The following media formats and codecs are supported by Episode Engine:

3GPP (.3gp)

The 3GPP (3rd Generation Partnership Project) video format is based on the
ISO/IEC 14496 (MPEG-4) media file format and intended for mobile phones. It is
defined in 3GPP TS 26.244: Digital cellular telecommunications system (Phase
2+); Universal Mobile Telecommunications System (UMTS); LTE; Transparent
end-to-end packet switched streaming service (PSS); 3GPP file format (3GP), see
http://www.3gpp.org/ for additional information.

Supported codecs: AAC, AMR NB, H.263, H.264, MPEG-4.

Restrictions: H.264 High Profile is input only. Multi-Bit Rate is output only.

Pro adds: H.264 High Profile support for output. HE-AAC, but for output only.

3GPP2 (.3g2)

The 3GPP2 (3rd Generation Partnership Project 2) video format is based on the
ISO/IEC 14496 (MPEG-4) media file format and intended for mobile phones. It
is defined in 3GPP2 C.S0050-B: 3GPP2 File Formats for Multimedia Services,
see http://www.3gpp2.org/ for additional information.

Supported codecs: AAC, AMR NB, EVRC, H.263, H.264, MPEG-4, QCELP.

Restrictions: EVRC, H.264 High Profile, QCELP are input only.

Pro adds: EVRC, H.264 High Profile, QCELP support for output. HE-AAC, but
for output only.

3GPP2 (EZMovie) (.3g2)

The 3GPP2 format can be extended with the EZMovie features developed by
KDDI Corporation. Among other things, EZMovie lets a distributor limit how
many times a file is played. See http://www.au.kddi.com/ezfactory/
tec/spec/ezmovie01.html for additional information. (In Japanese.)

Supported codecs: AAC, AMR NB, EVRC, H.263, H.264, MPEG-4, QCELP.

Restrictions: EZMovie is only available in Pro and is output only.

Telestream 48

http://www.3gpp.org/
http://www.3gpp2.org/
http://www.au.kddi.com/ezfactory/tec/spec/ezmovie01.html
http://www.au.kddi.com/ezfactory/tec/spec/ezmovie01.html

Telestream Episode Engine User’s Guide

ADTS (.aac)

Audio Data Transport Stream is a wrapper format for AAC-encoded audio files.
It is defined in ISO/IEC 13818: Information technology – Generic coding of mov-
ing pictures and associated audio information – Part 7: Advanced Audio Coding
(AAC). See http://www.iso.org/ for additional information.

Supported codecs: AAC.

Restrictions: HE-AAC not supported for input.

AIFF (.aif)

The Audio Interchange File Format was developed by Apple. It is described in In-
side Macintosh: Sound. See http://developer.apple.com/ for additional
information.

Supported codecs: PCM.

AMC (.amc)

AMC is based on the MPEG-4 standard and has been developed by KDDI Cor-
poration. It supports the EZMovie features. Among other things, EZMovie lets a
distributor limit how many times a file is played. See http://www.au.kddi.
com/ezfactory/tec/spec/ezmovie01.html for additional information.
(In Japanese.)

Supported codecs: MPEG-4, QCELP

Restrictions: EZMovie files with distribution restrictions are only supported for
output.

Pro adds: EZMovie only available in Pro.

AMR (.amr)

AMR (Adaptive Multi-Rate) is a mandatory audio codec in 3GPP. The file format
is defined in IETF RFC 4867: RTP Payload Format and File Storage Format for
the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB)
Audio Codecs. See http://www.3gpp.org/ for additional information.

Supported codecs: AMR Narrowband.

Restrictions: Input only.

Pro adds: AMR support for output.

ATSC A/52 (.a52)

ATSC A/52 is an audio format developed by Advanced Television Systems Com-
mittee, Inc. It is defined in ATSC A/52B: Digital Audio Compression Standard

Telestream 49

http://www.iso.org/
http://developer.apple.com/
http://www.au.kddi.com/ezfactory/tec/spec/ezmovie01.html
http://www.au.kddi.com/ezfactory/tec/spec/ezmovie01.html
http://www.3gpp.org/

Telestream Episode Engine User’s Guide

(AC-3, E-AC-3) Revision B. See http://www.atsc.org/ for additional infor-
mation.

Supported codecs: ATSC A/52.

AVI (.avi)

AVI (Audio Video Interleave) is a multimedia container format developed by
Microsoft. It is described in AVI RIFF File Reference. See http://msdn.
microsoft.com/ for additional information.

Supported codecs: DV25, DVCPRO25, DVCPRO50, MJPEG, MP3, MPEG-4
(DivX, XViD, FMP4), PCM, RGB16 (555), RGB16 (556), RGB24, RGB32, UYVY,
Windows RGB, YCbCr 4:2:0, Y8, YUY2, YV16, YVU16, YVU9, YV12.

Restrictions: DivX, DVCPRO25, DVCPRO50, FMP4, MJPEG, Windows RGB,
XviD, YCbCr only supported for input. Episode Engine uses QuickTime to read
AVI files, you can thus extend the number of codecs available by installing addi-
tional QuickTime components (popular such codecs are indicated by italics in the
list above). However, we do not guarantee full functionality of, nor offer helpline
support for any such third party components.

Pro adds: DVCPRO25, DVCPRO50, Windows RGB, YCbCr supported for out-
put.

DPX (.dpx)

DPX (Digital Picture eXchange) is derived from the earlier Kodak Cineon for-
mat. DPX is defined in SMPTE 268M: File Format for Digital Moving-Picture
Exchange (DPX), Version 2.0. See http://www.smpte.org/ for additional
information.

Supported codecs: RGB

Restrictions: Input only.

DV (.dv)

DV (Digital Video) has been developed by several producers of video cameras.
DV is defined in IEC 61834: Recording - Helical-scan digital video cassette re-
cording system using 6,35 mm magnetic tape for consumer use (525-60, 625-
50, 1125-60 and 1250-50 systems), DVCPRO and DVCPRO50 are defined in
SMPTE 314M: Television—Data Structure for DV-Based Audio, Data and Com-
pressed Video—25 and 50 Mb/s. See http://www.iec.ch/ and http://
www.smpte.org/ for additional information.

Supported codecs: DV25, DVCPRO25, DVCPRO50.

Restrictions: DVCPRO25 and DVCPRO50 only supported for input.

Pro adds: DVCPRO25 and DVCPRO50 supported for output.

Telestream 50

http://www.atsc.org/
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://www.smpte.org/
http://www.iec.ch/
http://www.smpte.org/
http://www.smpte.org/

Telestream Episode Engine User’s Guide

Flash (.flv)

The Adobe Flash video format is defined in Video File Format Specification, Ver-
sion 10. See http://www.adobe.com/devnet/flv/ for addition informa-
tion.

Supported codecs: H.263, MP3, VP6.

Flash (.swf)

The Adobe Small Web Format format is a multimedia wrapper format. It is
defined in SWF File Format Specification, Version 10. See http://www.adobe.
com/devnet/swf/ for additional information.

Supported codecs: H.263, MP3, VP6.

Restrictions: Only audio and video data are supported.

GXF (.gxf)

GXF (General eXchange Format) is an interchange format for storage and data
transfer originally developed by Grass Valley Group. It is defined in SMPTE
360M: General Exchange Format (GXF). See http://www.smpte.org/ for
additional information.

Supported codecs: MPEG-2, PCM.

Restrictions: Input only.

Pro adds: GXF supported for output.

MP3 (.mp3)

Properly MPEG-1 Audio Layer III. It is defined in ISO/IEC 11172-3: Information
technology – Coding of moving pictures and associated audio for digital storage
media at up to about 1,5 Mbit/s – Part 3: Audio. See http://www.iso.ch/
for additional information.

Supported codecs: Lame MP3

MPEG Elementary Stream (.m1a, .m1v, .m2v, .mpg)

An MPEG Elementary stream contains a single medium, audio or video, and
can in turn be contained in a Program Stream. MPEG-1 elementary streams are
defined in ISO/IEC 11172-1: Information technology – Coding of moving pictures
and associated audio for digital storage media at up to about 1,5 Mbit/s – Part
1: Systems, MPEG-2 elementary streams in ISO/IEC 13818-1: Information tech-
nology – Generic coding of moving pictures and associated audio information:
Systems. See http://www.iso.ch/ for additional information.

Supported codecs: AES, MPEG Audio, MPEG-1, MPEG-2

Telestream 51

http://www.adobe.com/devnet/flv/
http://www.adobe.com/devnet/swf/
http://www.adobe.com/devnet/swf/
http://www.smpte.org/
http://www.iso.ch/
http://www.iso.ch/

Telestream Episode Engine User’s Guide

Restrictions: AES is input only.

MPEG Program Stream (.mpg)

An MPEG program stream contains elementary streams. Program streams are
intended for reliable media such as DVD or SVCD. MPEG-1 program streams are
defined in ISO/IEC 11172-1: Information technology – Coding of moving pictures
and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 1:
Systems, MPEG-2 program streams in ISO/IEC 13818-1: Information technology
– Generic coding of moving pictures and associated audio information: Systems.
See http://www.iso.ch/ for additional information.

Supported codecs: AAC, AES, ATSC A/52, H.264, MPEG Audio, MPEG-1,
MPEG-2, MPEG-4, PCM

Restrictions: AAC is output only. AES, H.264 High Profile is input only.

Pro adds: H.264 High Profile supported for output.

MPEG Transport Stream (.m2t, .ts)

An MPEG Transport Stream is intended for broadcast media where packets may
be lost and viewers have to be able to enter a transmission in mid-stream. Ele-
mentary streams are interleaved (muxed) on the Transport Stream. MPEG-2 pro-
gram streams are defined in ISO/IEC 13818-1: Information technology – Gen-
eric coding of moving pictures and associated audio information: Systems. See
http://www.iso.ch/ for additional information.

Supported codecs: AES, ATSC A/52, H.264, HDV, MPEG Audio, MPEG-1,
MPEG-2, PCM.

Restrictions: Only supported for input.

Pro adds: Support for input and output. AAC, MP3, and MPEG-4 support for
output only.

MPEG-4 (.m4a, .m4b, .m4v, .mp4)

MPEG-4 is intended to improve on the earlier MPEG standards. The .m4a, .m4b,
and .m4v versions are adapted for iPods as audio, audiobook and video specialisa-
tions, respectively. PlayStation Portable can play MPEG-4 files, but requires that
they be named M4Vxxxxx.mp4, where xxxxx is five decimal digits, and stored
in the directory E:\MP _ROOT\100MNV01 on the PSP. MPEG-4 is defined in
ISO/IEC 14496: Information technology – Coding of audio-visual objects. See
http://www.iso.ch/ for additional information.

Supported codecs: AAC, H.264, MPEG-4.

Restrictions: H.264 High Profile is input only.

Pro adds: H.264 High Profile and HE-AAC supported for output.

Telestream 52

http://www.iso.ch/
http://www.iso.ch/
http://www.iso.ch/

Telestream Episode Engine User’s Guide

MXF (.mxf)

The Material eXchange Format is a wrapper format. There are currently major
interoperability problems with different implementations of MXF, so interoper-
ability has to be tested for each case. The MXF file format is defined in SMPTE
377M: Television - Material Exchange Format (MXF) – File Format Specification.
See http://www.mxf.info/ for additional information.

Supported codecs: AES, BWF, D-10/IMX, DV25, DVCPRO25, DVCPRO50,
DVCPROHD, JPEG2000, MPEG-2, MPEG-4, XDCam HD. Codecs in italics re-
quire third party plugins. While any installed codec plugins will be used, we do
not guarantee full functionality of nor offer helpline support for any such third
party components.

Restrictions: All formats are input only.

Pro adds: AES, BWF, D-10/IMX, DNxHD, DV25, DVCPRO25, DVCPRO50,
DVCPROHD, MPEG-2, XDCam HD supported for output.

OGG (.ogg)

Ogg is an open media wrapper format designed for efficient streaming and ma-
nipulation. It is defined in RFC 3533: The Ogg Encapsulation Format Version 0.
See http://www.Xiph.Org/ for additional information.

Supported codecs: Vorbis.

Restrictions: Output only.

QuickTime (.mov)

QuickTime is a multimedia framework developed by Apple. It is defined in
QuickTime File Format Specification. See http://developer.apple.com/
documentation/QuickTime/ for additional information.

Supported codecs: AAC, AMR NB, Apple Prores, Apple Video, Avid, Avid DNxHD,
Avid DV, Avid Meridien,

Restrictions: B

Pro adds: lackmagic, Cinepak, D-10/IMX, DV25, DVCPRO25, DVCPRO50,
DVCPRO100, H.261, H.263, H.264, HDV, IMA, Mace 3:1, Mace 6:1, Media
100, MJPEG, MP3, MPEG-4, PCM, RGB, RGB16 (555), RGB16 (556), RGB24,
RGB32, Sheer Video, Sorenson Video 1, XDCAM HD, YCbCr (YUV), UYVY,
Y8, YUY2, YV16, YVU16, YVU9, YV12.D-10/IMX, HDV, MJPEG, Targa Cine
YUV are input only. QuickTime reference files are input only. Timecodes are not
supported by the native QuickTime importer—this mainly affects reference files.
You can extend the number of codecs available by installing additional Quick-
Time components (popular such codecs are indicated by italics in the list above).
However, we do not guarantee full functionality of, nor offer helpline support for,
any such third party components.D-10/IMX, HDV, HE-AAC, MJPEG supported
for output.

Telestream 53

http://www.mxf.info/
http://www.Xiph.Org/
http://developer.apple.com/documentation/QuickTime/
http://developer.apple.com/documentation/QuickTime/

Telestream Episode Engine User’s Guide

Wave (.wav)

The Waveform audio format was developed by Microsoft and IBM. It is de-
scribed in Multiple Channel Audio Data and WAVE Files. See http://www.
microsoft.com/ for additional information.

Supported codecs: PCM.

Windows Media (.wma, .wmv)

Windows Media is a proprietary multimedia framework developed by Microsoft.
See http://www.microsoft.com/ for additional information.

Supported codecs: Intellistream, VC-1, Windows Media, Windows Media MBR,
WMA Pro, WMA Standard.

Restrictions: Only the largest stream is read from Intellistream multi-bit rate files.
ASF files can only be read if they have WMV9 content.

Telestream 54

http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/

Appendix B engine

engine is a command line tool for communicating with Episode Engine. You can
use it interactively or in shell scripts. In the default installation it is located in
/usr/local/pwce/bin/.

engine takes a set of options common to all commands:

--host host Optional. The host on which the Episode Engine controller is run-
ning. host can be a host name or an IP address. The default is localhost.

--port port Optional. The port number for communication with Episode Engine.
The default is 40402.

--password password Optional. The client password for Episode Engine. The
default is anonymous.

--timeout time Optional. The number of seconds engine will wait for a response
from Episode Engine. The default is 2.0.

The commands to engine are in the form of keywords. Commands optionally take
arguments.

help List all available commands to engine and their arguments.

list depot List the storage depots available to Episode Engine. Arguments:

-n name | --name name Optional. The name of a depot. If no name is
given, all depots are listed.

-s style | --style style Optional. Output format. Either of

xml XML as in the depots.conf file.
key-value | kv key=value lines.
default An indented list in braces.

list setting Display the contents of one or several settings files. Arguments:

-p setting, . . . | --settingid setting, . . . Mandatory. The path of a settings
file. Several files can be listed, separated by “,”, their contents will
be shown immediately following each other.

list settings List settings or settings groups. Arguments:

-g groupid, . . . | --groupid groupid, . . . Optional. The path of a settings
group. Several groups can be listed, separated by “,”. Any arguments
not preceded by - or -- switches are interpreted as group names.

Telestream 55

Telestream Episode Engine User’s Guide

-s style | --style style Optional. Output format. Either of

flat One entry per line.
list Entries on a line, separated by “,”. This can be used as input to

other commands that require comma-separated arguments.
tree Default. Entries are shown in a tree format. Implies the --recursive

option. Ignores the --no-groups and --no-settings op-
tions.

-r | --recursive Optional. List the contents of groups within groups.

-n | --names Optional. List basenames instead of full path names.

--no-groups Optional. Do not list setting groups.

--no-settings Optional. Do not list settings.

list job Output information on one or several jobs. The default output format is a
single line with the selected properties for each job. The job ID and current
state are always printed. The possible job states are:

Created The job has been created by Episode Engine.

Queued The job has been inserted in the job queue.

Running The job has started and is running.

Stopped The job has been stopped by the operator.

Failed The job has failed and will not be rerun.

Finished The job has finished successfully.

Arguments:

-i jobid . . . | --id jobid . . . Optional. The id of the job to be listed. If no job
id is given, all jobs will be listed.

-n | --name Optional. Include the job name in the output.

-h | --history Optional. Each job will display all earlier states in addition
to the current state.

-p | --progress Optional. Indicate the progress value in the output. This
is only useful if the job is running, all other job states will have a
progress value of 0.

-r | --reason Optional. Display additional information about the job state.
The job states Stopped, Failed, and Finished can have the rea-
sons NotStarted, BadCommunication, BadJob, Failed, Lost,
Cancelled, Aborted, Finished. All other states will display the
reason Unspecified.

-v | --vertical Optional. List the job information on separate lines.

-a | --archive Optional. In addition to the currently executing jobs, list fin-
ished jobs, as far back as set in engine.conf.

add setting Upload a setting to Episode Engine. The setting is then shared by
all users. Arguments:

-f filename | --filename filename Mandatory. The filename of the setting.
Any arguments not preceded by - or -- switches are interpreted as
filenames.

Telestream 56

Telestream Episode Engine User’s Guide

-n name | --name name Optional. The name given to the setting. If no
name is given, filename is used.

-g groupid | --groupid groupid Optional. The path of the group to place
the setting in. If no group path is given, the setting will placed in the
root group.

add settinggroup Create a new settings group. Arguments:

-n name | --name name Mandatory. The name of the new group. Any ar-
guments not preceded by - or -- switches are interpreted as group
names, in which case only the last one will be used.

-g groupid | --groupid groupid Optional. The path of an existing group
to place the new group in. If no path is given, the new group will be
placed in the root group.

add file | add media Submit a file and a set of settings for execution. Arguments:

-f filename | --filename filename | -n filename | --input filename Mandatory.
The source file to be transcoded. Any arguments not preceded by - or
-- switches are interpreted as file names for execution.

-o filename | --output filename Optional. Set output path. Default output
directory for local source files is the same as the input directory, for
files retrieved with ftp or smb monitors it is the default depot.

-s filename | --dstpath filename Optional. Set the output directory. Ig-
nored if a -o/--output argument is given.

-p settingid . . . | --settingid settingid . . . | -x settingid . . . | --encoder settingid . . .
Conditionally mandatory. Each setting supplied will create a job.
Note that multiple settings should not be used in conjunction with
the -o/--output option, as the output of all settings will be written
to that file, the last job to finish overwriting the previous results.

-g groupid . . . | --groupid groupid . . . Conditionally mandatory. All set-
tings in each listed group will be used for creating jobs.
One of --settingid and --groupid must be given.

-y filename | --intro filename Optional. Set the intro/bumper file. Ignored
if no setting specifies an intro.

-z filename | --outro filename Optional. Set the outro/trailer file. Ignored
if no setting specifies an outro.

-k filename | --watermark filename Optional. Set the watermark file. Ig-
nored if no setting specifies a watermark.

-m filename | --metafile filename Optional. Set the input metadata file.
Ignored if no setting specifies an input metadata file.

-a filename | --audiofile filename Optional. Set an audio file to be added
to the video input. Ignored if no audio file is specified in any setting.

--replace tag string . . . Optional. Replaces the tag tag (!tag!) in the setting
with string. Tags are case insensitive.

--meta key value . . . Optional. When the job has finished executing, any
event script run will receive the value in value in the environment
variable key. Any number of pairs of key and value can be given. See
chapter 4, Reference section for more information on event scripts.

Telestream 57

Telestream Episode Engine User’s Guide

--split Optional. Run the job in split-and-stitch mode.

--min time Optional. Set the minimum duration in seconds of a split seg-
ment. Ignored unless --split is specified.

--min number Optional. Set the maximum number of split segments. Ig-
nored unless --split is specified.

--noreg Optional. Fail if the job cannot be split. Ignored unless --split
is specified.

--prio prio Optional. Set the job priority in the range 0–65535. A higher
number corresponds to higher priority.

--jobname jobname Optional. Set a name for the job. You can modify the
job name with the following special sequences:

#I Incremental count.
#P Setting ID.
#N Setting name.

This will not change the output file name, which will always be the
source file name concatenated with the settings name. Any earlier
files with the same name will be overwritten.

--id-out | --id-out-vertical Optional. Output the job IDs. --id-out-vertical
will output the job IDs separated by newlines.

-w | --wait [-v | --verbose] Optional. Wait for the jobs to finish before ex-
iting engine. --verbose will show the progress of the jobs.

add directory | add folder Submit files within a directory and a set of settings
for execution. Files can be selected or excluded based on their filenames.
Arguments:

-d directory | --directory directory Mandatory. The directory containing
the files to be submitted. Any arguments not preceded by - or --
switches are interpreted as directory names.

-r [maxdepth] | --recursive [maxdepth] Optional. Recursively search
all subdirectories. maxdepth limits the number of levels searched.

-i regexp | --include regexp Optional. Only submit files matching the reg-
ular expression regexp.

-e regexp | --exclude regexp Optional. Do not submit files matching the
regular expression regexp.

-t | --test Optional. Print matching files only, do not submit any jobs.

-s filename | --dstpath filename Optional. Set the output directory.

-p settingid . . . | --settingid settingid . . . | -x settingid . . . | --encoder settingid . . .
Conditionally mandatory. Each setting supplied will create a job.

-g groupid . . . | --groupid groupid . . . Conditionally mandatory. All set-
tings in each listed group will be used for creating jobs.
One of --settingid and --groupid must be given.

-y filename | --intro filename Optional. Set the intro/bumper file. Ignored
if no setting specifies an intro.

-z filename | --outro filename Optional. Set the outro/trailer file. Ignored
if no setting specifies an outro.

Telestream 58

Telestream Episode Engine User’s Guide

-k filename | --watermark filename Optional. Set the watermark file. Ig-
nored if no setting specifies a watermark.

-m filename | --metafile filename Optional. Set the input metadata file.
Ignored if no setting specifies an input metadata file.

-a filename | --audiofile filename Optional. Set an audio file to be added
to the video input. Ignored if no audio file is specified in any setting.

--replace tag string . . . Optional. Replaces the tag tag (!tag!) in the setting
with string. Tags are case insensitive.

--meta key value . . . Optional. When the jobs have finished executing, any
event script run will receive the value in value in the environment
variable key. Any number of pairs of key and value can be given. See
chapter 4, Reference section for more information on event scripts.

--prio prio Optional. Set the job priority in the range 0–65535. A higher
number corresponds to higher priority.

--jobname jobname Optional. Set a name for the job. You can modify the
job name with the following special sequences:

#I Incremental count.
#P Setting ID.
#N Setting name.

This will not change the output file name, which will always be the
source file name concatenated with the settings name. Any earlier
files with the same name will be overwritten.

--id-out | --id-out-vertical Optional. Output the job IDs. --id-out-vertical
will output the job IDs separated by newlines.

-w | --wait [-v | --verbose] Optional. Wait for the jobs to finish before ex-
iting engine. --verbose will show the progress of the jobs.

remove setting Delete a shared setting. Arguments:

-p settingid . . . | --settingid settingid . . . Mandatory. The path to the set-
ting to be deleted. Any arguments not preceded by - or -- switches
are interpreted as setting paths.

remove settinggroup Delete a shared setting group and all settings it contains.
Arguments:

-g groupid . . . | --groupid groupid . . . Mandatory. The path to the settings
group to be deleted. Any arguments not preceded by - or -- switches
are interpreted as group paths.

remove job Abort a job. Arguments:

-i jobid . . . | --id jobid . . . Conditionally mandatory. Any arguments not pre-
ceded by - or -- switches are interpreted as job IDs.

--all Conditionally mandatory. Abort all jobs in Episode Engine.
One of --id and --all must be given.

-c | --cancel Stop and requeue a job instead of aborting.

Telestream 59

Telestream Episode Engine User’s Guide

analyze [-f filename | --filename filename] Output the following information on
the media file filename: Duration and number of media tracks; then for each
media track: Track type, media type and duration; for video tracks: Width,
height, aspect ratio and frame rate; for audio tracks: Number of channels,
bits/sample, bytes/sample and sample rate.

B.1 Examples

prompt> engine list setting ’Templates/By Format/Audio Only/AIFF/24bit_96kHz.setting’
<?xml version="1.0"?>
<!DOCTYPE job SYSTEM "job.dtd">
<job version="1.1">
<!--5.0-->
<description/>
<meta-data meta-file="no">
<meta-group type="movie"/>
...

Note the use of quotes to protect the spaces in the setting path.

prompt> engine list settings ’Templates/By Format/Audio Only/AIFF’ --style list --names
24bit_96kHz,24bit_48kHz,16bit_48kHz,16bit_44kHz

prompt> engine list settings --style tree --groupid ’Templates/By Format/Audio Only’
.
|== Templates/By Format/Audio Only/AAC m4a

|-- Templates/By Format/Audio Only/AAC m4a/160kbit_44kHz_stereo.setting
|-- Templates/By Format/Audio Only/AAC m4a/192kbit_44kHz_stereo.setting
|-- Templates/By Format/Audio Only/AAC m4a/128kbit_44kHz_stereo.setting
|-- Templates/By Format/Audio Only/AAC m4a/64kbit_44kHz_mono.setting
|-- Templates/By Format/Audio Only/AAC m4a/256kbit_48kHz_stereo.setting
‘-- Templates/By Format/Audio Only/AAC m4a/32kbit_32kHz_mono.setting

|== Templates/By Format/Audio Only/AIFF
|-- Templates/By Format/Audio Only/AIFF/24bit_96kHz.setting
|-- Templates/By Format/Audio Only/AIFF/24bit_48kHz.setting
|-- Templates/By Format/Audio Only/AIFF/16bit_48kHz.setting
‘-- Templates/By Format/Audio Only/AIFF/16bit_44kHz.setting

|== Templates/By Format/Audio Only/Surround
|-- Templates/By Format/Audio Only/Surround/WMA_Lossless_96kHz_surround.setting

...

prompt> engine add file /Users/Shared/Demo/CIMG1406.AVI --groupid Test --id-out-vertical
29
30
31
prompt> engine list job --vertical
29
Queued
30
Queued
31
Queued

prompt> engine --password fnord remove job --all
prompt>

Telestream 60

Telestream Episode Engine User’s Guide

prompt> engine analyze -f ~/Movies/CIMG1406.AVI
duration : 10.531322
number of tracks : 2

track type : video
media type : jpeg
duration : 10.531322
width : 320
height : 240
aspect ratio : 0/0 0.000000
frame rate : 14.718000

track type : audio
media type : pc8U
duration : 10.531250
channels : 1
bits/sample : 8
bytes/sample : 1
sample rate : 8000.000000

Telestream 61

Index

3GPP, 48
3GPP2, 48
3GPP2 (EZMovie), 48

AAC, ii
ADTS, 49
AIFF, 49
AMC, 49
AMR, 49
Analyzer, 11
archiving, 3
ATSC A/52, 49
audio, 41
AVI, 50

bash, 46
BMP, 37
Bonjour, 7
bumper, 5

DPX, 50
DV, 50
Dynamic Watcher, 11

Emacs, 41
engine, vi, 43, 55, 58, 59
Engine Admin, v, 2–5, 7–14, 36
Episode Encoder, 2, 5, 28, 36–38, 41,

44
Episode Engine, v, 1–5, 7, 15, 16, 24,

25, 28, 29, 36, 37, 42, 44, 48,
50, 55, 56, 59, 62

Episode Engine Pro, 6
Event Action Daemon, 11
event actions, 5, 44–47
Event scripts, 5

FCS, 15, 24
File Monitor, 28
File Monitors, 3
Final Cut Server, v, 2, 15
Finder, 32
Flash, 51
ftp, 3, 46

GIF, 37
GXF, 51

H.264, 36
hinting, 26

input monitoring, 3
interface components

+, 12, 28
+ Add, 18
Episode Engine, 1
−, 28
Actions, 18
Active, 29
Active Jobs, 8
Administration, 16–19, 21, 22
Advanced Frame Rate, 30
All, 8, 9
Asset Filter, 18, 23
Available, 18
Category, 17
Choose. . . , 20
Clear messages, 13, 14
Connected Clients, 11
Connected Nodes, 10
Delete, 10
Description, 19
Destination, 20
Device Name, 16
Device Type, 16
Edit, 12
Encode To, 21, 23
Engine, 38
Engine server, 7
Event Type Filter, 23
Failed, 9
Fields, 18
Finished, 9
Folder, 29
Frame Rate, 30
Ignore, 29
Include, 28, 29
Info, 8, 10, 12

Telestream 62

Telestream Episode Engine User’s Guide

info, 10, 11
Input Monitors, 12, 27, 29
Job History, 9
Jobs, 8
Local Directory, 16
Login, 7
Lookup, 16
Lookup Values, 17
Message log, 13
Metadata, 38
Metadata Field, 17
Metadata Group, 18
Metadata Sets, 18
Name, 16–20, 22–24
New Device, 15
New lookup, 16
New Metadata Field, 17
New Metadata Group, 17
New Response, 19
New Subscription, 22
Options, 16, 22
Output, 29
Path, 28
Poll Interval, 28
Priority, 8, 29
Queued, 8
Recursion Depth, 28
Recursive, 31
Remember this password in my key-

chain, 7
Response, 19
Response Action, 19, 20
Running, 8
Safety Threshold, 28, 30, 35
Save Changes, 16
Settings, 28
Show only this level, 13
Split n’ Stitch, 6, 28
Subscription, 22, 23
Time limit, 1
Trigger if changed, 23
URL, 28
Use .inmeta File, 38
Value, 22, 24

intro, 5
ISO

11172, 51, 52
13818, 49, 51, 52
14496, 48, 52

JPEG, 37

link, 26

Matrox, 36
MBR, 26
metadata, 5, 41
mobile phones, 48
MP3, ii, 51
MPEG Elementary Stream, 51
MPEG Program Stream, 52
MPEG Transport Stream, 52
MPEG-2, 42
MPEG-4, ii, 52
muxing, 41
MXF, 53

OGG, ii, 53
outro, 5

PCRE, iii
Pipeline, 2

QuickTime, 37, 53

RealMedia, 26
RED, 28

scripts, 5, 44–47
SMPTE

268M, 50
360M, 51
377M, 53

split-and-stitch, 6, 26
streaming, 26
System Preferences, 25, 26, 36

Targa, 37
Textedit, 41
TIFF, 37
trailer, 5

Vorbis, ii

watch folder, 25–26, 28
watch folders, 3
Watcher, 11
watcher, 25, 45
watermarks, 4, 37
Wave, 54
Windows Media, 54

XML, 41

Telestream 63

	Note on License
	Using Episode Engine
	What happens?
	Once more, with details
	Settings files
	Input monitoring
	Transcoding

	Monitoring transcoding
	Advanced features
	Watermarks
	Bumpers and trailers
	Metadata
	Scripts
	Split-and-stitch

	Engine Admin
	Connecting
	Active jobs
	Job history
	Connected nodes
	Connected clients
	Input Monitors
	Message Log

	Integrating Episode Engine and Final Cut Server
	Setup

	Reference section
	Watch folders
	Input monitors
	File Monitor
	Image Sequence Monitor
	FTP Monitor
	SMB/CIFS Monitor
	Pipeline File Monitor

	Storage depots
	Shared settings
	Hardware acceleration
	Optional files
	Example
	Watermarks
	Bumpers and trailers
	Metadata
	Separate audio source files

	Event scripts

	Supported formats
	engine
	Examples

