

[1] DIVA Core
C++ API Programmer's Guide

Release 8.1

Version 1.0

August 2021

Copyrights and Trademark Notices
Specifications subject to change without notice. Copyright © 2021 Telestream, LLC and its Affiliates. Telestream,
CaptionMaker, Cerify, DIVA, Episode, Flip4Mac, FlipFactory, Flip Player, Gameshow, GraphicsFactory, Kumulate,
Lightspeed, MetaFlip, Post Producer, Prism, ScreenFlow, Split-and-Stitch, Switch, Tempo, TrafficManager, Vantage, VOD
Producer, and Wirecast are registered trademarks and Aurora, ContentAgent, Cricket, e-Captioning, Inspector, iQ,
iVMS, iVMS ASM, MacCaption, Pipeline, Sentry, Surveyor, Vantage Cloud Port, CaptureVU, Cerify, FlexVU, PRISM,
Sentry, Stay Genlock, Aurora, and Vidchecker are trademarks of Telestream, LLC and its Affiliates. All other trademarks
are the property of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

iii

Contents

Preface.. ix

Audience ... ix

Documentation Accessibility... ix

Related Documents... ix

Document Updates ... ix

Conventions ... x

1 Overview

C++ API Overview ... 1-1

DIVA Core Release Compatibility... 1-2

Alternate APIs... 1-2

New and Enhanced Features and Functionality .. 1-2

Managing Connections... 1-3

Securing the API... 1-3

Java API... 1-3

C++ API.. 1-3

SSL (Secure Sockets Layer) and Authentication... 1-3

Compilers.. 1-4

Visual C++ Compiler on Windows.. 1-4

Supported Platforms... 1-4

Supported Compilers .. 1-4

API Library Options ... 1-5

API Compilation .. 1-5

Initiator Sample Program API Usage .. 1-6

C++ Compiler on Linux ... 1-6

Supported Platforms... 1-6

API Compilation .. 1-6

Using the API in Multithreaded Applications .. 1-6

Using Unicode Strings in the API.. 1-7

2 Use and Operations

Session Management Commands.. 2-2

DIVA_getApiVersion .. 2-2

Synopsis .. 2-2

DIVA_SSL_initialize .. 2-2

iv

Synopsis .. 2-2

DIVA_connect .. 2-3

Synopsis .. 2-3

Return Values ... 2-4

DIVA_disconnect.. 2-4

Synopsis .. 2-4

Multithreaded Applications.. 2-4

Return Values ... 2-4

Requests and Commands... 2-5

DIVA_addGroup... 2-5

Synopsis .. 2-5

Return Values ... 2-6

DIVA_archiveObject... 2-6

Synopsis .. 2-6

Return Values ... 2-9

DIVA_associativeCopy ... 2-10

Synopsis .. 2-10

Return Values ... 2-11

DIVA_cancelRequest.. 2-12

Synopsis .. 2-12

Return Values ... 2-12

DIVA_changeRequestPriority .. 2-13

Synopsis .. 2-13

Return Values ... 2-13

DIVA_copyToGroup and DIVA_copy.. 2-14

Synopsis .. 2-14

Return Values ... 2-15

DIVA_copyToNewObject ... 2-16

Synopsis .. 2-17

Return Values ... 2-19

DIVA_deleteGroup... 2-20

Synopsis .. 2-20

Return Values ... 2-20

DIVA_deleteInstance ... 2-21

Synopsis .. 2-21

Return Values ... 2-22

DIVA_deleteObject .. 2-23

Synopsis .. 2-23

Return Values ... 2-24

DIVA_ejectTape ... 2-25

Synopsis .. 2-25

Return Values ... 2-26

DIVA_enable_Automatic_Repack.. 2-26

Synopsis .. 2-27

Return Values ... 2-27

DIVA_getArchiveSystemInfo.. 2-27

Synopsis .. 2-27

v

Return Values ... 2-31

DIVA_getArrayList.. 2-32

Synopsis .. 2-32

Return Values ... 2-34

DIVA_getFinishedRequestList .. 2-34

Synopsis .. 2-35

Return Values ... 2-35

DIVA_getFilesAndFolders .. 2-36

Synopsis .. 2-36

Return Values ... 2-39

DIVA_getGroupsList... 2-39

Synopsis .. 2-39

Return Values ... 2-40

DIVA_getObjectDetailsList... 2-40

Synopsis .. 2-41

Return Values ... 2-47

Use with DIVA Connect... 2-49

Use and Recommended Practices .. 2-49

Recommended Practices for Continuous Updates Notification Design Pattern (No Media Filter)
2-51

DIVA_getObjectInfo ... 2-53

Synopsis .. 2-53

Return Values ... 2-53

DIVA_getPartialRestoreRequestInfo.. 2-54

Synopsis .. 2-54

Return Values ... 2-55

DIVA_getRequestInfo .. 2-55

Synopsis .. 2-55

Return Values ... 2-58

Additional_Info ... 2-59

DIVA_getSourceDestinationList ... 2-60

Synopsis .. 2-60

Return Values ... 2-61

DIVA_getStoragePlanList ... 2-62

Synopsis .. 2-62

Return Values ... 2-62

DIVA_getTapeInfo.. 2-63

Synopsis .. 2-63

Return Values ... 2-64

DIVA_insertTape .. 2-64

Synopsis .. 2-64

Return Values ... 2-65

DIVA_linkObjects ... 2-66

Synopsis .. 2-66

Return Values ... 2-67

DIVA_lockObject .. 2-67

Synopsis .. 2-67

vi

Return Values ... 2-67

DIVA_multipleRestoreObject... 2-68

Synopsis .. 2-68

Return Values ... 2-70

DIVA_partialRestoreObject.. 2-71

Synopsis .. 2-74

Return Values ... 2-80

DIVA_release ... 2-81

Synopsis .. 2-81

Return Values ... 2-81

DIVA_require ... 2-82

Synopsis .. 2-82

Return Values ... 2-83

DIVA_restoreInstance.. 2-84

Synopsis .. 2-84

Return Values ... 2-85

DIVA_restoreObject... 2-86

Synopsis .. 2-86

Return Values ... 2-88

DIVA_transcodeArchive... 2-89

Synopsis .. 2-89

Return Values ... 2-92

DIVA_transferFiles ... 2-92

Synopsis .. 2-92

Return Values ... 2-93

DIVA_unlockObject.. 2-94

Synopsis .. 2-94

Return Values ... 2-95

3 Using the API with DIVA Connect

What is DIVA Connect? .. 3-1

DIVA Core API Support... 3-2

Input Parameters ... 3-2

Return Parameters ... 3-2

Return Codes .. 3-2

getObjectDetailsList Call .. 3-2

A Appendix

List of Authorized Special Characters in DIVA Core .. A-1

Maximum Allowed Number of Characters.. A-2

API Static Constant Values ... A-3

Glossary

viii

List of Tables

1–1 Unicode Strings.. 1-7
2–1 DIVA_getObjectDetailsList Function Values .. 2-48
A–1 Special Authorized Characters in DIVA Core.. A-1
A–2 API Static Constants... A-3

ix

Preface

This document contains a detailed description of the DIVA Core and DIVA Connect C++ API
(Application Programmer's Interface).

Audience
This document assists System Administrators and API Application Developers with
development and deployment of applications interacting with DIVA Core and DIVA Connect.

Documentation Accessibility
For information about Telestream's commitment to accessibility, visit the Telestream Support
Portal located at https://www.telestream.net/telestream-support/diva/support.htm.

Access to Telestream Support

Telestream customers that have purchased support have access to electronic support through
the Telestream Support Portal located at
https://www.telestream.net/telestream-support/diva/support.htm.

Related Documents
For more information, see the DIVA Core documentation set for this release and the C++
Standard Template Library documentation located at
https://www.telestream.net/telestream-support/diva/support.htm.

Document Updates
The following table identifies updates made to this document.

Date Update

June 2020 Minor formatting updates.

February 2021 Rebranded document to Telestream

Updated copyright notices

x

Conventions
The following text conventions are used in this document:

July 2021 Replaced Configuration Utility with DIVA Command

Removed redundant terminology

Minor formatting updates

Updated information for DIVA Core 8.1 release including renaming various components
as follows:

• Actor is now named Datahub

• Proxy Actor is now named Proxyhub

• Production System is now named Network

• Source/Destination is now named Server

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

blue text Blue text indicates a link to an outside source, or to another chapter, section,
or glossary term in this book.

Date Update

1

Overview 1-1

1Overview

DIVA Core 8.1 supports interoperability among systems, helping to ensure long-term
accessibility to valued content, and keeping up with evolving storage technologies.

The architecture of DIVA Core allows the integration of many different types of servers and
technologies, for example Broadcast Video Servers, Storage Area Networks, and Enterprise
Tape Libraries.

This chapter includes the following information:

• C++ API Overview

• DIVA Core Release Compatibility

• Alternate APIs

• New and Enhanced Features and Functionality

• Managing Connections

– Securing the API

• Compilers

– Visual C++ Compiler on Windows

– C++ Compiler on Linux

• Using the API in Multithreaded Applications

• Using Unicode Strings in the API

C++ API Overview
The main DIVA Core API is written in the C++ programming language. All of the definitions are
contained in the include file named DIVAapi.h. In this document, parameters in function
signatures are qualified by IN and OUT to specify whether the parameter is passed as an input
or an output to the function. These qualifiers are not part of the C++ language and are only
used for ease of readability. You must consider that these qualifiers are equivalent to the
following macro definitions:

• #define IN

• #define OUT

In this document, the term structure identifies both C-like structures and classes which have
only public data members and no function members1. Interfaces described in this document
show only data members, not constructors or destructors.

1 The operators new and delete are not considered function members.

DIVA Core Release Compatibility

1-2 C++ API Programmer’s Guide

The DIVA Core and DIVA Connect API use only standard data types provided directly by the C++
language, and the vector data type provided by the STL (Standard Template Library). For more
information about the vector data type, refer to the STL documentation on the OTN.

DIVA Core 8.1 does not currently support the following API calls and features when used with
complex objects. Even if they are enabled, they will not be executed and no warnings will be
generated.

• VerifyFollowingArchive

• VerifyFollowingRestore

• DeleteOnSource

• DeleteFile

• getObjectListbyFileName

• The getObjectInfo and getObjectDetailsList will only return a single file

When copying complex objects to legacy-formatted media, the Copy request terminates
returning a Can't write a complex object in Legacy format error, and an error code through the API.

DIVA Core Release Compatibility
DIVA Core and DIVA Connect are backward compatible with all earlier releases of the C++ API.
Therefore, the C++ API 8.1.x is compatible with any DIVA Core release 8.0 and later.

Any new features added to DIVA Core after the release of the C++ API in use will not be
available; the client system must be upgraded to the latest release to use all features.

Alternate APIs
The API described in this document is for use with applications implemented in C++. However,
the following additional APIs are available:

• Java API: A set of libraries, samples and documentation for use with applications
implemented in Java. See the Java API Readme for Java API document location
information.

• DIVA Enterprise Connect and Web Services API: DIVA Enterprise Connect is a
standards-based Web Service API implemented on the Oracle WebLogic Suite. DIVA
Enterprise Connect interacts with the DIVA Core and DIVA Connect systems, acting as a
web service binding for the API.

DIVA Enterprise Connect includes the DIVA Web Services API, which is a set of interface
definition files and documentation for universal use by applications supporting Web
Services communications.

See the DIVA Enterprise Connect documentation set for more information.

New and Enhanced Features and Functionality
The following new and enhanced features and functionality are included in DIVA Core 8.1:

• The Source Media Priority is reported in the getArrayList and getGroupsList calls.

Note: The API is not supported under the Solaris operating system.

Managing Connections

Overview 1-3

• The storage options are reported in the getArrayList call, and storage options for each disk
instance is returned from the getObjectInfo and getObjectDetailsList calls.

• Secure Socket Layer authentication has been included in DIVA Core 8.1. See SSL (Secure
Sockets Layer) and Authentication for more information.

• A new call named DIVA_SSL_initialize has been added to set the environment for secure
communications with the Manager service. In DIVA Core 8.1 you must make this call
before calling DIVA_connect or the connection will fail. See DIVA_SSL_initialize for more
information on this call.

Managing Connections
The number of connections to the Manager is limited by the Manager and set in the Manager
configuration file. The default configuration is two hundred connections, which includes GUI
connections and all API connections. Once the configured limit is reached, the API will not
allow additional connections to be created. See the manager.conf file for additional information.

Securing the API
The following sections describe securing communications when using one of the available
DIVA Core APIs. The JAVA and C++ Initiators use the default keys and certificates file in the
%DIVA_API_HOME%/Program/security folder when connecting to the Manager.

The Manager Service is backward compatible with earlier versions of the JAVA, C++, Web
Services APIs, DIVA Enterprise Connect 1.0, and DIVA Connect 2.2 establishing connections
over regular sockets. The DIVA Core 8.1 (and later) Java and C++ API releases can establish
Manager communications using secure, or unsecure, sockets. Secure communications are only
supported by the Manager.

The Manager Service supports both secure and unsecure communication ports
simultaneously. The default secure port is tcp/8000, and the default unsecure port is tcp/9000.

Java API
See the Java API documentation for information on the new methods added to the
SessionParameters Class for secure communications. See the Java API Readme for the location of
the full Java API documentation (delivered with the API).

C++ API
The C++ API includes a new call named DIVA_SSL_initialize added to set the environment for
secure communication with the Manager Service. You must call DIVA_SSL_initialize before calling
DIVA_connect with DIVA Core 8.1, otherwise the DIVA_connect call will fail.

SSL (Secure Sockets Layer) and Authentication
DIVA Core consist of services in Java and C++. The format in how certificates and keys are
represented are different in each. DIVA Core has the keys and certificates for JAVA services in a
Java Keystore file, and in PEM (Privacy Enhanced Mail) format files for the C++ services.

Caution: It is recommended that a new connection not be created for
each request or command sent to the Manager. Whenever
possible allow the connection to remain open for the lifetime of
the session, or application.

Compilers

1-4 C++ API Programmer’s Guide

The Manager can simultaneously support two communications ports - one secure, and one
unsecure. The default secure port number is 8000 and the unsecure default port number is
9000.

All internal DIVA Core 8.1 services (Control GUI, DIVA Command, DBBackup, Migration Utility,
Datahub, SPM, DFM, SNMP, Robot Manager, RDTU, and Migration Services) can only connect
to secure ports. The control GUI will report an SSL Handshake Timeout if you attempt to
connect to the non-secure port. Clients using the Java or C++ API are allowed to connect to
either port.

The following is a relative snippet from the Manager configuration file:

Port number on which the DIVA Manager is waiting for incoming connections.
Note: If you are using a Sony library and plan to execute the DIVA Manager
on the same machine as the PetaSite Controler (PSC) software, be aware
that the PSC server uses the 9000 port and that this cannot be modified.
In that situation, you have to use a different port for the DIVA Manager.
This same warning applies to FlipFactory which uses ports 9000 and 9001.
The default value is 9000.
DIVAMANAGER_PORT=9000

Secure port number on which the DIVA Manager is waiting for incoming connections.
The default value is 8000.
DIVAMANAGER_SECURE_PORT=8000

A new folder called %DIVA_API_HOME%/security is added to the API installation structure as
follows:

%DIVA_API_HOME%
 security
 conf

The conf folder contains the SSLSettings.conf file that is used to configure the SSL handshake
timeout.

Compilers
The following sections cover the supported API compilers.

Visual C++ Compiler on Windows
These section describe using the Visual C++ compiler on the Windows operating system.

Supported Platforms
There are two separate variants of the API for Windows: 32-bit and 64-bit. The 32-bit model
can be used on both x86 and x64 platforms. However, the 64-bit variant requires a 64-bit
platform. The API for Windows is supported on the following Windows releases:

• Microsoft Windows Server 2012

• Microsoft Windows Server 2012 R2

• Microsoft Windows Server 2008

• Microsoft Windows Server 2008 x64

• Microsoft Windows Server 2008 R2

Supported Compilers
The API is compiled and tested using the following compilers:

Compilers

Overview 1-5

Microsoft Visual C++ 2010 (Release 10)
Including Microsoft Platform SDK 7.0a (April 2010)

Microsoft Visual C++ 2012 (Release 11)
Including Microsoft Platform SDK 7.1A (November 2012)

Microsoft Visual C++ 2013 (Release 13)
Including Microsoft Platform SDK 8.0A (October 2013)

API Library Options
The API is delivered with both static and dynamic libraries. Each library is available in a
standard format with debug support and Unicode compatibility. The different options may be
found in the following build directories:

Static Library
Static_Release

Static Library with Debug Support
Static_Debug

Dynamic Library
Dynamic_Release

Dynamic Library with Debug Support
Dynamic_Debug

API Compilation
Choose the 8 Bytes setting for the Strict Member Alignment option under C/C++ Code
Generation in the project settings.

The following list identifies the library path that corresponds to each run time library. The run
time library is normally changed automatically depending upon the selected build
configuration.

Multithreaded
Static_Release

Debug Multithreaded
Static_Debug

Multithreaded DLL
Dynamic_Release

Debug Multithreaded DLL
Dynamic_Debug

You must include the DIVA Core API.lib file, or the path to this file, in the link settings (see
Initiator Sample Program API Usage). The API can be included in an application compiled with
either the IDE or a script using the command line compiler.

Once your application is built, you must either add the folder where the API.dll file is located to
your PATH environment variable, or copy the API.dll file into the folder containing your
executable file.

Using the API in Multithreaded Applications

1-6 C++ API Programmer’s Guide

Initiator Sample Program API Usage
The Initiator program is included with the API and is an example of the API usage. This is a
command line program that uses the API to send requests and get data from DIVA Core. Use
the following project files to view the compiler settings and build the program:

Visual C++ .NET (Release 10)
doc\CppInitiator\InitiatorVc100.vcxproj(64-bit API)

Visual C++ .NET (Release 11)
doc\CppInitiator\InitiatorVc110.vcxproj(64-bit API)

Visual C++ .NET (Release 12)
doc\CppInitiator\InitiatorVc120.vcxproj(64-bit API)

C++ Compiler on Linux
These sections describe using the C++ compiler on the Linux operating system platform.

Supported Platforms
The API for Linux is supported on Oracle Linux. The API was built with the C++ compiler and
Oracle Solaris Studio library. The following list identifies the supported CC release and Oracle
Solaris Studio library release.

• Oracle Linux 7 x86_64 (64-bit) operating system

• Oracle Solaris Studio 12.4 library

The following command returns the CC release level:

[root@LinuxBuildVM /]# CC -V
CC: Sun C++ 5.13 Linux_i386 2014/10/20

The API may work on other Linux platforms; however it is only officially validated in the
environment described here. Support for the older release previously built on SuSe Linux 9.0
was discontinued starting with DIVA Core 8.0. For all development projects, use of the latest
release is strongly recommended.

API Compilation
The API is delivered with the x86_64_Release_unicode shared library for the Linux platform. The
release is located in the DIVA/api/lib directory. The library is built in Release Mode and does not
contain symbolic information.

Header files that may be required to compile an application with the API libraries are delivered
in the DIVA/api/include directory.

For reference, a sample application is provided in the DIVA/api/doc/CPPInitiator directory along
with its source code. The Visual Studio project file for Microsoft Windows, and sample
makefiles for Linux platforms are also provided. Refer to the sample makefiles provided in the
DIVA/api/doc/CPPInitiator directory for platform-specific compiler and linker options.

Using the API in Multithreaded Applications
The API supports using multiple threads concurrently with the following restrictions (see the
related function's specific documentation for additional information):

Using Unicode Strings in the API

Overview 1-7

• The DIVA_connect() and DIVA_disconnect() functions share the same critical section. Although
multiple simultaneous connections are supported, they must be opened and closed one at
a time.

• The init, get, and close functions used to retrieve list information (Objects List or Objects
Tape Information List) also use a Critical Section to prevent concurrent threads
reinitializing the list while another thread is currently reading it. The critical section is
entered when the list is initialized and left when the list is closed. There are two separate
critical sections, one for each type of list.

• All of the other DIVA Core functions may be called simultaneously by different threads.
For example, one thread can call the DIVA_archiveObject() function while another one is
calling DIVA_getArchiveSystemInfo().

Using Unicode Strings in the API
The API (and other DIVA Core components) support wide character strings. Only 64-bit Unicode
is delivered with the API. You must define the _UNICODE constant before including the DIVAapi.h
header file to be able to use the wchar_t and wstring.

In addition, the application must be linked with one of the Unicode releases in the library (for
example, in lib/Release_Unicode).

Defining, or not defining, the _UNICODE macro will change the implementation of the DIVA_
STRING and DIVA_CHAR types.

The _T macro is recommended when working with static strings:

Example:

_T("Hello")

Table 1–1 Unicode Strings

Type _UNICODE Not Defined _UNICODE Defined

DIVA_STRING string wstring

DIVA_CHAR char wchar_t

2

Use and Operations 2-1

2Use and Operations

This chapter discusses connection management, requests, and commands, and includes the
following information:

• Session Management Commands

– DIVA_getApiVersion

– DIVA_SSL_initialize

– DIVA_connect

– DIVA_disconnect

• Requests and Commands

– DIVA_addGroup

– DIVA_archiveObject

– DIVA_associativeCopy

– DIVA_cancelRequest

– DIVA_changeRequestPriority

– DIVA_copyToGroup and DIVA_copy

– DIVA_copyToNewObject

– DIVA_deleteGroup

– DIVA_deleteInstance

– DIVA_deleteObject

– DIVA_ejectTape

– DIVA_enable_Automatic_Repack

– DIVA_getArchiveSystemInfo

– DIVA_getArrayList

– DIVA_getFinishedRequestList

– DIVA_getFilesAndFolders

– DIVA_getGroupsList

– DIVA_getObjectDetailsList

– DIVA_getObjectInfo

– DIVA_getPartialRestoreRequestInfo

Session Management Commands

2-2 C++ API Programmer’s Guide

– DIVA_getRequestInfo

– DIVA_getSourceDestinationList

– DIVA_getStoragePlanList

– DIVA_getTapeInfo

– DIVA_insertTape

– DIVA_linkObjects

– DIVA_lockObject

– DIVA_multipleRestoreObject

– DIVA_partialRestoreObject

– DIVA_release

– DIVA_require

– DIVA_restoreInstance

– DIVA_restoreObject

– DIVA_transcodeArchive

– DIVA_transferFiles

– DIVA_unlockObject

Session Management Commands
The following three sections describe the commands used to control the session connection.

DIVA_getApiVersion
Returns the string pointed to by version of the major part of the release number.

Synopsis
#include "DIVAapi.h"

void DIVA_getApiVersion (
 OUT DIVA_STRING *version
);

version

Points to a string that contains the major part of the release for this API.

DIVA_SSL_initialize
The DIVA_SSL_initialize call sets the environment for secure communication with the Manager
Service. You must call DIVA_SSL_initialize before calling DIVA_connect with DIVA Core 8.1,
otherwise the DIVA_connect call will not establish a secure connection.

Synopsis
DIVA_STATUS DIVA_SPEC DIVA_SSL_initialize(
 DIVA_STRING KeyPath, // [in] Full path of the Key file contain the private key and certificate in PEM format.
 DIVA_STRING TrustStorePath, // [in] Full path of the file containing Trust certificates in PEM format.
 DIVA_STRING KeyPassword // [in] Password for the private key

Session Management Commands

Use and Operations 2-3

)

DIVA_connect
Opens a connection with the Manager. All of the other API functions are only available when a
connection is open. A connection cannot be opened if another connection is already open. To
open a new connection, the previous one must be explicitly closed by calling DIVA_disconnect().

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber
);
DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
);
DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
 IN string userInfo
);

managerAddress

The IP address of the Manager.

portNumber

The port on which the Manager is listening. The default port is pointed to by the constant
value DIVA_MGER_DEFAULT_PORT.

userName

The user name.

password

The password associated with the user name.

applicationName

The name of the application.

userInfo

User specific and specified information.

Multithreaded Applications:

A critical section protects both the DIVA_connect() and DIVA_disconnect() functions. If a thread is
already in the process of closing the connection to the Manager, other threads must wait until
the running thread exits the DIVA_connect() function before being able to open or close the
connection.

Session Management Commands

2-4 C++ API Programmer’s Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_NO_ARCHIVE_SYSTEM
There was a problem when establishing a connection with the specified DIVA Core system.

DIVA_ERR_WRONG_VERSION
The release levels of the API and the Manager are not compatible.

DIVA_ERR_ALREADY_CONNECTED
A connection is already open.

Also see DIVA_disconnect.

DIVA_disconnect
Closes a connection with the Manager. When a connection is closed, only the DIVA_connect()
function can be called. If no connection is currently open, this function has no effect and
returns DIVA_OK.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_disconnect ()

Multithreaded Applications
A critical section protects both the DIVA_connect() and DIVA_disconnect() functions. If a thread is
already in the process of closing the connection to the Manager, other threads must wait until
the running thread exits the DIVA_disconnect() function before being able to open or close the
connection.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

Requests and Commands

Use and Operations 2-5

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_DISCONNECTING
There was a problem when disconnecting. The connection is considered to still be open.

Also see DIVA_connect.

Requests and Commands
The following sections discuss all of the available API commands for use in your application.

DIVA_addGroup
This function adds a new group.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_addGroup (
IN DIVA_STRING groupName,
IN int associatedSet,
IN DIVA_STRING comment,
IN bool toBeRepacked,
IN bool worstFitEnabled,
IN int worstFitRepackTapes,
IN int mediaFormatId
);

groupName

The name of the group to be added.

associatedSet

The set of tapes to associate with the new group. This value must be strictly greater than zero.

comment

A text description of the new group.

toBeRepacked

If true, tapes belonging to this group are eligible for automatic repacking.

worstFitEnabled

If true, Worst Fit Policy (access speed optimization) will apply.

Requests and Commands

2-6 C++ API Programmer’s Guide

worstFitRepackTapes

The number of tapes reserved for Worst Fit Repacking.

mediaFormatId

The data format to be used by the tapes assigned to this group. The value can be DIVA_
MEDIA_FORMAT_LEGACY or DIVA_MEDIA_FORMAT_AXF. See information on media formats
in the Glossary.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_GROUP_ALREADY_EXISTS
The specified group already exists.

DIVA_archiveObject
Submits an archive request to the Manager. This function returns as soon as the Manager
accepts the request. The application must call the function DIVA_getRequestInfo() to check that
the operation completed successfully.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_archiveObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING source,
IN DIVA_STRING mediaName,
IN DIVA_STRING filesPathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_ARCHIVE_QOS qualityOfService,

Requests and Commands

Use and Operations 2-7

IN int priorityLevel,
IN DIVA_STRING comments,
IN DIVA_STRING archiveOptions,
OUT int requestNumber
);

objectName
The name of the object to be archived.

objectCategory
The category of the object to be archived.

source
The name of the Source Server (for example, the video server, browsing server, and so on). This
name must be known to the DIVA Core configuration description.

mediaName
The tape group or disk array where the object is to be saved. The media may be defined as
follows:

Name (of the Group or Array)
Provide the tape group or disk array name as defined in the configuration. The object is
saved to the specified media and assigned to the default SP (Storage Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The object will be
assigned to the specified Storage Plan and saved to the default media specified.

Both of the above (Name and SP Name)
The object is saved to the specified media as in Name, and assigned to the specified
Storage Plan as in SP Name. The Name and the SP Name must be separated by the &
delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is used.
Complex objects can only be saved to AXF media types.

filesPathRoot
The root folder for the files specified by the filenamesList parameter.

filenamesList
List of file path names relative to the folder specified by the filesPathRoot parameter. Path
names must be absolute names when the filesPathRoot is null.

The following is for DIVA Core releases 7.1.2 and later only:

If the -gcinfilelist option is specified the Genuine Checksum is included with a colon separator
between the file name and the GC value as follows:

test1.txt:a6f62b73f5a9bf380d32f062f2d71cbc
test2.txt:96bf41e4600666ff69fc908575c0319

qualityOfService
One of the following codes executes the request using the specified QOS:

DIVA_QOS_DEFAULT
Archiving is performed according to the default Quality Of Service (currently direct and
cache for archive operations).

Requests and Commands

2-8 C++ API Programmer’s Guide

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct archive only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache archive if available, or direct archive if cache archive is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct archive if available, or cache archive if direct archive is not available.

Additional and optional services are available. To request those services, use a logical OR
between the previously documented Quality Of Service parameter and the following
constant:

DIVA_ARCHIVE_SERVICE_DELETE_ON_SOURCE
Delete source files when the tape migration is done. Available for local Source Servers,
disk Source Servers, and standard FTP Source Servers. This feature is not available for
complex objects.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

comments
Optional information describing the object. This can be a null string.

archiveOptions
Additional options for performing the transfer of data from the Source Server to DIVA Core.
These options supersede any options specified in the DIVA Core configuration database.
Currently the possible values for archiveOptions are as follows:

Null string
A null string specifies no options.

-delete_on_source
Executes a delete on the Source Server after an archive request completes.

Requests and Commands

Use and Operations 2-9

-r
Using -r specifies that every name in filenamesList that refers to a folder must be scanned
recursively. This also applies when FilesPathRoot is specified and an asterisk designates
the files to be archived. This option can be used when archiving from a local Source Server
or from a standard FTP Server.

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

The following is for DIVA Core releases 7.1.2 and later only:

-gcinfilelist [gcType]
Specifies that GC (Genuine Checksum) values are included in the file names list. The value
of gcType must match the Manager's default checksum type as specified in the DIVA Core
configuration (MD5 by default). The GC values are then used to verify the transfer from
the Source Server.

requestNumber
The request number assigned to this request. This number is used for querying the status
or canceling the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this variable
in the manager.conf configuration file. The default value is three hundred.

Requests and Commands

2-10 C++ API Programmer’s Guide

DIVA_ERR_GROUP_DOESNT_EXIST
The specified tape group or disk array does not exist.

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_associativeCopy
Submits a request for creating new instances in the group (specified by group). DIVA Core
guarantees that these instances are stored sequentially on tapes:

• The request is completed only when every object is copied to the same tape.

• In the case of drive or tape failure during a write operation, instances currently written
are erased and the request is retried once.

• The choice of the tape to be used for the copy follows the policy used for the archive
operation (written tapes with enough remaining size regardless of optimizations).

• Associative Copy does not span tapes - the request terminates (and is retried once) instead
of spanning. The request terminates if the sum of the size of the objects to copy exceeds
the capacity of every individual tape present in the library.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_associativeCopy (
IN vector<DIVA_OBJECT_SUMMARY> *objectsInfo,
IN DIVA_STRING groupName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectsInfo
A pointer to a list of objects defined by a name and category pair.

groupName
The name of the group where the new instance will be located. Complex objects can only be
saved to AXF media types. Associative Copy to a disk array is not available.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred
or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

Requests and Commands

Use and Operations 2-11

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable is set
in the manager.conf configuration file and the default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this object. Tape instances are ejected and no Datahub could provide
a disk instance.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified tape group or disk array does not exist.

Requests and Commands

2-12 C++ API Programmer’s Guide

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

Also see DIVA_archiveObject and DIVA_copyToGroup and DIVA_copy.

DIVA_cancelRequest
Submits a Cancel operation to the Manager. This function returns as soon as the Manager
accepts the operation. The application must call the function DIVA_getRequestInfo() to check that
the operation was successful.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_cancelRequest (
IN int requestNumber,
IN DIVA_STRING options
);

requestNumber
A number identifying the request to be canceled. This parameter can be set to DIVA_ALL_
REQUESTS to cancel all cancellable requests.

options
An optional string attribute for specifying additional parameters to the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

Requests and Commands

Use and Operations 2-13

DIVA_ERR_NO _SUCH_REQUEST
The requestNumber identifies no request.

Also see DIVA_getRequestInfo.

DIVA_changeRequestPriority
Submits a Change Request Priority request to the Manager. This function returns as soon as
the Manager accepts the request. The application must call the DIVA_getRequestInfo() function
to check that the operation was successful.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_changeRequestPriority (
IN int requestNumber,
IN int priorityLevel,
IN DIVA_STRING passThruOptions
);

requestNumber
A number identifying the request to be changed.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred.
The value zero is the lowest priority and one hundred is the highest priority.

There are five predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

The use of DIVA_DEFAULT_REQUEST_PRIORITY is not allowed with this function.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

passThruOptions
An optional string attribute for specifying additional parameters to the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

Requests and Commands

2-14 C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request.

DIVA_ERR_INVALID_PARAMETER
A parameter value has not been understood by the Manager.

Also see DIVA_getRequestInfo.

DIVA_copyToGroup and DIVA_copy
Submits a New Instance Creation request on the media specified by mediaName to the
Manager, and the Manager chooses the appropriate instance to be created. This function
returns as soon as the Manager accepts the request. The application must call the DIVA_
getRequestInfo() function to check that the operation was successful.

The request will fail if the requested object is on media that is not available. The Media Names
(tape barcodes and disk names) that contain instances of the object will be included in the
additionalInfo field of the DIVA_getRequestInfo() response.

A tape group may contain two instances of the same object. In this case, DIVA Core will
terminate the request if both instances cannot be written on two different tapes. A disk array
can contain two instances of the same object; however DIVA Core will terminate the request if
the new instance cannot be written on a different disk. There can be a maximum of only one
instance of each object per disk or tape.

Synopsis
DIVA_copyToGroup is a public alias to DIVA_copy and performs the same functionality.

#include "DIVAapi.h"

DIVA_STATUS DIVA_copy (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

DIVA_STATUS DIVA_copyToGroup (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID,
IN DIVA_STRING mediaName,

Requests and Commands

Use and Operations 2-15

IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the object to be copied.

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string;
however this may result in an error if several objects have the same name.

instanceID
The instance's identifier. DIVA_ANY_INSTANCE as the Instance ID means that DIVA Core will
choose the appropriate instance.

mediaName
The media (tape group or disk array) where the new instance will be located.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred
or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request to be changed.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

Requests and Commands

2-16 C++ API Programmer’s Guide

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value has not been understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This variable is
set in the manager.conf configuration file. The default is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this object. Tape instances are ejected and no Datahub could provide
a disk instance.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this object is ejected, or the Datahub owning the specified
disk instance is not available.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified group does not exist.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

Also see DIVA_archiveObject.

DIVA_copyToNewObject
Submits a request for copying an archived object to a new object, with another name or
category, to the Manager. The Manager chooses the appropriate instance as the source of the
copy. This function returns as soon as the Manager accepts the request. The application must
call the DIVA_getRequestInfo() function to check that the operation was successful.

Requests and Commands

Use and Operations 2-17

The request will fail if the requested object is on an unavailable media. The media names (tape
barcodes and disk names) that contain instances of the object will be included in the
additionalInfo field of the DIVA_getRequestInfo() response.

All types of transfers (disk to disk, disk to tape, tape to disk, and tape to tape) are supported.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA::ObjectInstanceDescriptor &source,
IN const DIVA::ObjectInstanceDescriptor &target,
IN const DIVA::RequestAttributes &attrs,
IN DIVA STRING options,
OUT int *requestNumber
);

source
The description of the object or object instance to be copied:

source.objectName
The Source Server object name (required).

source.objectCategory
The Source Server object category (required).

source.group
The Source Server object instance tape group or disk array. This is optional, however if
specified DIVA Core will use this instance as the Source Server.

source.instanceID
The Instance ID of the Source Server object instance. This is optional, however if specified
and not equal to DIVA_ANY_INSTANCE, DIVA Core will use this instance as the Source
Server. The source.group parameter will be ignored if source.instanceID is specified.

If both source.group and source.instanceID are omitted, DIVA Core will use the most suitable
instance (that provides the best performance) as a source.

target
The description of the target object:

target.objectName
The target object name (required).

target.objectCategory
The target object category (required).

target.group
See the following paragraph.

target.instanceID
This call ignores this value.

Either the object name or category (or both) must be different from name or category of the
Source Server object. The request will fail if the target object already exists in DIVA Core.

attrs
The request attributes:

Requests and Commands

2-18 C++ API Programmer’s Guide

attrs.priority
The request priority (optional). If this is not explicitly set the default value is used. Possible
values are zero (lowest) to one hundred (highest).

attrs.qos
QOS (Quality of Service) is not applicable to this request and this call ignores this value.

attrs.comments
The target object's comments (optional). If no value is specified the Source Server object's
comments are inherited.

attrs.options
This request has no additional options and this call ignores this value.

requestNumber
The number identifying the request that is returned by DIVA Core.

DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA_STRING &objectName,
IN const DIVA_STRING &objectCategory,
IN const DIVA_STRING &objectMedia,
IN int objectInstanceID,
IN const DIVA_STRING &newObjectName,
IN const DIVA_STRING &newObjectCategory,
IN const DIVA_STRING &newObjectInstanceMedia,
IN const DIVA_STRING &comments,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the Source Server object.

objectCategory
The category of the Source Server object.

objectMedia
The tape group or disk array of the Source Server object instance (optional). If specified (not
empty), DIVA Core will use this instance as a Source Server. Complex objects can only be saved
to AXF formatted media types.

objectInstanceID
The Instance ID of the Source Server object instance (optional). If specified and not equal to
DIVA_ANY_INSTANCE, DIVA Core will use this instance as the Source Server. This call ignores
the objectMedia parameter if an instanceID value is specified.

If both objectMedia and instanceID are not specified, DIVA Core will use the most suitable
instance (providing the best performance) as the Source Server.

newObjectName
The target object name.

newObjectCategory
The target object category. Either the object name or category (or both) must be different
from name or category of the Source Server object.

This request will fail if the target object already exists in DIVA Core.

Requests and Commands

Use and Operations 2-19

newObjectInstanceMedia
The tape group or disk array where the object will be saved. The media may be defined as
follows:

Name (of the Group or Array)
Provide the tape group or disk array name as defined in the configuration. The object is
saved to the specified media and assigned to the default SP (Storage Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The object will be
saved to the default media specified in the Storage Plan and assigned to the specified
Storage Plan.

Both of the above (Name and SP Name)
The object is saved to the specified media as in Name above. The object is assigned to the
specified SP as in SP Name above. The Name and the SP Name must be separated by the &
delimiter (this is configurable).

comments
Optional information describing the target object. If left empty the Source Server object
comments are inherited.

priorityLevel
Level of priority for this request. The possible values can be in the range zero to one hundred,
and the DIVA_DEFAULT_REQUEST_PRIORITY (use default request priority).

options
Optional string attribute for specifying additional parameters to the request.

requestNumber
The request number assigned to this request by DIVA Core.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

Requests and Commands

2-20 C++ API Programmer’s Guide

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This variable is
set in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this object. Tape instances are ejected and no Datahub could provide
a disk instance.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this object is ejected, or the Datahub owning the specified
disk instance is not available.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified group does not exist.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

Also see "DIVA_copyToGroup and DIVA_copy".

DIVA_deleteGroup
Deletes the group passed as an argument. You can only delete a group when the group is
empty.

Synopsis
#include "DIVAapi.h"

IN DIVA_STRING groupName
DIVA_STATUS DIVA_deleteGroup (
);

groupName
The name of the group to be deleted.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h.

DIVA_OK
The request was correctly submitted and accepted by the Manager.

Requests and Commands

Use and Operations 2-21

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified group does not exist.

DIVA_ERR_GROUP_IN_USE
The group contains at least one object currently in use (being archived, restored, deleted, and
so on).

DIVA_deleteInstance
Deletes an object instance.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the object to be deleted.

Requests and Commands

2-22 C++ API Programmer’s Guide

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

instanceID
The instance's identifier

mediaName
Defines the media that contains the valid instance. If the instanceId is -1, the instance on the
media will be deleted. If the media contains 2 or more instances, only one of the instances will
be deleted.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred
or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

Requests and Commands

Use and Operations 2-23

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This variable is
set in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL _OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The specified instance does not exist.

DIVA_ERR_LAST_INSTANCE
DIVA_deleteObject() must be used to delete the last instance of an object.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_getObjectInfo.

DIVA_deleteObject
Submits an Object Delete Request to the Manager. The Manager deletes every instance of the
object. This function returns as soon as the Manager accepts the request. To check that the
operation was successful the application must call the function DIVA_getRequestInfo().

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_deleteObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the object to be deleted.

Requests and Commands

2-24 C++ API Programmer’s Guide

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred
or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

Requests and Commands

Use and Operations 2-25

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This variable is
set in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL _OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_BEING_ARCHIVED
The specified object does not exist in the DIVA Core database, but it is currently being
archived.

See also DIVA_getRequestInfo and DIVA_deleteInstance.

DIVA_ejectTape
Submits an Eject Request to DIVA Core. The request completes when the specified tapes are
outside of the library.

If at least one of the tapes does not exist, is already ejected, or currently in use by another
request, the DIVA_ERR_INVALID_PARAMETER status code is returned and no tapes are
ejected.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_ejectTape (
IN vector<DIVA_STRING> *vsnList,
IN bool release
IN DIVA_STRING comment,
IN int priorityLevel,
OUT int *requestNumber
);

vsnList
List of VSNs for identifying the tapes to be ejected.

release
When true, perform a DIVA_release() on every instance located on the successfully ejected tapes.

comment
Externalization comment.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one hundred
or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred is the highest priority.

There are six predefined values as follows:

Requests and Commands

2-26 C++ API Programmer’s Guide

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

requestNumber
The number identifying the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager, or at least one of the barcodes refers
to a bad tape (that is, an unknown tape, offline tape, or tape in use).

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This variable is
set in the manager.conf configuration file. The default value is three hundred.

See also DIVA_insertTape.

DIVA_enable_Automatic_Repack
Enable or disable the automatic repack scheduling in the Manager.

Requests and Commands

Use and Operations 2-27

When the automatic repack scheduling is enabled, the schedule defined in the Control GUI is
applied and tapes belonging to groups for which repack is allowed can be repacked according
to the other automatic repack settings.

When the automatic repack scheduling is disabled, all running automatic repack requests
might be canceled (or not, according to other automatic repack settings), and no other
automatic repack requests will be started until the automatic repack scheduling is turned on
again (either from this API or from the Control GUI).

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_enableAutomaticRepack (
IN bool enable
);

enable
Set true to enable automatic repack scheduling, false to disable.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h.

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getArchiveSystemInfo
Retrieves general information about the DIVA Core system.

A DIVA Core system communicates with a Robotic System composed of one or more
independent ACSs (Automated Cartridge Systems). An ACS is composed of one or more LSMs
(Library Storage Modules) that can exchange tapes through a PTP (Pass Through Port). Each
tape drive is located in a LSM.

Synopsis
#include "DIVAapi.h"

Requests and Commands

2-28 C++ API Programmer’s Guide

DIVA_STATUS DIVA_getArchiveSystemInfo (
IN string options;
OUT DIVA_GENERAL_INFO *info
);

info
Pointer to a DIVA_GENERAL_INFO structure that will be modified to include information about
the DIVA Core system.

typedef enum {
DIVA_IS_ON = 0,
DIVA_IS_OFF,
DIVA_GLOBAL_STATE_IS_UNKNOWN
} DIVA_GLOBAL_STATE;

typedef enum {
DIVA_LIBRARY_OK = 0,
DIVA_LIBRARY_OUT_OF_ORDER,
DIVA_LIBRARY_STATE_UNKNOWN
} DIVA_LIBRARY_STATE;

class DIVA_ACTOR_AND_DRIVES_DESC {
public:
string actorName;
string actorAddress;
bool actorIsAvailable;
vector<string> *connectedDrives;
bool repackEnabled;
bool classicEnabled;
bool cacheArchiveEnabled;
bool directArchiveEnabled;
bool cacheRestoreEnabled;
bool directRestoreEnabled;
bool deleteEnabled;
bool copyToGroupEnabled;
bool associativeCopyEnabled;
int cacheForRepack;
};
class DIVA_LSM_DESC {

public:
string lsmName;
int lsmID;
bool lsmIsAvailable;
};

class DIVA_DRIVE_DESC {
public:
string driveName;
int driveTypeID;
string driveType;
int lsmID;
bool driveIsAvailable;
bool repackEnabled;
bool classicEnabled;
};

class DIVA_GENERAL_INFO {
public:

Requests and Commands

Use and Operations 2-29

DIVA_GLOBAL_STATE status;
DIVA_LIBRARY_STATE lib_status;
int totalNumberOfObjects;
vector<DIVA_ACTOR_AND_DRIVES_DESC> *actorsDrivesList;
vector<DIVA_LSM_DESC> *lsmList;
vector<DIVA_DRIVE_DESC> *drivesList;
int numberOfBlankTapes;
long remainSizeOnTapes;
long totalSizeOnTapes;
int capSize;
vector<int> *pendingRequests;
vector<int> *currentRequests;
int numOfAvailableActors
int numOfAvailableDrives
int numOfAvailableDisks
string siteName
string siteIpAddress
int sitePort
int firstUsedRequestId
int lastUsedRequestId
};

The following parameters are listed in the order they appear in the preceding code example.
Therefore there may be duplicates because the same parameter is used in different places in
the code to represent different items.

actorName
The name of the Datahub.

actorAddress
The Datahub IP address.

actorIsAvailable
Determines if the Datahub is available.

connectedDrives
Identifies the connected drives.

repackEnabled
This is true if Repack is enabled.

classicEnabled
This parameter is maintained for compatibility purposes only. This is only true if all seven
standard operations are enabled.

cacheArchiveEnabled
This is true if Cached Archive is enabled.

directArchiveEnabled
This is true if Direct Archive is enabled.

cacheRestoreEnabled
This is true if Cached Restore is enabled.

directRestoreEnabled
This is true if Direct Restore is enabled.

deleteEnabled
This is true if Delete is enabled.

Requests and Commands

2-30 C++ API Programmer’s Guide

copyToGroupEnabled
This is true if Copy To Group is enabled.

associativeCopyEnabled
This is true if Associative Copy is enabled.

cacheForRepack
This is true if Cached Repack is enabled.

lsmName
User-friendly Library Storage Module name.

lsmID
This is the unique LSM ID.

lsmIsAvailable
This is true if the LSM identified by the preceding lsmID parameter is available for DIVA Core.

driveName
This is the Drive Name.

driveTypeID
This is the Drive Type ID.

driveType
This is the Drive Type Name.

lsmID
This is the ID of the LSM containing the drive. See lsmList described later.

driveIsAvailable
This is true if the identified drive is available for DIVA Core.

status
The status of DIVA Core.

lib_status
This is ok if at least one ACS is online. See lsmList described later.

totalNumberOfObjects
The number of objects managed by this DIVA Core system.

actorsDrivesList
<DIVA_ACTOR_AND_DRIVES_DESC>

lsmList
<DIVA_LSM_DESC>

drivesList
<DIVA_DRIVE_DESC>

numberOfBlankTapes
The number of blank tapes in a Set associated with at least one group. Tape(s) may be
externalized or write disabled.

remainSizeOnTapes
The sum of the remaining size of tapes (in gigabytes) that are online, in a Set associated with
at least one group in an ACS where DIVA Core has a drive that is writable, and the remaining

Requests and Commands

Use and Operations 2-31

size on disks accepting permanent storage. Only disks that are currently visible are used in the
calculation.

Remaining_Size_of_Online_Tapes + Remaining_Size_of_Disks_Accepting_Permanent_Storage

totalSizeOnTapes
The sum of the total size of all tapes (in gigabytes) in a Set associated with at least one group
available for DIVA Core, and of the total size of all disks accepting storage. Only disks that are
currently visible are used in the calculation.

Total_Size_of_all_Available_Tapes + Total_Size_of_all_Disks_Accepting_Storage

capSize
The number of slots in the default CAP.

pendingRequests
The number of pending requests.

currentRequests
The number of current requests.

numOfAvailableActors
The number of currently running Datahubs.

numOfAvailableDrives
The number of drives currently in online status.

numOfAvailableDisks
The number of disks currently in online status.

siteName
The name of the main site as entered in DIVA Command.

siteIpAddress
The Manager IP Address.

sitePort
The port number where the Manager is listening.

firstUsedRequestId
The first request ID used by the current Manager session. This value is -1 if no requests were
processed.

lastUsedRequestId
The last request ID used by the current Manager session. This value is -1 if no requests were
processed.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

Requests and Commands

2-32 C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getArrayList
The purpose of this function is to provide a list of arrays and disks associated with the arrays in
the DIVA Core system. It also returns arrays without any disks associated with them. In DIVA
Core 8.1 and later the Source Media Priority and storage options are reported in the returned
data from this call.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getArrayList (
IN string options;
OUT vector<DIVA_ARRAY_DESC> *&arraysInfo
);

arraysInfo
A pointer to a list of DIVA_ARRAY_DESC structures.

#ifndef WIN32
typedef long long __int64;
#endif

typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ARRAY_DESC {
public:
DIVA_STRING arrayDesc;
DIVA_STRING arrayName;
int number_Of_Disk;
int mediaFormatId;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (deprecated)
vector<DIVA_DISK_ARRAY> *arrayDiskList;
DIVA_STRING storageOptions
};

typedef enum {
DIVA_DISK_STATUS_UNKNOWN = 0,
DIVA_DISK_STATUS_ONLINE,
DIVA_DISK_STATUS_OFFLINE,

Requests and Commands

Use and Operations 2-33

DIVA_DISK_STATUS_NOT_VISIBLE
} DIVA_DISK_STATUS;

class DIVA_DISK_ARRAY {
public:
__int64 disk_CurrentRemainingSize;
bool disk_isWritable;
__int64 disk_maxThroughput;
__int64 disk_minFreeSpace;
DIVA_STRING disk_name;
DIVA_STRING disk_site;
DIVA_DISK_STATUS disk_status;
__int64 disk_total_size;
__int64 consumedSize;
DIVA_STRING disk_array_name;
};

arrayDesc
The description of the array.

arrayName
The name of the array.

numberOfDisk
The number of disks in the array.

mediaFormatId
The format of the data on disks in this array. The value can be DIVA_MEDIA_FORMAT_
LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10. See information on
media formats in the Glossary.

storageOptions
The Storage Class and Storage Location. Formatted as follows:

• oracle_storage_class=[NONE|ARCHIVE|STANDARD]

• storage_location=[LOCAL|OPC|OCI]

arrayDiskList
A list of the disks in an array.

DIVA_DISK_STATUS_UNKNOWN = 0
The disk status is unknown.

DIVA_DISK_STATUS_ONLINE
The disk status is online.

DIVA_DISK_STATUS_OFFLINE
The disk status is offline.

DIVA_DISK_STATUS_NOT_VISIBLE
The disk status is not visible.

disk_CurrentRemainingSize
The current remaining disk size.

disk_consumedSize
The current consumed size on disk in kilobytes. Useful for unlimited cloud disks to determine
the space consumed on the disk.

Requests and Commands

2-34 C++ API Programmer’s Guide

disk_isWritable
This flag checks to see whether the disk is writable.

disk_maxThroughput
The maximum throughput of a disk.

disk_minFreeSpace
The minimum free space available on a disk.

disk_name
The name of the disk.

disk_site
The name of the site where the disk is located.

disk_status
The current disk status.

disk_total_size
The total size of the disk.

disk_array_name
The name of the array containing the disk.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getFinishedRequestList
Get all of the finished requests starting from the specified number of seconds before the
present. Finished requests are requests that have completed normally or were terminated.

Use this function as follows:

If the list of requests to be processed is greater than the batch size, make successive calls to
this function. The first time the function is called, set initialTime to the desired number of
seconds earlier, where the list is to start. The maximum is three days. For successive calls set

Requests and Commands

Use and Operations 2-35

initialTime to zero and set the uniqueId to the value returned by the previous call. The
returned list will be empty after all of the requests have been returned.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getFinishedRequestList (
IN int batchSize,
IN int initialTime,
IN DIVA_STRING uniqueId,
OUT DIVA_FINISHED_REQUEST_INFO *pFinishedRequestInfo
);

batchSize
The maximum size of the returned list of objects. This must be set to a value no greater than
1000; the recommended setting is 500. This is only a suggestion and may be overridden by the
underlying functionality. This parameter should not be used to guarantee that the list will be a
certain size.

initialTime
The first time the function is called this value defines how far back in time to go to look for
finished requests. Requests that have finished between this time and the present will be
retrieved. The valid range for this parameter is 1 to 259200 (three days). If the number of
requests to be returned is greater than the batch size, the call is repeated. For these calls this
parameter should be set to zero (0).

uniqueId
The first time the function is called this value must be set to an empty string (_T("")). Do not set
this parameter to NULL. If the number of request to be returned is greater than the batch size,
the call is repeated. For these calls this value should be set to the uniqueId as found in DIVA_
FINISHED_REQUEST_INFO that was returned by the previous call.

pFinishedRequestInfo
This is a pointer to the returned data. See the description of DIVA_FINISHED_REQUEST_INFO
later in this section. It is the user's responsibility to allocate and delete instances of this class.

class DIVA_FINISHED_REQUEST_INFO {
public:
DIVA_STRING uniqueId;
vector<DIVA_REQUEST_INFO> *pRequestList;
};

uniqueId
After the first (and any subsequent) call, the API libraries update this variable with the current
position in the search. Use this value as the input parameter to subsequent calls.

pRequestList
This is a pointer to the returned data. See the description of DIVA_REQUEST_INFO under the
description of DIVA_getRequestInfo.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

Requests and Commands

2-36 C++ API Programmer’s Guide

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getFilesAndFolders
Retrieves the names of the files and folders for the specified object from DIVA Core. This
function is included to support complex objects, but is valid for any object.

You set the startIndex to zero to get all of the file and folder names for an object. A list of names
of the specified size is returned. You then set startIndex to the value of nextStartIndex and again
make the function call. Continue this process until the return value equals DIVA_WARN_NO_
MORE_OBJECTS.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getFilesAndFolders (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN int listType,
IN int startIndex,
IN int batchSize,
IN DIVA String options,
OUT DIVA_FILES_AND_FOLDERS *pFilesAndFolders
);

objectName
The name of the object to be queried.

objectCategory
The category assigned to the object when it was archived.

listType
Specifies what the returned list will include. See the definition of DIVA_FILE_FOLDER_LIST_
TYPE later in this section.

startIndex
The position in the list to start this iteration. Set at one (1) to start at the beginning. Values less
than one are not valid. Set startIndex equal to nextStartIndex as returned in DIVA_FILES_AND_
FOLDERS for all subsequent calls.

Requests and Commands

Use and Operations 2-37

batchSize
The maximum size of the returned list of objects. This must be set to a value no greater than
1000; the recommended setting is 500. This is only a suggestion and may be overridden by the
underlying functionality. This parameter should not be used to guarantee that the list will be a
certain size.

options
Field for optional getFilesAndFolders parameters.

pFilesAndFolders
This is a pointer to the returned data. See the description of DIVA_FILES_AND_FOLDERS later
in this section. It is the responsibility of the user to allocate and delete instances of this class.

Typedef enum {
 DIVA_LIST_TYPE_FILES_ONLY = 0,
 DIVA_LIST_TYPE_FOLDERS_ONLY = 1,
 DIVA_LIST_TYPE_FILES_AND_FOLDERS = 2
} DIVA_FILE_FOLDER_LIST_TYPE;

DIVA_LIST_TYPE_FILES_ONLY
This function will return files and symbolic links.

DIVA_LIST_TYPE_FOLDERS_ONLY
This function will return folders only.

DIVA_LIST_TYPE_FILES_AND_FOLDERS
This function will return files and folders and symbolic links.

class DIVA_FILES_AND_FOLDERS {
public:
DIVA_OBJECT_SUMMARY objectSummary;
bool isComplex;
int nextStartIndex;
DIVA String siteName;
vector<DIVA_FILE_FOLDER_INFO> *pFileFolderList;
};

objectSummary
The ID of the object. See the description later in this section.

isComplex
This is true when the object is a complex object.

nextStartIndex
After the first and any subsequent call, the API libraries update this variable with the current
position in the search. Use this value as the input parameter for subsequent calls.

siteName
This contains the site name of the Manager that satisfied the request.

pFileFolderList
This is a pointer to the list of files and folders. See the description of DIVA_FILE_FOLDER_INFO
later in this section.

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCategory;

Requests and Commands

2-38 C++ API Programmer’s Guide

};

objectName
This is the name of the object.

objectCategory
This is the category of the object.

class DIVA_FILE_FOLDER_INFO {
public:
DIVA_STRING fileOrFolderName;
bool isDirectory;
bool isSymbolicLink;
__int64 sizeBytes;
int fileId;
int totalNumFilesFolders;
__int64 totalSizeFilesFolders;
vector<DIVA_CHECKSUM_INFO> pChecksumInfoList;
};

fileOrFolderName
The name of the file or folder.

isDirectory
This is true if the component is a directory.

isSymbolicLink
This is true if the component is a symbolic link.

sizeBytes
The size of the file in bytes. This is valid only for files.

fileId
This is a unique ID for each file created by DIVA Core as part of the processing of this
command.

totalNumFilesFolders
The number of files and sub folders. This is valid only for folders in a complex object.

totalSizeFilesFolders
The total size of all files, including files in sub folders. This is valid only for folders in a complex
object.

pChecksumInfoList
This is a pointer to a list of checksums for a file. Directories will not contain checksums. It is
also possible that some files in the archive will not contain checksum information. See the
description later in this section.

class DIVA_CHECKSUM_INFO {
public:
DIVA_STRING checksumType;
DIVA_STRING checksumValue;
bool isGenuine;
};

checksumType
The type of checksum (MD5, SHA1, and so on).

Requests and Commands

Use and Operations 2-39

checksumValue
The value of the checksum in hexadecimal string format.

isGenuine
This is true if this checksum was provided at the time of archiving and verified as a Genuine
Checksum.

Return Values
The API includes the following return values for this call:

• The file list contains empty files for non-complex objects.

• The folders list contains all folders in a non-complex object.

• Both the Folders Only and Files and Folders options are available for use with non-complex
objects.

One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_WARN_NO_MORE_OBJECTS
The end of the list was reached during the call.

DIVA_getGroupsList
Returns the description of all groups. In DIVA Core 8.1 and later the Source Media Priority is
reported in the returned data from this call.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getGroupsList (
OUT vector<DIVA_GROUP_DESC> *&groups
);

Requests and Commands

2-40 C++ API Programmer’s Guide

groups
This is a pointer to a list of DIVA_GROUP_DESC structures.

class DIVA_GROUP_DESC {
public:
string group_name;
string group_desc;
int mediaFormatId;
};

group_name
The configured name of the tape group.

group_desc
The description of the tape group.

mediaFormatId
The format of the tapes added to this group. The value can be DIVA_MEDIA_FORMAT_
LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10. See information on
media formats in the Glossary.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

See also DIVA_getObjectInfo.

DIVA_getObjectDetailsList
The DIVA_getObjectDetailsList is an API call to retrieve object information from the DIVA Core
database. Only the latest state of the object is returned. Objects may be repeated across
batches if the object is modified multiple times as the call advances (in time) from a
user-specified time across objects in the DIVA Core database.

• The created-since call retrieves all objects created since a certain time.

Requests and Commands

Use and Operations 2-41

• The deleted-since call retrieves all objects deleted since a certain time.

• If starting from a user-specified time of zero, the modified-since call retrieves all objects
created since a certain time, and returns the state of the database from a time of zero.

• If starting from a user-specified time greater than zero, the call returns all objects created
and deleted since a certain time, and all objects with newly created and (or) deleted
instances.

In DIVA Core 8.1 and later storage options (at the instance level) are reported in the returned
data from this call.

The listPosition vector returned by a GetObjectDetailsList call must be passed in to a
subsequent call. Its content must not be altered by the user of the call.

Different detail levels can be specified (see the following Level of Detail Setting information).
Level 0 will be the fastest, while Level 3 will return all possible details. Only the highest level of
detail is supported. Using a lower level of detail will still return all information for objects.

The output can be structured using the DIVA_OBJECTS_LIST option, or through the DIVA_
TAPE_INFO_LIST option. The output structure type is configured by setting the pListType
parameter of the call.

The API client application should use the DIVA_OBJECTS_LIST setting in the following cases:

• To retrieve a list of objects instances added to DIVA Core.

• To retrieve a list of objects instances deleted from DIVA Core.

• To retrieve a combined list of all changes in the DIVA Core object database (adding and
deleting objects, adding and deleting instances)

• To continuously monitor the DIVA Core system to retrieve events of adding and deleting
objects, and adding and deleting instances.

The API client application should use the DIVA_TAPE_INFO_LIST setting to retrieve a list of
tape instances for any instances added, deleted, repacked, ejected, or inserted.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getObjectDetailsList (
IN bool fFirstTime,
IN time_t *initialTime,
IN int pListType,
IN int pObjectsListType,
IN int pMaxListSize,
IN DIVA_STRING pObjectName,
IN DIVA_STRING pObjectCategory,
IN DIVA_STRING pMediaName,
DIVA_LEVEL_OF_DETAIL pLevelOfDetail,
IN vector<DIVA_STRING> listPosition,
OUT vector<DIVA_OBJECT_DETAILS_LIST> *&pObjectDetailsList
);

Note: The DIVA_TAPE_INFO_LIST will not return any results for deleted
instances if all objects are deleted.

Requests and Commands

2-42 C++ API Programmer’s Guide

fFirstTime
The first time this function is called this parameter must be set to true. Every subsequent call
should be set to false and listPosition must be copied from the listPosition value returned by the
previous call to DIVA_GetObjectDetailsList.

intialTime
The start time of the list. Data is collected and returned corresponding to this time and later.
To retrieve all items in the database, use zero as the start time value.

pListType
One of the codes defined by the enumeration DIVA_LIST_TYPE.

pObjectsListType
One of the codes defined by the enumeration DIVA_OBJECTS_LIST_TYPE.

To retrieve all objects created, deleted, or modified since a certain time, set this to DIVA_
OBJECTS_CREATED_SINCE, DIVA_OBJECTS_DELETED_SINCE, or DIVA_OBJECTS_MODIFIED_
SINCE, respectively.

To retrieve tape related information for all objects that have been created, deleted, repacked,
ejected, and (or) inserted since a certain time, set this parameter to DIVA_INSTANCE_
CREATED, DIVA_INSTANCE_DELETED, DIVA_INSTANCE_REPACKED, DIVA_INSTANCE_EJECTED,
DIVA_INSTANCE_INSERTED, respectively.

To retrieve any combination of the above, use the pipe operator. For example, to retrieve tape
information for objects with tape instances that have been created and repacked since a
certain time, use DIVA_INSTANCE_CREATED | DIVA_INSTANCE_REPACKED.

pMaxListSize
The maximum size of the returned list of objects. This must be set to a value no greater than
1000; the recommended setting is 500. This is only a suggestion and may be overridden by the
underlying functionality. This parameter should not be used to guarantee that the list will be a
certain size.

pObjectCategory
Filter the returned list of objects based on the provided object category. The asterisk wildcard
can be used (for example, *video).

pMediaName
Filter the returned list of objects based on the provided media name. The asterisk wildcard can
be used (for example, soap*).

pLevelOfDetail
One of the codes defined by the enumeration DIVA_LEVEL_OF_DETAIL. Filtering by object
name, category, and group (media name) is performed at all levels of detail.

The DIVA_OBJECTS_CREATED_SINCE and DIVA_OBJECTS_MODIFIED_SINCE options work with
all levels of detail.

The DIVA_OBJECTS_DELETED_SINCE option only works with the DIVA_OBJECTNAME_AND_
CATEGORY level of detail.

The DIVA_TAPE_INFO_LIST only works with the DIVA_OBJECTNAME_AND_CATEGORY and
DIVA_INSTANCE level of detail.

listPosition
A vector of DIVA_STRING type. The elements of this list are for internal use only and do not
need to be extracted by the user.

When pFirstTime is true, a new empty list must be constructed and included.

Requests and Commands

Use and Operations 2-43

When pFirstTime is false, listPosition must be updated with the listPosition attribute of
pObjectDetailsList since this attribute points to the last object retrieved by the last call of
DIVA_getObjectDetailsList.

pObjectDetailsList
This is a pointer to the DIVA_OBJECT_DETAILS_LIST class. This is the output parameter that
will contain the response to the call.

Use the listPosition parameter from this response as the listPosition argument in subsequent
calls to GetObjectDetailsList.

For pListType = DIVA_OBJECTS_LIST, all of the object and (or) instance information is stored in the
objectInfo attribute.

For pListType = DIVA_TAPE_INFO_LIST, all object and tape information is stored in the
objectTapeInfo attribute.

typedef enum {

DIVA_OBJECTNAME_AND_CATEGORY = 0,
DIVA_MISC = 1,
DIVA_COMPONENT = 2,
DIVA_INSTANCE = 3
} DIVA_LEVEL_OF_DETAIL;

DIVA_OBJECTNAME_AND_CATEGORY (0)
The getObjectDetailsList function will only return the object name and category.

DIVA_MISC (1)
The getObjectDetailsList function will return the comments, archive date, name and path on
the source, and all data returned with the DIVA_OBJECTNAME_AND_CATEGORY level of
detail.

DIVA_COMPONENT (2)
The getObjectDetailsList function will return the size of the object, list of components value,
and all data returned with the DIVA_MISC level of details.

DIVA_INSTANCE (3)
The getObjectDetailsList function will return all instance information, repack state, related
active request information data, and all data returned with the DIVA_COMPONENT level of
detail.

typedef enum {

DIVA_OBJECTS_LIST = 1,
DIVA_TAPE_INFO_LIST = 2
} DIVA_LIST_TYPE;

DIVA_OBJECTS_LIST_TYPE is defined as follows:

typedef enum {

DIVA_OBJECTS_CREATED_SINCE = 0x0001,
DIVA_OBJECTS_DELETED_SINCE = 0x0002,
DIVA_OBJECTS_MODIFIED_SINCE = 0x0003,
DIVA_INSTANCE_NONE = 0x0000,
DIVA_INSTANCE_DELETED = 0x0020,
DIVA_INSTANCE_REPACKED = 0x0040,
DIVA_INSTANCE_EJECTED = 0x0080,
DIVA_INSTANCE_INSERTED = 0x0100

Requests and Commands

2-44 C++ API Programmer’s Guide

} DIVA_OBJECTS_LIST_TYPE;

class DIVA_OBJECT_DETAILS_LIST {
public:
int listType;
DIVA_STRING siteID;
vector<DIVA_STRING> *listPosition;
vector<DIVA_OBJECT_INFO> *objectInfo;
vector<DIVA_OBJECT_TAPE_INFO> *objectTapeInfo;
};

listType
One of the codes defined by the enumeration DIVA_LIST_TYPE.

siteId
The DIVA Core system name as configured in manager.conf.

listPosition
After the first and any subsequent call, the API libraries update this variable with the current
position in the search. This object must be provided as the input parameter to any subsequent
calls.

objectInfo
This is a pointer to a DIVA_OBJECT_INFO structure. The structure should be allocated and
deleted by the caller. The structure contains information about the object details, such as the
list of components, tape instances, and other properties described in API call getObjectInfo.

objectTapeInfo
This is a pointer to a list of DIVA_OBJECT_TAPE_INFO structures. The structure should be
allocated and deleted by the caller. The structure contains information about the tapes
containing instances of the object and other properties described in API call
getObjectTapeInfo.

class DIVA_OBJECT_INFO {
public:
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_STRING uuid;
int lockStatus;
__int64 objectSize;
__int64 objectSizeBytes;
vector<string> *filesList;
string objectComments;
time_t archivingDate;
bool isInserted;
vector<DIVA_TAPE_INSTANCE_DESC> *tapeInstances;
vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances;
string objectSource;
string rootDirectory;
vector<int> *relatedRequests;
bool toBeRepacked;
int modifiedOrDeleted;
bool isComplex;
int nbFilesInComplexComponent;
int nbFoldersInComplexComponent;
};

objectSummary
The object name and category.

Requests and Commands

Use and Operations 2-45

UUID
Universally Unique Identifier to uniquely identify each object created in DIVA Core across all
Telestream customer sites. This does not include objects created using Copy As requests. An
object created through a Copy As request will contain the same UUID as that of the Source
Server object.

lockStatus
This is the locking status of the object. Objects in the archive can be locked. When an object is
locked it cannot be restored or copied to a new name. This feature prevents the use of an
object that has an expired copyright, and so on. The object is unlocked when this value is zero.

objectSize
This is the object size in kilobytes.

objectSizeBytes
This is the object size in bytes.

filesList
This is a list of the files in the object. A single wrapper file name is returned for complex
objects.

objectComments
This is the comments saved when the object was archived.

archivingDate
Then number of seconds since January 1, 1970.

isInserted
This is true if at least one instance of this object is either on a tape that is currently inserted in
the library, or a disk that is online.

tapeInstances
This is a list of object instances saved to tape.

actorInstances
This is a list of object instances saved to disk.

objectSource
The Source Server system used to archive the object.

rootDirectory
The root directory containing the object files on the objectsource.

relatedRequests
This is non-terminated requests.

toBeRepacked
This is false unless all instances are going to be repacked.

modifiedOrDeleted
One of DIVA_MODIFIED_OR_DELETED as follows:

UNDEFINED - The levelOfDetail does not equal DIVA_INSTANCE.

DIVA_CREATED_OR_MODIFIED - The object was created, or an instance was either added or
removed.

DIVA_DELETED - The object was removed.

Requests and Commands

2-46 C++ API Programmer’s Guide

isComplex
This is true if this is a complex object.

nbFilesInComplexComponent
This is the number of files in the object. This is used only for complex objects. The value is zero
for non-complex objects.

nbFoldersInComplexComponent
This is the number of folders in the object. This is used only for complex objects. The value is
zero for non-complex objects.

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCategory;
};

objectName
This is the object name.

objectCategory
This is the object category.

class DIVA_TAPE_INSTANCE_DESC {
public:
int instanceID;
string groupName;
vector<DIVA_TAPE_DESC> *tapeDesc;
bool isInserted,
DIVA_REQUIRE_STATUS reqStatus;
};

instanceId
The numeric instance identifier.

groupName
The name of the group this tape is assigned to.

tapeDesc
Additional information about this tape.

isInserted
This is true if at least one instance of this object is either on a tape that is currently inserted in
the library, or a disk that is online.

reqStatus
Determines if the instance is Required or Released.

DIVA_REQUIRED - The instance is requested to be inserted into the library.

DIVA_RELEASED - There is no need to have this instance present into the library.

class DIVA_TAPE_DESC {
public:
string vsn;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;

Requests and Commands

Use and Operations 2-47

};

vsn
The volume serial number (barcode).

isInserted
This is true if at least one instance of this object is either on a tape that is currently inserted in
the library or a disk that is online.

externalizedComment
Comment saved when the tape was exported.

isGoingToBeRepacked
This is false unless all instances are going to be repacked.

mediaFormatId
The format of the data on to be used. The value can be DIVA_MEDIA_FORMAT_DEFAULT,
DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_
AXF_10. This is only used when the listType is Tape.

typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ACTOR_INSTANCE_DESC {
public:
int instanceID;
string actor;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (depreciated)
DIVA_STRING storageOptions;
};

instanceID
The numeric ID of the instance.

actor
This field reports the name of the disk array where the instance is stored instead of the
Datahub name.

typedef enum {
DIVA_REQUIRED = 0,
DIVA_RELEASED
} DIVA_REQUIRE_STATUS;

typedef enum {
DIVA_UNDEFINED = 0,
DIVA_CREATED_OR_MODIFIED,
DIVA_DELETED
} DIVA_MODIFIED_OR_DELETED;

Return Values
The file list of each object in the objects list now contains empty files (that is, files of size 0
bytes). Client applications developed against API releases before release 7.5 will receive empty
files in the file list that accompanies a Details List message. Depending on the input

Requests and Commands

2-48 C++ API Programmer’s Guide

parameters, the DIVA_getObjectDetailsList function will return values as described in the
following table.

Table 2–1 DIVA_getObjectDetailsList Function Values

List Type Objects List Type Supported Detail Level Return Value

DIVA_OBJECTS_LIST DIVA_OBJECTS_
CREATED_SINCE

All List Objects that
have been created
since a specified
time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_
DELETED_SINCE

Only DIVA_OBJECTNAME_
AND_CATEGORY

List Objects that
have been deleted
since a specified
time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_
MODIFIED_SINCE

Only DIVA_INSTANCE List Objects that
have been
created/deleted
since a certain
time, plus Objects
with new or
deleted instances.

If the list of
instances is empty,
objects were
deleted.

If the list of
instances is not
empty, objects
were created or
updated.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
NONE (0x0000)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances (no filter).

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
CREATED (0x0010)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances created
since a specified
time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
DELETED (0x0020)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances deleted
since a specified
time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
REPACKED (0x0040)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances repacked
since a specified
time.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
EJECTED (0x0080)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances ejected
since a specified
time.

Requests and Commands

Use and Operations 2-49

Use with DIVA Connect
All filters are applied at an object level as follows:

• If you request objects satisfying certain filter constraints, those constraints are applied to
the object and not to individual instances of an object.

• If you specify an object name and category filter, the list will be filtered to contain only
objects satisfying the specified object name and category.

Media name is defined at an instance level, not at an object level. A media name filter will only
allow objects with at least one instance satisfying the requested media name filter.

Example:

A new instance Object-A was added at time 101 with the media name CAR. Object-A has a total
of two instances. One instance has the media name TRUCK and the other has the media name
CAR.

An instance of Object-B was removed at time 101 with the media name CAR. Object-B has only
one instance.

A new instance of Object-C was added at time 99 with the media name TRAIN. Object-C has a
total of two instances. One instance has the media name TRAIN and the other has the media
name HANG GLIDE.

A user executes a getObjectDetailsList call with MODIFIED SINCE TIME 100 and MEDIA NAME FILTER =
T*.

The only object that was modified since time 100, and has at least one instance with a media
name of T is Object-A. Therefore, the result is that the list returned by the getObjectDetailsList
call contains only Object-A.

Use and Recommended Practices
Telestream recommends that the API client application adhere to the following sequence of
actions:

1. Create a variable of DIVA_OBJECT_DETAILS_LIST type to store the object information
returned by the call.

2. Create a variable of vector<DIVA_STRING> type to serve as the listPosition object. This will
be used as the listPosition argument to DIVA_GetObjectDetailsList.

3. Create a variable of time_t type and set to the time at which the list is to start. Set this to
zero to include all objects in the database.

DIVA_TAPE_INFO_LIST DIVA_INSTANCE_
INSERTED (0x0100)

Only DIVA_OBJECTNAME_
AND_CATEGORY and
DIVA_INSTANCE level.

List objects and
tape information
for all tape
instances inserted
since a specified
time.

Note: If an instance of an object is created or deleted, and you request all
modified objects with a particular media name, the object will be
returned if and only if any instance of the object satisfies the media
name filter.

Table 2–1 (Cont.) DIVA_getObjectDetailsList Function Values

List Type Objects List Type Supported Detail Level Return Value

Requests and Commands

2-50 C++ API Programmer’s Guide

4. Create a variable of Boolean type and set it to true to indicate that this is the first call in a
sequence of calls.

5. Create a variables of Integer type to hold the listType and objectsListType to specify the type
of call.

Example: Use DIVA_OBJECTS_LIST and DIVA_OBJECTS_MODIFIED_SINCE to indicate that
you want object information for modified objects.

6. Create a variable of Integer type to hold the suggested number of objects you want
returned by the call.

7. Create list filtering variables of DIVA_CHAR[] type to hold the object name, category and
media filters.

8. Create a variable of Integer type to hold the level of detail you want returned.

9. Execute DIVA_GetObjectDetailsList with the variables previously mentioned.

10. Use the data stored in the variable from Step 1 as needed by your application.

11. Copy the listPosition attribute of the call's output created in Step 1 into the listPosition
variable created in Step 2.

12. Repeat steps 8, 9, and 10 for until you no longer need to monitor DIVA Core.

13. All variables must be deallocated after exiting the loop.

Multiple simultaneous calls to DIVA_getObjectDetailsList are supported. However, this call
places a heavy demand on the database. Therefore simultaneous and (or) frequent calls to this
function should be avoided.

Continuous monitoring of DIVA Core requires a procedure similar to the one defined in the
section "Recommended Practices for Continuous Updates Notification Design Pattern (No
Media Filter)".

Duplication of objects can occur across different return portions. It is important to handle
these cases by examining the data returned by the call. For a MODIFIED_SINCE call, you must
compare the instances of the duplicate object returned by successive calls to identify whether
new information about the object is available and update your local repository accordingly.

An empty list may be returned as a valid result. This indicates that there were no changes to
the system after the time specified in the last call. It is important to continue querying DIVA
Core with the DIVA_getObjectDetailsList call using the ID from the previous call. However, the
call frequency must be reduced after you receive an empty list. This reduces the load on the
DIVA Core database.

The same application can use the DIVA_getObjectDetailsList function effectively for both the
initial database synchronization (if the client application maintains a database) and later use it
for continuous monitoring after the database is updated.

During the initial database synchronization phase, it is necessary for the application to make
frequent sequential calls to synchronize the local database with the DIVA Core database. The
application must call DIVA_getObjectDetailsList, wait for a response, and then repeat the
process.

After the synchronization phase, it is necessary for the application to go into the continuous
monitoring phase, where it must make periodic calls to update the system with the latest
object information. Telestream recommends a call interval of once every several minutes.
Continuous, frequent execution of this call can heavily impact the database and degrade
system performance.

Requests and Commands

Use and Operations 2-51

The amount of data retrieved by the CREATED_SINCE and MODIFIED_SINCE call is substantial
(object, instance, and component data for each object). Therefore, Telestream recommends
that most applications use 500 as the maximum list size setting.

Recommended Practices for Continuous Updates Notification
Design Pattern (No Media Filter)
The continuous updates notification design pattern is used in multiple applications, and is
important when using the API. The client application can use the internal database to
continuously update the local database information with changes in the DIVA Core database.
Following the design pattern helps develop the performance-optimized updates notification
workflow.

The application must submit the call with the objectListType set to MODIFIED_SINCE with the
level of detail required to collect instance-level information. Additionally, the First Time flag
must be set true, and all necessary filter parameters must be set (object name and category).

This is the process the application will follow:

1. The application receives a list of objects and a new listPosition.

2. On the next cycle, the application will execute the call using the listPosition obtained in
Step 1 and the First Time flag set to false. It is acceptable to submit another call
immediately after receiving the list if the system is being used solely for synchronization
purposes. Otherwise, it is recommended to wait for a period between calls to allow other
requests to process.

3. Repeat Steps 1 and 2 for the course of execution to keep the internal database
synchronized with DIVA Core database.

4. If none of the objects in DIVA Core have been modified, the list will be EMPTY, which
indicates there were no updates since the last call. The application should wait for a
specific amount of time, and then retry.

The application must check the list of instances to see if the following occurred:

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals DELETED, objects were
deleted and the database must be updated.

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals CREATED_OR_MODIFIED,
the object was either created or updated.

– If the object previously existed in the database, the database list of instances must be
updated.

– If the object does not exist in the database, it must be added to the database.

Example:

MAIN:

CREATE LIST_POSITION VARIABLE
CREATE DETAILS_LIST VARIABLE
SET FIRST_TIME = TRUE
SET INITIAL_TIME = 0
SET LIST_TYPE = DIVA_OBJECTS_LIST

Note: To ensure continuous updates, the listPosition object should be
preserved throughout the course of operations.

Requests and Commands

2-52 C++ API Programmer’s Guide

SET OBJECTS_LIST_TYPE = DIVA_OBJECTS_MODIFIED_SINCE
SET LEVEL_OF_DETAIL = DIVA_OBJECTS_MODIFIED_SINCE
SET SIZE = 500
SET OBJECT_NAME = "*"
SET CATEGORY = "*"
SET MEDIA_NAME = "*"
CALL GetObjectDetailsList(FIRST_TIME, LIST_TYPE, OBJECTS_LIST_TYPE, LIST_POSITION , SIZE, INITIAL_TIME, OBJECT_
NAME, CATEGORY, MEDIA_NAME, LEVEL_OF_DETAIL, DETAILS_LIST) // 1

UNIQUE_ID AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL // 2

CALL SYNC_OBJECTS // 6

START LOOP
 SET FIRST TIME = FALSE
 CALL GetObjectDetailsList(…) // 3
 LIST_POSITION AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL
 CALL SYNC_OBJECTS // 6
END LOOP (TERMINATE AT END OF APPLICATION LIFE) // 4

SYNC_OBJECTS:
 IF (DETAILS_LIST IS NOT EMPTY) // 5
 FOR(OBJECT IN DETAILS_LIST)
 IF (OBJECT.modifiedOrDeleted EQUALS DELETED)
 DELETE OBJECT FROM DATABASE // 6a
 ELSE
 IF (OBJECT.modifiedOrDeleted EQUALS CREATED_OR_MODIFIED)
 ADD OR UPDATE OBJECT TO DATABASE // 6b
 END IF
 END IF
 END FOR
 END IF

Return Values

One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

Requests and Commands

Use and Operations 2-53

DIVA_WARN_NO_MORE_OBJECTS
The end of the list was reached during the call.

DIVA_getObjectInfo
Returns information about a particular object in the DIVA Core system.

The vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances parameter is kept unchanged for
compatibility, although it is formally a vector of diskInstance and not actorInstance.

The file list can contain empty files (that is, files of size 0 bytes). Client applications developed
against API releases before release 7.5 will also receive empty files in the file list that
accompanies an objectInfo message.

For compatibility reasons, the class DIVA_ACTOR_INSTANCE_DESC designates a disk instance
(not a Datahub instance) and its string actor field now contains the array name instead of a
Datahub name.

In DIVA Core 8.1 and later storage options (at the instance level) are reported in the returned
data from this call.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getObjectInfo (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING options,
OUT DIVA_OBJECT_INFO *objectInfo
);

objectName
The name of the queried object.

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

options
Optional string attribute for specifying additional parameters to the request.

objectInfo
Pointer to a DIVA_OBJECT_INFO structure allocated and deleted by the caller. See DIVA_
getObjectDetailsList for a description of DIVA_OBJECT_INFO.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

Requests and Commands

2-54 C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core Database.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core Database.

See also DIVA_archiveObject, DIVA_restoreObject, and DIVA_deleteObject.

DIVA_getPartialRestoreRequestInfo
When processing the request DIVA_PartialRestoreObject(), and the format for the offsets was
specified as timecodes, the offsets that are actually used may differ (somewhat) from what
was specified in the request. Once the Partial File Restore request is complete, you can use this
command to obtain the actual offsets of the restored files.

This is a special purpose command that is valid only as follows:

• The request number to be queried must be a partial file restore request that has been
successfully completed.

• The format specified in the partial file restore request must be a timecode type. This
command is therefore not valid when the format of the request was folder-based or DPX.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getPartialRestoreRequestInfo (
IN int requestNumber,
OUT vector <DIVA_OFFSET_SOURCE_DEST> *fileList
);

requestNumber
Identifies the completed Partial File Restore request to be queried.

fileList
List of the files of an object that have been partially restored. Each structure contains the
Source Server file name, a vector of the offsets used for the transfer, and a Destination Server
file name. This vector must be similar to the vector provided to the DIVA_partialRestoreObject()
function in terms of files and offset pairs. This function is provided to eventually detect that
the actual offsets used for the transfer to the Destination Server have been adapted based on
the format of the data to transfer.

Requests and Commands

Use and Operations 2-55

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request

DIVA_ERR_INVALID_PARAMETER
The requestNumber identifies no completed partial file restore request.

See also DIVA_partialRestoreObject and DIVA_getRequestInfo.

DIVA_getRequestInfo
Obtains information about an archive, restore, delete, or repack request.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getRequestInfo (
IN int requestNumber,
OUT DIVA_REQUEST_INFO *requestInfo
);

requestNumber
Identifies the queried request.

requestInfo
Pointer to a DIVA_REQUEST_INFO structure. This is allocated and deleted by the caller.

class DIVA_REQUEST_INFO {
public:
int requestNumber;
DIVA_REQUEST_TYPE requestType ;
DIVA_REQUEST_TYPE

Requests and Commands

2-56 C++ API Programmer’s Guide

DIVA_REQUEST_STATE requestState;
DIVA_REQUEST_STATE
int progress;
DIVA_ABORTION_REASON abortionReason;
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_REPACK_TAPES_INFO repackTapes;
int currentPriority;
DIVA_STRING additionalInfo;
time_t submissiondate
time_t completiondate
};

requestNumber
The DIVA Core request number.

requestType
See the definition of DIVA_REQUEST_TYPE later in this section.

requestState
See the definition of DIVA_REQUEST_STATE later in this section.

progress
The progress of the request from zero to one hundred percent if the requestState is DIVA_
TRANSFERRING or DIVA_MIGRATING.

abortionReason
The reason the request was terminated if the requestState is DIVA_ABORTED, otherwise this is
zero.

objectSummary
See the definition of DIVA_OBJECT_SUMMARY later in this section.

repackTapes
Used if the requestType is REPACK.

additionalInfo
See Additional_Info later in this section for use of this field.

submissionDate
The date and time the request was submitted. This is UTC time in seconds (that is, seconds
since January 1, 1970).

completionDate
The date and time the request completed. This is UTC time in seconds and will be -1 if the
request is still processing.

Typedef enum {
DIVA_ARCHIVE_REQUEST = 0,
DIVA_RESTORE_REQUEST,
DIVA_DELETE_REQUEST,
DIVA_EJECT_REQUEST,
DIVA_INSERT_REQUEST,
DIVA_COPY_REQUEST,
DIVA_COPY_TO_NEW_REQUEST,
DIVA_RESTORE_INSTANCE_REQUEST,
DIVA_DELETE_INSTANCE_REQUEST,
DIVA_UNKNOW_REQUEST_TYPE,
DIVA_AUTOMATIC_REPACK_REQUEST,

Requests and Commands

Use and Operations 2-57

DIVA_ONDEMAND_RAPACK_REQUEST,
DIVA_ASSOC_COPY_REQUEST,
DIVA_PARTIAL_RESTORE_REQUEST,
DIVA_MULTIPLE_RESTORE_REQUEST,
DIVA_TRANSCODE_ARCHIVED_REQUEST,
DIVA_EXPORT_REQUEST,
DIVA_TRANSFER_REQUEST,
DIVA_AUTOMATIC_VERIFY_TAPES_REQUEST,
DIVA_MANUAL_VERIFY_TAPES_REQUEST,
} DIVA_REQUEST_TYPE ;

typedef enum {
DIVA_PENDING = 0,
DIVA_TRANSFERRING,
DIVA_MIGRATING,
DIVA_COMPLETED,
DIVA_ABORTED,
DIVA_CANCELLED,
DIVA_UNKNOWN_STATE,
DIVA_DELETING,
DIVA_WAITING_FOR_RESOURCES,
DIVA_WAITING_FOR_OPERATOR,
DIVA_ASSIGNING_POOL,
DIVA_PARTIALLY_ABORTED,
DIVA_RUNNING
} DIVA_REQUEST_STATE;

typedef enum {
DIVA_AR_NONE = 0,
DIVA_AR_DRIVE,
DIVA_AR_TAPE,
DIVA_AR_ACTOR,
DIVA_AR_DISK,
DIVA_AR_DISK_FULL,
DIVA_AR_SOURCE_DEST,
DIVA_AR_RESOURCES,
DIVA_AR_LIBRARY,
DIVA_AR_PARAMETERS,
DIVA_AR_UNKNOWN,
DIVA_AR_INTERNAL,
DIVA_AR_SOURCE_DEST2
} DIVA_ABORTION_CODE;

DIVA_AR_NONE = 0
Request not terminated.

DIVA_AR_DRIVE
Drive trouble

DIVA_AR_TAPE
Tape trouble

DIVA_AR_ACTOR
Datahub trouble

DIVA_AR_DISK
Disk trouble

Requests and Commands

2-58 C++ API Programmer’s Guide

DIVA_AR_DISK_FULL
The disk is full.

DIVA_AR_SOURCE_DEST
Server trouble

DIVA_AR_RESOURCES
Resource attribution trouble

DIVA_AR_LIBRARY
Library trouble

DIVA_AR_PARAMETERS
Incorrect request parameters

DIVA_AR_UNKNOWN
Unknown code

DIVA_AR_INTERNAL
Internal Manager error

DIVA_AR_SOURCE_DEST2
This parameter has been deprecated but left intact for software compatibility.

class DIVA_ABORTION_REASON {
public:
DIVA_ABORTION_CODE code;
string description;
};

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCategory ;
};

objectName
The name of the object.

objectCategory
The category of the object.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

Requests and Commands

Use and Operations 2-59

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request

Additional_Info
The Additional_Info field of the DIVA_REQUEST_INFO structure can contain one or more of the
following depending on the request type:

MOB ID
MOB ID is a unique object identifier generated and used by AVID software. The API provides the
interface to retrieve the MOB ID for third party vendors after restoring archived objects to
Unity. The MOB ID is available in the additionalInfo field of the DIVA_REQUEST_INFO structure.
The MOB ID can be retrieved only when the object is restored to the AVID Unity system.

Example MOB ID:

060c2b34020511010104100013-000000-002e0815d552002b-060e2b347f7f-2a80

XML Document
Depending on the type of request the XML document may be empty, or it may contain any
combination of the following elements. See the schema additionalInfoRequestInfo.xsd found in
the program\Common\schemas folder of the DIVA Core installation.

When the request was a Restore, N-Restore, Partial File Restore, Copy, or Copy To New the list
of media that contains the requested object is provided as follows:

<ADDITIONAL_INFO xmls="http://www.telestream.net/divacore/additionalInfoRequestInfo/v1.0>" <Object>
 <Name>Object Name</Name>
 <Category>category</Category>
 <Instances>
 <DiskInstance>
 <Id>0</Id>
 <Disk>
 <MediaName>disk name</MediaName>
 </Disk>
 </DiskInstance>
 <TapeInstance>
 <Id>1</Id>
 <Tape>
 <MediaName>barcode</MediaName>
 </Tape>
 </TapeInstance>
 </Instances>
 </Object>
</ADDITIONAL_INFO>

The following is included when the request was a Multiple Restore. If the restore is OK for one
of the Destination Servers, but NOT OK for another, the Request State Parameter is DIVA_

Requests and Commands

2-60 C++ API Programmer’s Guide

PARTIALLY_ABORTED and the Request Abortion Code is DIVA_AR_SOURCE_DEST. The status
of each Destination Server is as follows:

<ADDITIONAL_INFO xmls="http://www.telestream.net/divacore/additionalInfoRequestInfo/v1.0">"
 <request id="12345" type="Restore">
 <destination name="destination name one" success="true"/>
 <destination name="destination name two" success="false"/>
 </request>
</ADDITIONAL_INFO>

The ClipID is included when the request was for a restore to a Quantel device. An ISA gateway
never overwrites clips. A new ClipID is created for every imported clip. The ClipID of the created
clip will be supplied after the Transfer Complete message as follows:

226 Transfer Complete. [new ClipID]

The Datahub captures this new ClipID after the transfer and forwards it to the Manager. To use
the API, DIVA_GetRequestInfo must be called. If the request is completed, the new ClipID will
be in the Additional Request Information field as follows:

<ADDITIONAL_INFO xmls="http://www.telestream.net/divacore/additionalInfoRequestInfo/v1.0">"
 <ClipID>98765</ClipID>
</ADDITIONAL_INFO>

DIVA_getSourceDestinationList
This function returns a list of Source Servers present in a particular DIVA Core System.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getSourceDestinationList (
IN string options;
OUT vector<DIVA_SOURCE_DESTINATION_LIST> *&arraysInfo
)

arraysInfo
Pointer to a list of DIVA_SOURCE_DESTINATION_LIST structures.

#ifndef WIN32
typedef long long __int64;
#endif

typedef enum {
 DIVA_SOURCE_TYPE_UNKNOWN = 0,
 DIVA_SOURCE_TYPE_MSS,
 DIVA_SOURCE_TYPE_PDR,
 DIVA_SOURCE_TYPE_SEACHANGE_BMC,
 DIVA_SOURCE_TYPE_SEACHANGE_BML,
 DIVA_SOURCE_TYPE_SEACHANGE_FTP,
 DIVA_SOURCE_TYPE_LEITCH,
 DIVA_SOURCE_TYPE_FTP_STANDARD,
 DIVA_SOURCE_TYPE_SFTP,
 DIVA_SOURCE_TYPE_DISK,
 DIVA_SOURCE_TYPE_LOCAL,
 DIVA_SOURCE_TYPE_CIFS,
 DIVA_SOURCE_TYPE_SIMULATION,
 DIVA_SOURCE_TYPE_OMNEON,
 DIVA_SOURCE_TYPE_MEDIAGRID,
 DIVA_SOURCE_TYPE_AVID_DHM,

Requests and Commands

Use and Operations 2-61

 DIVA_SOURCE_TYPE_AVID_DET,
 DIVA_SOURCE_TYPE_AVID_AMC,
 DIVA_SOURCE_TYPE_QUANTEL_ISA,
 DIVA_SOURCE_TYPE_QUANTEL_QCP,
 DIVA_SOURCE_TYPE_SONY_HYPER_AGENT,
 DIVA_SOURCE_TYPE_METASOURCE,
 DATA_SOURCE_TYPE_MOVIETOME,
 DATA_SOURCE_TYPE_EXPEDAT,
 DATA_SOURCE_TYPE_AVID_DIRECT
} DIVA_SOURCE_TYPE;

class DIVA_SOURCE_DESTINATION_LIST{
public:
 DIVA_STRING server_Address;
 DIVA_STRING server_ConnectOption;
 int server_MaxAccess;
 int server_MaxReadAccess;
 __int64 server_MaxThroughput;
 int server_MaxWriteAccess;
 DIVA_STRING server_Name;
 DIVA_STRING server_ProductionSystem;
 DIVA_STRING server_RootPath;
 DIVA_SOURCE_TYPE server_SourceType;
};

server_Address
The server IP address.

server_ConnectOption
The server connection options.

server_MaxAccess
The server maximum number of accesses.

server_MaxReadAccess
The server maximum number of read accesses.

server_MaxThroughput
The server maximum throughput.

server_MaxWriteAccess
The server maximum write access.

server_Name
The server name.

Server_ProductionSystem
The server Network name.

server_RootPath
The server root path.

server_SourceType
The Source Server type.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

Requests and Commands

2-62 C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getStoragePlanList
This function returns the list of Storage Plan Names that are defined in the DIVA Core system.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getStoragePlanList (
IN string options;
OUT vector<DIVA_STRING> *&spList
);

spList
A pointer to a list of Storage Plan Names.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

Requests and Commands

Use and Operations 2-63

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_getTapeInfo
Returns detailed information about a given tape identified by its barcode.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getTapeInfo (
 IN DIVA_STRING barcode,
 OUT DIVA_DETAILED_TAPE_DESC *tapeInfo
);

barcode
The barcode of the tape for which information is to be returned.

tapeInfo
The returned information.

class DIVA_DETAILED_TAPE_DESC {
public:
string vsn;
int setID;
string group;
int typeID;
string type;
int fillingRatio;
int fragmentationRatio;
__int64 remainingSize ;
__int64 totalSize ;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;
};

setID
Tape Set ID

typeID
Tape Type ID

type
Tape Type Name

fillingRatio
The tape filling ratio using the equation:

last_written_block / total_block_count.

fragmentationRatio
The tape fragmentation ration using the equation:

1 - (valid_blocks_count) / (last_written_block)

Valid blocks are blocks used for archived objects not currently deleted.

Requests and Commands

2-64 C++ API Programmer’s Guide

mediaFormatId
The format of the data on to be used. The value can be DIVA_MEDIA_FORMAT_DEFAULT,
DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_
AXF_10.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_TAPE_DOESNT_EXIST
There is no tape associated with the given barcode.

DIVA_insertTape
Submits an Insert request to DIVA Core. This request completes when the operator has
entered the requested tapes into the library. The application is responsible for managing which
tapes must be entered.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
OUT int *requestNumber
)

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
IN int acsId,
IN int capId,
OUT int *requestNumber
);

Requests and Commands

Use and Operations 2-65

require
When true, perform a DIVA_require() on every instance located on the successfully inserted
tapes.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

acsId (second form only)
The numeric ID of the ACS where the Insert operation must be executed.

When acsId = -1 (default used for the first form), the Insert attempt will be performed in all
known ACSs.

capId (second form only)
The numeric ID of the CAP from where tapes will be inserted.

When capId = -1 (default used for the first form), the Insert attempt will be performed in the
first available CAP in the specified ACS.

requestNumber
The number identifying the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

Requests and Commands

2-66 C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable is set
in the manager.conf configuration file. The default value is 300.

See also DIVA_ejectTape.

DIVA_linkObjects
This function provides the opportunity to link together two existing objects; parent and child.
If the objects are linked for Delete, anytime the parent object is deleted, the child will also be
deleted. If objects are linked for Restore, anytime the parent object is restored, the child will
be restored to the original location from where the child object was archived.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_linkObjects (
IN DIVA_STRING parentName,
IN DIVA_STRING parentCategory,
IN DIVA_STRING childName,
IN DIVA_STRING childCategory,
IN bool cascadeDelete,
IN bool cascadeRestore
);

parentName
The parent object name.

parentCategory
The parent object category.

childName
The child object name.

childCategory
The child object category.

cascadeDelete
Indicates if the child object should be deleted along with parent.

cascadeRestore
Indicates if the child object should be restored along with parent.

Requests and Commands

Use and Operations 2-67

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_OBJECT_ALREADY_EXISTS
An object with this name and category already exists in the DIVA Core system.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_lockObject
A call to this function will lock an object. Locked objects cannot be restored.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_lockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING category,
IN string options
);

objectName
The name of the object.

category
The category assigned to the object when it was archived.

options
Not currently in use.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

Requests and Commands

2-68 C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_multipleRestoreObject
Submits an object Restore request to the Manager using several Destination Servers. The
Manager chooses the appropriate instance to be restored. This function returns as soon as the
Manager accepts the request.

The request will continue even if an error occurs with one of the Destination Servers. To check
that the operation was successful the application must call the function DIVA_getRequestInfo().

If DIVA_MultipleRestoreObject() is launched with a single Destination Server, the restore
automatically converts to a DIVA_RestoreObject().

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_MultipleRestoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN vector <DIVA_DESTINATION_INFO> destinations,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
)
public typedef struct _DIVA_DESTINATION_INFO {
DIVA_STRING destination;
DIVA_STRING filePathRoot;
} DIVA_DESTINATION_INFO, *PDIVA_DESTINATION_INFO;

objectName
The name of the object to be restored.

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

destinations
A list of available Destination Servers (for example, a video server or browsing server) where
object files can be restored. The names must be known by the DIVA Core configuration
description.

A root folder where the object files will be placed is associated with each Destination Server. If
null (string("")), the files will be placed in the FILES_PATH_ROOT folder specified when archiving
the object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct and
cache for restore operations).

Requests and Commands

Use and Operations 2-69

DIVA_QOS_CACHE_ONLY
Use cache restore only.

DIVA_QOS_DIRECT_ONLY
Use direct restore only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct restore if available, or cache restore if direct restore is not available.

DIVA_QOS_NEARLINE_ONLY
Use nearline restore only. Nearline restore will restore from a disk instance if a disk
instance exists, otherwise, it will create a disk instance and restore from the newly created
disk instance.

DIVA_QOS_NEARLINE_AND_DIRECT
Use nearline restore if available, or direct restore if nearline restore is not available.

Additional and optional services are available. To request those services, use a logical OR
between the previously documented Quality Of Service parameter and the following
constant:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA Core to
the Destination Server. These options supersede any options specified in the DIVA Core
configuration database. Currently the possible values for restoreOptions are:

• A null string to specify no objects

• -login represents the log in required for some Source Servers. This option obsoletes the
-gateway option in earlier releases.

• -pass represents the password used with the -login option for some Source Servers.

Requests and Commands

2-70 C++ API Programmer’s Guide

requestNumber
The request number assigned to this request. This number is used for querying the status or
canceling the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable is set
in the manager.conf configuration file. The default is 300.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the library and no Datahub could provide a disk instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (for example, Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_restoreObject, DIVA_getRequestInfo, and DIVA_copyToGroup and DIVA_copy.

Requests and Commands

Use and Operations 2-71

DIVA_partialRestoreObject
Submits a Partial Object Restore request to the Manager and the Manager chooses the
appropriate instance to be restored. This function returns as soon as the Manager accepts or
rejects the request. To check that the operation was successful the application must call the
DIVA_getRequestInfo() function.

If the request was not accepted (for example, if the requested object is on media not currently
available) the request will generate an error. The media names (tape barcodes and disk names)
that contain instances of the object are included in the additionalInfo field of the DIVA_
getRequestInfo() response.

The Manager will use the instanceID field to select the instance of the object to use for the
Partial Restore operation. The Manager will choose an appropriate instance to restore if DIVA_
ANY_INSTANCE is used

DIVA Core supports four types of Partial Restore. The type implemented is determined by the
format parameter in the request.

The following describes each type of Partial Object Restore:

Byte Offset
The format equals DIVA_FORMAT_BYTES and provides for a range of bytes to be extracted
from a particular file in the archive. For example, you can extract bytes 1 to 2000 (the first
2000 bytes of the file), or byte 5000 to the end of the file (or both) and store them to an
output file such as movie.avi.

The result of the Byte Offset Partial Restore is usually not playable when applied to video files.
Datahub will not apply the header, footer, and so on, according to the video format.

To issue a Byte Offset Partial Restore, pass DIVA_FORMAT_BYTES in the format field of the
request. Create a DIVA_OFFSET_SOURCE_DEST object (in the fileList parameter of the
request). In the object you must specify the sourceFile in the archive and name the output file
(destFile). One or more DIVA_OFFSET_PAIR objects must be inserted within the DIVA_
OFFSET_SOURCE_DEST object. These offset objects contain the ranges of bytes to be restored
to the output file. The fileFolder and range fields within the DIVA_OFFSET_SOURCE_DEST
object do not need to be populated.

Example:

start=10000 end=50000

Timecode
The format equals DIVA_FORMAT_VIDEO_* and provides for a selected portion of a particular
media file based on timecode. For example, you could extract from 00:00:04:00 to 00:10:04:00
(a 10 minute segment starting 4 seconds in and ending at 10 minutes and 4 seconds) and place
that segment into an output file such as movie.avi. The file is a smaller version of the original
movie file.

The result of the Timecode Partial Restore is a valid clip when applied to video files. Datahub
will apply the header, footer, and so on, according to the video format. The request will be
terminated if the Datahub cannot parse the format. This type of Partial Restore can only be
applied to a valid video clip.

To issue a Timecode Partial Restore populate the format field in the request with the format of
the file being partially restored. For example, if the file being restored is a GXF file, specify a
value of DIVA_FORMAT_VIDEO_GXF in the format field of the request. DIVA Core provides an
auto-detect feature that works for many types of media. Specify DIVA_FORMAT_AUTODETECT
in the format field to use auto-detect.

Requests and Commands

2-72 C++ API Programmer’s Guide

Create a DIVA_OFFSET_SOURCE_DEST object in the fileList parameter of the request. In this
object, add a DIVA_OFFSET_PAIR object using the offsetVector parameter that contains the
start and end time. Use DIVA_OFFSET_TC_END to indicate the final timecode in the media file.
The fileFolder and range fields within the DIVA_OFFSET_SOURCE_DEST object do not need to
be populated.

Example:

start=01:01:01:00 end=02:02:02:00

Files and Folders

The format equals DIVA_FORMAT_FOLDER_BASED and provides for extracting entire files
from the archive, or extracting entire directories and their contents. In DIVA Core you can
extract multiple files and directories in the same request. The files are restored with the file
names and path names that were specified in the archive. No renaming option is valid in Files
and Folders Partial Restore. For example, a file archived as misc/12-2012/movie.avi would be
partially restored to a misc/12-2012 subdirectory with the name movie.avi.

When a folder is specified in a Files and Folders Partial Restore, the folder and all files within
that folder are restored. Each directory to be restored can have the -r option to recursively
restore all folders nested within the target folder.

To issue a Files and Folders Partial Restore, the format field in the request must be populated
with the DIVA_FORMAT_FOLDER_BASED value. Create a DIVA_OFFSET_SOURCE_DEST object
in the fileList parameter of the request. In the object add a DIVA_FILE_FOLDER object in the
fileFolder parameter containing the name of the file or folder to be restored, and any options
(such as the recursive option) for that directory.

DPX
The format equals DIVA_FORMAT_DPX and provides for extracting a range of DPX files from
the archive. In this type of restore, the entire object is viewed as a single media item. One DPX
file represents one frame of media. Only .dpx, .tif, and .tiff files in the archive are considered
frames for the purposes of this command.

The first .dpx, .tif, or .tiff file in the archived object is considered Frame 1, the second .dpx in the
archive is Frame 2, and so on.

For example, if you extract frame 10 through frame 15 using DPX Partial Restore, it would
restore the 10th .dpx file that appears in the archive, through (and including) the 15th .dpx file,
resulting in six total files. Any other files (such as .wav files) are skipped by DPX Partial Restore.

Special frame numbers 0 and -1 may be used to refer to the first and last frame respectively.
Frame 0 is valid as the start of a frame range and Frame -1 is valid as the end of a range.

Valid frames and ranges are as follows:

• Frame 0 = first frame

• Frame 1 = the first frame in the sequence.

• Frame n = the nth frame in the sequence.

• Frame -1 = last frame

Caution: In the following process The offsetVector, sourceFile, destFile,
and range parameters should not be specified for the Files and
Folders Partial Object restore type.

Requests and Commands

Use and Operations 2-73

Specifying frame 0 as the last frame is invalid.

Specifying Frame 0 to 0 is invalid and will not return the first frame as you have intended.

Specifying Frame 0 to 1 or Frame 1 to 1 will return the first frame.

Specifying the Frame -1 in the first frame produces an error. If the frame number of the last
frame is unknown, you cannot specify Frame -1 to -1 to return the exact last frame.

Examples:

start=0 - end=1

This will restore only the first frame.

start=600 - end=635, start=679 - end=779

This will restore frames 600 through 635, and frames 679 through 779.

start=810 - end=-1

This will restore all frames from frame 810 to the end of the archive.

To issue a DPX Partial Restore you populate the format field in the request with the value
DIVA_FORMAT_DPX. Create a DIVA_OFFSET_SOURCE_DEST object in the fileList parameter of
the request. In this object, you add a DIVA_RANGE object in the range parameter that
contains the start and end frames of the range to be restored.

To specify another range of frames within the same request, another DIVA_OFFSET_SOURCE_
DEST object should be added to the request in the same manner.

The actual file name may, or may not, match the frame number in DIVA Core. During the
restore process DIVA Core interrogates the archive, finds the file order, and determines the
frame number from the resulting file order. It does not consider the file name. The first .dpx,
.tif, or .tiff file found is considered frame 1.

You must be careful when archiving DPX files to ensure they can be partially restored properly,
in part because DPX Partial Restore does not examine the file name or the DPX header
information to determine which file is assigned to which frame. The assignment is based
purely on the order in which the .dpx files appear in the archive. By default, the ordering is
established by the Source Server and is typically alphanumeric. For example, NTFS DISK
Servers order files and folders case insensitively as a general rule except where diacritical
marks such as ', `, ^, and so on are applied.

By default, when DIVA Core encounters a subfolder it recursively processes all of the children
of that folder before continuing with other files. If a folder appears in the alphanumeric folder
listing it is archived recursively in the order that it appears.

However, this can create some issues. For example, if you want all of the subdirectories of a
given directory processed first, followed by the files in the directory, or you might want all files
processed first and then subdirectories. The Datahub allows the archive options -file_order
DIRS_FIRST or -file_order FILES_FIRST to address these issues.

DPX Partial Restore looks at the entire object as a single piece of media. If multiple reels or
clips appear in an archive they can be stored in folders and partially restored through a Files
and Folders Partial Restore. However, they will be viewed as one long movie clip to DPX Partial
Restore. If this is desired, ensure that the directories are sorted alphanumerically in the order
the frames should be arranged.

Caution: In the following process the offsetVector, sourceFile, destFile,
and fileFolder parameters should not be specified for the DPX
Partial Object restore type.

Requests and Commands

2-74 C++ API Programmer’s Guide

DIVA Core does not perform any special audio handling for DPX media other than what might
be embedded in DPX files themselves. DIVA Core supports transcoding of DPX media; however
a transcoder may change the file names and (or) file order of the DPX archive.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_SPEC DIVA_partialRestoreObject (
IN string objectName,
IN string objectCategory,
IN int instanceID,
IN vector <DIVA_OFFSET_SOURCE_DEST> fileList,
IN string destination,
IN string filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN string restoreOptions,
IN DIVA_FORMAT format,
OUT int *requestNumber
);

objectName
The name of the object to be partially restored.

objectCategory
Category assigned to the object when it was archived. This parameter can be a null string,
which can result in an error if several objects have the same name.

instanceID
The ID of a non-spanned tape instance or DIVA_ANY_INSTANCE.

filelist
List of the files of the object to be partially restored. Each structure contains the Source Server
file name, a vector of offset pairs, and a Destination Server file name. The same source file can
be used in several structures, but Destination Server files must be unique. A file present in the
object cannot be in any structure or it won't be restored.

destination
Destination Server (for example, a video server or browsing server) to put the object files. This
name must be known by the DIVA Core configuration description.

filesPathRoot
The root folder on the Destination Server where the object files will be placed. If this is null
(string("")), the files will be placed in the FILES_PATH_ROOT folder specified when archiving the
object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct
restore).

DIVA_QOS_CACHE_ONLY (-qos_cache_only)
Use cache restore only.

Requests and Commands

Use and Operations 2-75

DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
Use direct restore only.

DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a logical OR
between the previously documented Quality Of Service parameter and the following
constant:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA Core to
the Destination Server. These options supersede any options specified in the DIVA Core
configuration database. Currently the possible values for restoreOptions are:

• A null string to specify no objects

• -do_not_overwrite executes this additional service

• -do_not_check_existence executes this additional service

• -delete_and_write executes this additional service

• -login represents the log in required for some Source Servers. This option obsoletes the
-gateway option in earlier releases.

• -pass represents the password used with the -login option for some Source Servers.

Requests and Commands

2-76 C++ API Programmer’s Guide

format

DIVA_FORMAT_BYTES
Offsets must be given as byte offsets. When the offsetVector field of a DIVA_OFFSET_
SOURCE_DEST structure contains more than one DIVA_OFFSET_PAIR element, every
corresponding extract is concatenated to create the Destination Server file.

DIVA_FORMAT_BYTES_HEADER
This has been deprecated but left for compatibility purposes only.

DIVA_FORMAT_VIDEO_GXF
Offsets must be given as timecodes, and the file to be partially restored must be in GXF
format.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element.

The offsetVector vector parameter must contain only one DIVA_OFFSET_PAIR element.

Only the DIVA_QOS_DIRECT_ONLY Quality Of Service is supported for this format.

DIVA_FORMAT_VIDEO_SEA
Offsets must be given as timecodes. The file to be partially restored must be in SAF format
and provide an index file.

A part description then contains one DIVA_OFFSET_SOURCE_DEST structure for each
WAV file of the clip. There must be at least one WAV file per clip part.

• The Source Server file name in each structure must have the .wav or the .WAV
extension.

• Each structure must contain exactly one DIVA_OFFSET_PAIR structure with a
timecode pair equal to the timecode pair associated with the AVI file.

• The next part is delimited by the first DIVA_OFFSET_SOURCE_DEST structure
associated with an AVI file.

• The Destination Server must support the successive restore of each part, with the AVI
file (without WAV file) and then of the WAV files all at once in the same connection
session.

DIVA_FORMAT_VIDEO_MPEG2_TS
Offsets must be given as timecodes. The video file must be encoded using the MPEG2
Transport Stream format. Use this for VELA encoders.

DIVA_FORMAT_VIDEO_MXF
Offsets must be given as timecodes. The file format expected by this type of Partial File
Restore is a single MXF file. A detailed matrix of supported MXF files is given in the
product description.

DIVA_FORMAT_VIDEO_PINNACLE
Offsets must be given as timecodes. This Partial File Restore format expects a specific
object structure. This is applicable to Pinnacle clips composed of three files (header, ft, and
std). DIVA Core prefers the MSS Server type for creating this clip.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR element. The
DIVA_OFFSET_SOURCE_DEST element must be associated with the header file only. The
Destination Server name is also the header.

Requests and Commands

Use and Operations 2-77

DIVA_FORMAT_VIDEO_OMNEON
Offsets must be given as timecodes. You can use this type of Partial File Restore to
partially restore QuickTime files (referenced and self-contained clips are supported). A
detailed matrix of supported QuickTime clips is given in the product description.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR element. The
DIVA_OFFSET_SOURCE_DEST element must be associated with the .mov file only if it's not
a self-contained clip.

DIVA_FORMAT_VIDEO_LEITCH
Offsets must be given as timecodes. The video file must be encoded using the LEITCH
Video Server and the format is LXF.

DIVA_FORMAT_VIDEO_QUANTEL
Offsets must be given as timecodes. You can use this type of Partial File Restore to
partially restore Quantel clips that have been archived with a QUANTEL_QCP Server type.

DIVA_FORMAT_AUTODETECT
Offsets must be given as timecodes. This type of Partial File Restore can detect video clips
with the following archive formats:

• QuickTime self-contained

• QuickTime with referenced media files (the .mov file must be in the first position)

• DIF + WAV files

• AVI with audio interleaved (separated WAV is not currently supported)

• MXF (self-contained)

• MPEG PS

• LXF

• Seachange (the .pd file must be in the first position)

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR element. The
DIVA_OFFSET_SOURCE_DEST element must be associated with the following:

• The .mov file if it is a QuickTime clip.

• The .dif file if it is a DV file.

• The .avi file if it is an AVI clip.

DIVA_FORMAT_FOLDER_BASED
Specifies a set of files and folders to be restored. You can set a recursive flag to restore
subfolders. All specified files and folders are restored.

DIVA_FORMAT_DPX
Specifies a set of intervals, frame X through frame Y, where frames are sorted and
traversed alphanumerically.

Only files with .tif or .tiff data formats are supported. All files must have a .dpx extension.
The first frame of a DPX object is Frame 1. You can use frame numbers 0 and -1 to refer to
the first and last frame respectively.

requestNumber
The request number assigned to this request. This number is used for querying the status or
canceling this request.

Requests and Commands

2-78 C++ API Programmer’s Guide

class DIVA_OFFSET_SOURCE_DEST {
public:
DIVA_STRING sourceFile;
vector<DIVA_OFFSET_PAIR> offsetVector;
DIVA_STRING destFile;
DIVA_FILE_FOLDER fileFolder;
DIVA_RANGE range;
};

sourceFile
The Source Server file name when the format is other than DIVA_FORMAT_FOLDER_BASED or
DIVA_FORMAT_DPX.

offsetVector
The vector of intervals to restore. The type of all offsets in all DIVA_OFFSET_SOURCE_DEST
structures must be compliant with the format parameter of the Partial File Restore request.
Valid only when the format is other than DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_
DPX.

destFile
The file name to be used at the Destination Server. Valid only when format is other than DIVA_
FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

fileFolder
The file or folder name. Used only when the format is DIVA_FORMAT_FOLDER_BASED.

range
The range of frames to be restored. Used only when the format is DIVA_FORMAT_DPX.

DIVA_OFFSET_PAIR // This class only has public functions.

The following are the constructors:

DIVA_SPEC DIVA_OFFSET_PAIR (__int64 pBegin, __int64 pEnd, bool _isTimeCode)

Constructor for use with byte offsets. DIVA_OFFSET_BYTE_BEGIN and DIVA_OFFSET_BYTE_
END are valid.

DIVA_SPEC DIVA_OFFSET_PAIR (const DIVA_STRING &pBegin, const DIVA_STRING &pEnd)

Constructor for use with timecode offsets. Timecodes are formatted as HH:MM:SS:FF.

The following are the attribute accessors:

DIVA_SPEC bool isTimeCode();

This is true if the offset pair was constructed with timecode offsets.

DIVA_SPEC DIVA_STRING getTimeCodeBegin();

Return the beginning offset as a timecode.

DIVA_SPEC DIVA_STRING getTimeCodeEnd();

Return the ending offset as a timecode.

DIVA_SPEC __int64 getByteBegin();

Return the beginning offset as bytes.

DIVA_SPEC __int64 getByteEnd();

Return the ending offset as bytes.

class DIVA_FILE_FOLDER {
public:

Requests and Commands

Use and Operations 2-79

 DIVA_STRING fileFolder;
 DIVA_STRING option
};

fileFolder
The file or folder name.

option
Options (for example, -r to recurse folders).

class DIVA_RANGE {
public:
 int startRange;
 int endRange;
};

startRange
The first frame number to be restored.

endRange
The last frame number to be restored.

The format gives information about how to interpret the interval and about which specific
operation should eventually be performed.

typedef enum {
 DIVA_FORMAT_BYTES = 0,
 DIVA_FORMAT_BYTES_HEADER,
 DIVA_FORMAT_VIDEO_GXF,
 DIVA_FORMAT_VIDEO_SEA,
 DIVA_FORMAT_VIDEO_AVI_MATROX,
 DIVA_FORMAT_VIDEO_MPEG2_TS,
 DIVA_FORMAT_VIDEO_MXF,
 DIVA_FORMAT_VIDEO_PINNACLE,
 DIVA_FORMAT_VIDEO_OMNEON,
 DIVA_FORMAT_VIDEO_LEITCH,
 DIVA_FORMAT_VIDEO_QUANTEL,
 DIVA_FORMAT_AUTODETECT,
 DIVA_FORMAT_FOLDER_BASED,
 DIVA_FORMAT_DPX
} DIVA_FORMAT;

DIVA_FORMAT_BYTES
Raw bytes

DIVA_FORMAT_VIDEO_GXF
GXF video format

DIVA_FORMAT_VIDEO_SEA
Seachange video format

DIVA_FORMAT_VIDEO_AVI_MATROX
Matrox-specific AVI format (+ WAV files)

DIVA_FORMAT_VIDEO_MPEG_TS
MPEG Transport Stream

Requests and Commands

2-80 C++ API Programmer’s Guide

DIVA_FORMAT_VIDEO_MXF
MXF video format

DIVA_FORMAT_VIDEO_PINNACLE
Pinnacle video format

DIVA_FORMAT_VIDEO_OMNEON
Omneon video format

DIVA_FORMAT_VIDEO_LEITCH
Leitch video format

DIVA_FORMAT_VIDEO_QUANTEL
Quantel QCP video format

DIVA_FORMAT_VIDEO_AUTODETECT
Automatic format detection

DIVA_FORMAT_FOLDER_BASED
Fully restore the specified files and (or) folders

DIVA_FORMAT_DPX
DPX video format

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this variable
in the manager.conf configuration file. The default value is three hundred.

Requests and Commands

Use and Operations 2-81

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the library and no Datahub could provide a disk instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this object is ejected, or the Datahub owning the specified
disk instance is not available.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (that is, being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_restoreObject, DIVA_getRequestInfo, and DIVA_getPartialRestoreRequestInfo.

DIVA_release
Indicates to the Manager that this instance can be externalized. This function has no effect if
the instance has already been released. The list of instances that are RELEASED and INSERTED
may be retrieved and shown at the Control GUI.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_release (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID
);

objectName
The name of the object to be copied.

objectCategory
The category assigned to the object when it was archived. This parameter can be a null string;
however this may result in an error if several objects have the same name.

instanceID
A value of DIVA_EVERY_INSTANCE forces this function to apply to every instance of the given
object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

Requests and Commands

2-82 C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE
No tape instance exists for this object.

DIVA_ERR_NO_INSTANCE_TAPE_EXIST
The specified object has instances that are partially deleted.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

See also DIVA_require.

DIVA_require
Indicates to the Manager that this instance must be inserted. If the instance is already
inserted, this function has no effect. The list of instances that are REQUIRED and EJECTED can
be retrieved and shown at the Control GUI.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_require(
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID
);

Requests and Commands

Use and Operations 2-83

objectName
Name of the object to be copied.

objectCategory
Category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

instanceID
A value of DIVA_EVERY_INSTANCE forces the function to apply to every instance of the given
object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE
No tape instance exists for this object.

DIVA_ERR_NO_INSTANCE_TAPE_EXIST
The specified object has instances that are partially deleted.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

See also DIVA_release.

Requests and Commands

2-84 C++ API Programmer’s Guide

DIVA_restoreInstance
Restores an object from a specific instance. If the instance is externalized the operation fails
even if there are other instances available for the object.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_restoreInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING categoryName,
IN int instanceID,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
);

objectName
Name of the object to be restored.

objectCategory
Category assigned to the object when it was archived. This parameter can be a null string,
however this may result in an error if several objects have the same name.

instanceID
The instance identifier.

destination
The Destination Server (for example, a video server or browsing server) where the object files
will be restored. This name must be known by the DIVA Core configuration description.

filesPathRoot
Root folder on the Destination Server where the object files will be placed. If this is null
(string("")), the files will be placed in the FILES_PATH_ROOT folder specified when archiving the
object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct and
cache for restore operations).

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct restore only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct restore if available, or cache restore if direct restore is not available.

Requests and Commands

Use and Operations 2-85

Additional and optional services are available. To request those services, use a logical OR
between the previously documented Quality Of Service parameter and the following
constant:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA Core to
the Destination Server. These options supersede any options specified in the DIVA Core
configuration database. Currently the possible values for restoreOptions are as follows:

Null String
A null string specifies no options.

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

requestNumber
A number identifying this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

Requests and Commands

2-86 C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
Count of simultaneous requests has reached the maximum allowed value. This variable is set
in the manager.conf configuration file. The default is 300.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_OFFLINE
The specified instance for restoring this object is ejected, or the Datahub owning the specified
disk instance is not available.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this object does not exist.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_archiveObject and DIVA_getObjectInfo.

DIVA_restoreObject
Submits an Object Restore request to the Manager and the Manager chooses the appropriate
instance to be restored. This function returns as soon as the Manager accepts the request. To
check that the operation was successful, the application must call the function DIVA_
getRequestInfo().

If the requested object is on media that is not available, the request will fail. The media names
(tape barcodes and disk names) that contain instances of the object will be included in the
additionalInfo field of the DIVA_getRequestInfo() response.

Synopsis
#include "DIVAapi.h"

Requests and Commands

Use and Operations 2-87

DIVA_STATUS DIVA_restoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
);

objectName
Name of the object to be restored.

objectCategory
Category assigned to the object when it was archived. This parameter can be a null string, but
this may result in an error if several objects have the same name.

destination
The Destination Server (for example, a video server or browsing server) where the object files
will be restored. This name must be known by the DIVA Core configuration description.

filesPathRoot
Root folder on the Destination Server where the object files will be placed. If this is null
(string("")), the files will be placed in the FILES_PATH_ROOT folder specified when archiving the
object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct and
cache for restore operations).

DIVA_QOS_CACHE_ONLY (-qos_cache_only)
Use cache restore only.

DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
Use direct restore only.

DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a logical OR
between the previously documented Quality Of Service parameter and the following
constant:

DIVA_QOS_NEARLINE_ONLY (-qos_nearline_only)
Use nearline restore only. Nearline restore will restore from a disk instance if it exists,
otherwise, it will create a disk instance and restore from the newly created disk instance.

DIVA_QOS_NEARLINE_AND_DIRECT (-qos_nearline_and_direct)
Use Nearline restore if available, or direct restore if Nearline restore is not available.
Additional and optional services are available. To request those services use a logical OR

Requests and Commands

2-88 C++ API Programmer’s Guide

between the previously documented Quality Of Service parameter and the following
constants:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

DIVA_RESTORE_SERVICE_DO_NOT_CHECK_EXISTENCE
Do not check existence of the clip on the server.

DIVA_RESTORE_SERVICE_DELETE_AND_WRITE
Force delete and rewrite if object exists on the server.

DIVA_RESTORE_SERVICE_DEFAULT
Operate using the default setting in the Manager configuration.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA Core to
the Destination Server. These options supersede any options specified in the DIVA Core
configuration database. Currently the possible values for restoreOptions are as follows:

Null String
A null string specifies no options.

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

requestNumber
Request number assigned to this request. This number is used for querying the status or
canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

Requests and Commands

Use and Operations 2-89

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
The Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this variable
in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the library and no Datahub could provide a Disk Instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_IN_USE
The object is currently in use (being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_getRequestInfo and DIVA_copyToGroup and DIVA_copy.

DIVA_transcodeArchive
Submits a Transcode Archive request to the Manager. The original object will be restored to
the local Datahub cache then transcoded to the format defined in the option field. A new
object containing the transcoded clip will then be archived back to DIVA Core.

Synopsis
#include "DIVAapi.h"

Requests and Commands

2-90 C++ API Programmer’s Guide

DIVA_STATUS DIVA_transcodeArchive (
IN DIVA_STRING parentObjectName,
IN DIVA_STRING parentObjectCategory,
IN int instance,
IN DIVA_STRING objectName,
IN DIVA_STRING objectCategory,
IN DIVA_STRING mediaName,
IN DIVA_STRING comments,
IN DIVA_STRING archiveOptions,
IN DIVA_ARCHIVE_QOS qualityOfService,
IN bool bCascadeDelete,
IN int priorityLevel,
OUT int *requestNumber
);

parentObjectName
Name of the original object to be transcoded.

parentObjectCategory
Category assigned to the original object.

instance
Instance of the parent object. The default is -1.

objectName
Name of the resulting transcoded object from the transcoding operation.

objectCategory
Category of the transcoded object.

mediaName
The tape group or disk array where the object is to be saved. The media may be defined as
follows:

Name (of the Group or Array)
Provide the tape group or disk array name as defined in the configuration. The object is
saved to the specified media and assigned to the default SP (Storage Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The object will be
assigned to the specified Storage Plan and saved to the default media specified.

Both of the above (Name and SP Name)
The object is saved to the specified media as in Name, and assigned to the specified
Storage Plan as in SP Name. The Name and the SP Name must be separated by the &
delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is used.
Complex objects can only be saved to AXF media types.

comments
Optional information describing the object. This can be a null string.

archiveOptions
Additional options that must be used for performing the transfer of data from the Source
Server to DIVA Core. These options supersede any options specified in the DIVA Core
configuration database. Currently the possible values for archiveOptions are:

Requests and Commands

Use and Operations 2-91

-tr_archive_format FORMAT

Destination Server format of the retrieved object. This is required.

-tr_names trans1

Names of the transcoders that have to perform this operation. If more than one
transcoder is selected, the performing transcoder will be chosen based on the current
loading. If this option is not specified, the performing transcoder will be chosen from all
DIVA Core transcoders based on the current loading. This is optional.

-tr_names trans1,trans2

Names of the transcoders that have to perform this operation. Multiple transcoders are
identified in a comma separated list (trans1, trans2, and so on). If more than one transcoder
is selected, the performing transcoder will be chosen based on the current loading. If this
option is not specified, the performing transcoder will be chosen from all DIVA Core
transcoders based on the current loading. This is optional.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently cache for
archive operations).

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct archive only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache archive if available, or direct archive if cache archive is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct archive if available, or cache archive if direct archive is not available.

bCascadeDelete
Shows if transcoded object is linked to the original object. If true both the original object and
the transcoded object will be deleted.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Requests and Commands

2-92 C++ API Programmer’s Guide

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

requestNumber
Request number assigned to this request. This number is used for querying the status or
canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
You set the timeout duration using the DIVA_API_TIMEOUT variable. The default value is one
hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this variable
in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_ALREADY_EXISTS
The specified object already exists in the DIVA Core database.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified object has instances that are partially deleted.

See also DIVA_linkObjects.

DIVA_transferFiles
Submits a Transfer Files request to the Manager. The request will transfer files from a remote
server (the Source Server) to another remote server (the Destination Server). This function
returns as soon as the Manager accepts the request. The application must call the function
DIVA_getRequestInfo()to confirm that the operation completed successfully.

Synopsis
#include "DIVAapi.h"

Requests and Commands

Use and Operations 2-93

DIVA_STATUS DIVA_transferFiles (
IN DIVA_STRING source,
IN DIVA_STRING sourcePathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_STRING destination,
IN DIVA_STRING destinationPathRoot,
IN int priorityLevel,
OUT int *requestNumber
);

source
Name of the Source Server (for example, a video server or browsing server). This name must
be known by the DIVA Core configuration description.

sourcePathRoot
Root folder for the files specified by the filenamesList parameter.

filenamesList
List of file path names relative to the folder specified by the sourcePathRoot parameter. When
the sourcePathRoot is null, path names must be absolute names.

destination
Name of the Destination Server (for example a video server or browsing server). This name
must be known by the DIVA Core configuration description.

destinationPathRoot
Root folder where the files will be placed at the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one hundred, or
the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest priority and one
hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Manager uses the
default priority defined in the Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values yields a
DIVA_ERR_INVALID_PARAMETER error.

requestNumber
Request number assigned to this request. This number is used for querying the status or
canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

Requests and Commands

2-94 C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable is set
in the manager.conf configuration file and the default value is three hundred.

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

Also see DIVA_getRequestInfo.

DIVA_unlockObject
A call to this function will unlock an object. Locked objects cannot be restored.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_unlockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING category,
IN string options
);

objectName
Name of the object.

category
The category assigned to the object when it was archived.

options
TBD

Requests and Commands

Use and Operations 2-95

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Manager could be performed.
The timeout duration is set by the DIVA_API_TIMEOUT variable and equals one
hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Manager or by the API.

3

Using the API with DIVA Connect 3-1

3Using the API with DIVA Connect

In addition to being able to connect to a DIVA Core system, you can use the API to connect to
an DIVA Connect system. This functionality enables applications to access content across
multiple DIVA Core systems, possibly in different geographical locations. DIVA Connect enables
the content in each system to be retrieved and stored as if the sites together were one large
archival system.

This chapter includes the following information:

• What is DIVA Connect?

• DIVA Core API Support

• Input Parameters

• Return Parameters

• Return Codes

• getObjectDetailsList Call

What is DIVA Connect?
DIVA Connect provides a unified view of archived content across multiple, distributed DIVA
Core systems. It facilitates the moving of content among DIVA Core sites, and from customer
Source and Destination Servers and disk. The purpose is for disaster recovery, content
distribution, access control, performance, and content availability.

DIVA Connect synchronizes asset information from each DIVA Core site, so that users always
have an up-to-date inventory of where content is. DIVA Connect uses this information to
choose the best site for various requests, for example restores and copies. DIVA Connect also
provides access rules to limit the operations that users are permitted to perform.

DIVA Connect 2.2 is compatible with DIVA Core 8.1 Linux-based installations. DIVA Connect 2.2
also runs on Windows-based systems. However, it is not backward compatible to releases
before DIVA Core 7.3.1. You must use either DIVA Connect 2.0 or Legacy DIVAnet when
running DIVA Core releases earlier than DIVA Core 7.3.1.

The Legacy DIVAnet is still available for connecting DIVA Core systems with different software
release levels, and releases before DIVA Core 7.3.1.

If you are operating a DIVA Core release earlier than 7.3.1, refer to the DIVAnet Installation,
Configuration, and Operations Guide (for DIVA Core releases 6.5 and 7.2).

DIVA Core API Support

3-2 C++ API Programmer’s Guide

DIVA Core API Support
DIVA Connect has partial support for the full API command set. Refer to the appropriate DIVA
Connect documentation for a complete list of supported API commands. DIVA Connect will
support client connections from API clients release 8.1 and earlier. New parameters or features
added to the API after release 7.5 are not supported by Legacy DIVAnet. In general, a released
DIVA Connect can connect to newer releases of DIVA Core, and sometimes also can connect to
older releases. This ability varies based on the specific release of DIVA Connect.

Input Parameters
Invoking API calls to a DIVA Connect server is largely the same as invoking calls to DIVA Core.
However, there are some differences. DIVA Connect sometimes accepts additional information
by using common DIVA Core API parameters in a slightly a different way.

For example, you can use the DIVA Connect Copy command (CopyToGroup) to copy content
from one DIVA Core system to another. DIVA Connect needs to know, at a minimum, what the
target DIVA Core site is. This information can be provided in multiple ways, for example you
can prefix the target_sitename to the media provided in the call (for example, sitename2_
mytapegroup). Refer to the appropriate DIVA Connect documentation for more information on
specifying DIVA Connect-specific information in API calls.

Return Parameters
A DIVA Connect system sometimes returns API information that is slightly different than you
would typically see in a DIVA Core system. For example, the DIVA Connect getObjectInfo() call
returns information about an archived object across all DIVA Core sites. To distinguish which
site is which, the Source Server site name is prefixed to the media of each archived object
instance returned in the call. For example, an object on sitename2 that is stored on mytapegroup
would have a media value of sitename2_mytapegroup.

Another example of a slight difference is the object instance ID. DIVA Core has a unique
instance ID for each instance of an archived object (starting at zero and incrementing by one
for each new instance). However, this value is not unique across DIVA Core sites. DIVA Connect
applies a simple algorithm to the instance ID to make it unique across sites (but not across
objects). The unique DIVA Connect instance IDs for an object can be queried by making a DIVA
Connect getObjectInfo() call.

The Request ID returned by each DIVA Connect request does not necessarily correspond to a
DIVA Core Request ID. Refer to the appropriate DIVA Connect documentation for more
information.

Return Codes
DIVA Connect will return DIVA_ERR_ACCESS_DENIED if a user or connection does not have
permission to perform a particular action. DIVA Core does not return this code. DIVA Connect
can possibly refuse an API connection altogether because of configured permissions. DIVA
Core will accept the connection if it hasn't run out of available connections. There are cases
where DIVA Connect will choose to acknowledge a request with DIVA_OK and then
subsequently return an error (for example, an Invalid Media error). DIVA Core will simply reject
the request with the DIVA_ERR_INVALID_PARAMETER error.

getObjectDetailsList Call
The GetObjectDetailsList() command retrieves a list of objects from each site. DIVA Connect
retrieves the object information directly from each DIVA Core system, one site at a time, in a

getObjectDetailsList Call

Using the API with DIVA Connect 3-3

round-robin fashion. It returns one batch per site to the initiator. The initiator must keep
calling GetObjectDetailsList() with the same query parameters - passing all received list position
data as input to the next call.

If an object is returned in one batch, the initiator can possibly receive the same object again in
the next batch (for the second site). This makes GetObjectDetailsList() different from
GetObjectInfo(), which returns information from all sites in one call.

The query parameters and time ranges queried in each batch are specific to each site. It is
possible that if Site1 contains many objects in a given query (and Site2 does not). The batches
from Site2 that are near the end of the calling sequence might be completely empty.

Keep calling GetObjectDetailsList(), ignoring empty batches until the call returns either a status of
DIVA_WARN_NO_MORE_OBJECTS or an error. All DIVA Core sites in the DIVA Connect
network must be online for GetObjectDetailsList() to succeed. If, for any reason, an error is
returned before the list has been fully returned the entire calling sequence must be repeated.

Other details of the GetObjectDetailsList() call remain in effect for the DIVA Connect release. For
example, while the batches returned are ordered by time, the order of entries within each
batch is not guaranteed. Although duplicate objects will not appear within a batch, the same
object may appear in the next batch - the likelihood of this occurrence increases when you use
the MODIFIED_SINCE parameter.

If an object has been deleted and subsequently re-added, GetObjectDetailsList() will return one
record for every time this has occurred for the entire period that DIVA Core retains the
records.

To continuously monitor DIVA Connect for new objects and instances, you can continue to call
GetObjectDetailsList() even after it has returned a status of DIVA_WARN_NO_MORE_OBJECTS.
To do this you must provide the exact same query information (passing all received list position
data into the next call) to get any new updates since you last called it. If an error occurs, you
must use the exact same list position that was received on the last successful call.

Refer to the appropriate DIVA Connect documentation for more information on specific API
calls.

A

Appendix A-1

AAppendix

The following sections include additional information not previously described in this book as
follows:

• List of Authorized Special Characters in DIVA Core

• Maximum Allowed Number of Characters

• API Static Constant Values

List of Authorized Special Characters in DIVA Core
The following table lists the special characters that can be used in DIVA Core and in which
fields they are valid.

Table A–1 Special Authorized Characters in DIVA Core

Character Name Category Source Media Path File Comments Options

~ Yes Yes Yes Yes Yes Yes Yes Yes

' Yes Yes Yes Yes Yes Yes Yes Yes

! Yes Yes Yes Yes Yes Yes Yes Yes

@ Yes Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes Yes Yes

$ Yes Yes Yes Yes Yes Yes Yes Yes

% Yes Yes Yes Yes Yes Yes Yes Yes

^ Yes Yes Yes Yes Yes Yes Yes Yes

& Yes Yes Yes Yes Yes Yes Yes No

* No No Yes Yes No Yes Yes Yes

(Yes Yes Yes Yes Yes Yes Yes Yes

) Yes Yes Yes Yes Yes Yes Yes Yes

_ Yes Yes Yes Yes Yes Yes Yes Yes

- Yes Yes Yes Yes Yes Yes Yes Yes

+ Yes Yes Yes Yes Yes Yes Yes Yes

= Yes Yes Yes Yes Yes Yes Yes Yes

| Yes Yes Yes Yes No Yes Yes Yes

\ Yes Yes Yes Yes No Yes Yes Yes

Maximum Allowed Number of Characters

A-2 C++ API Programmer’s Guide

Maximum Allowed Number of Characters
The maximum allowable number of characters are as follows:

Name
192 maximum characters

Category
96 maximum characters

Source
96 maximum characters

Media
96 maximum characters

Path and File Name
1536 maximum characters per folder or per file

Comments
4000 maximum characters

Options
768 maximum characters

{ Yes Yes Yes Yes Yes Yes Yes Yes

[Yes Yes Yes Yes Yes Yes Yes Yes

} Yes Yes Yes Yes Yes Yes Yes Yes

] Yes Yes Yes Yes Yes Yes Yes Yes

: Yes Yes Yes Yes No Yes Yes Yes

; Yes Yes Yes Yes Yes1 Yes Yes Yes

" Yes Yes Yes Yes No Yes Yes No

' Yes Yes No No Yes1 Yes Yes Yes

< Yes Yes Yes Yes No Yes Yes No

, Yes Yes Yes Yes Yes1 Yes Yes Yes

> Yes Yes Yes Yes No Yes Yes Yes

. Yes Yes Yes Yes No Yes Yes Yes

? Yes Yes Yes Yes No Yes Yes Yes

/ Yes Yes Yes Yes No Yes Yes Yes

Space Yes Yes Yes Yes No Yes Yes Yes

1 In a Windows environment, the file and folder name restrictions depend on the file system restrictions.
File and folder names cannot solely consist of one or more spaces, and cannot contain a double-quote.

Table A–1 (Cont.) Special Authorized Characters in DIVA Core

Character Name Category Source Media Path File Comments Options

API Static Constant Values

Appendix A-3

API Static Constant Values
The following table identifies the values for each of the API static constants.

Table A–2 API Static Constants

Static Constant Name Description Value

DIVA_OK The request was
correctly submitted and
accepted by the
Manager.

1000

DIVA_ERR_UNKNOWN An unknown status was
received from the
Manager.

1001

DIVA_ERR_INTERNAL An internal error was
detected by the
Manager or the API.

1002

DIVA_ERR_NO_ARCHIVE_SYSTEM Problem when
establishing a
connection with the
specified DIVA Core
system.

1003

DIVA_ERR_BROKEN_CONNECTION The connection with
the Manager was
broken.

1004

DIVA_ERR_DISCONNECTING Problem when
disconnecting. The
connection is still
considered to be open.

1005

DIVA_ERR_ALREADY_CONNECTED A connection is already
open.

1006

DIVA_ERR_WRONG_VERSION Release level of the API
and the Manager are
not compatible.

1007

DIVA_ERR_INVALID_PARAMETER A parameter value was
not understood by the
Manager.

1008

DIVA_ERR_OBJECT_DOESNT_EXIST The specified object
does not exist in the
DIVA Core database.

1009

DIVA_ERR_SEVERAL_OBJECTS More than one object
with the specified name
exists in the DIVA Core
database.

1010

DIVA_ERR_NO_SUCH_REQUEST The requestNumber
identifies no request.

1011

DIVA_ERR_NOT_CANCELABLE The request is at the
point where it cannot
be canceled.

1012

DIVA_ERR_SYSTEM_IDLE The DIVA Core System is
no longer able to
accept connections and
queries.

1013

API Static Constant Values

A-4 C++ API Programmer’s Guide

DIVA_ERR_WRONG_LIST_SIZE The list size is zero or
larger than the
maximum allowable
value.

1014

DIVA_ERR_LIST_NOT_INITIALIZED The specified list was
not properly initialized.
Initialization call was
not executed.

1015

DIVA_ERR_OBJECT_ALREADY_EXISTS An object with this
name and category
already exists in the
DIVA Core system.

1016

DIVA_ERR_GROUP_DOESNT_EXIST The specified group
does not exist.

1017

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST The specified Source or
Destination Server does
not exist.

1018

DIVA_WARN_NO_MORE_OBJECTS The end of the list was
reached during the call.

1019

DIVA_ERR_NOT_CONNECTED No open connection. 1020

DIVA_ERR_GROUP_ALREADY_EXISTS The specified group
already exists.

1021

DIVA_ERR_GROUP_IN_USE The group contains at
least one object
instance.

1022

DIVA_ERR_OBJECT_OFFLINE There is no inserted
instance in the library
and no Datahub could
provide a disk instance.

1023

DIVA_ERR_TIMEOUT The timeout limit was
reached before
communication with
the Manager could be
performed. The
timeout duration is set
by the DIVA_API_
TIMEOUT variable and
equals one
hundred-eighty (180)
seconds by default.

1024

DIVA_ERR_LAST_INSTANCE DIVA_deleteObject() must
be used to delete the
last instance of an
object.

1025

DIVA_ERR_PATH_DESTINATION The specified
Destination Server path
is invalid.

1026

DIVA_ERR_INSTANCE_DOESNT_EXIST Instance specified for
restoring this object
does not exist.

1027

Table A–2 (Cont.) API Static Constants

Static Constant Name Description Value

API Static Constant Values

Appendix A-5

DIVA_ERR_INSTANCE_OFFLINE Instance specified for
restoring this object is
ejected, or the Datahub
owning the specified
disk instance is
unavailable.

1028

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE The specified instance
is not a tape instance.

1029

DIVA_ERR_NO_INSTANCE_TAPE_EXIST No tape instance exists
for this object.

1030

DIVA_ERR_OBJECT_IN_USE The object is currently
in use (being Archived,
Restored, Deleted, and
so on).

1031

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS The count of
simultaneous requests
reached the maximum
allowed value. This
variable is set in the
manager.conf
configuration file. The
default is 300.

1032

DIVA_ERR_TAPE_DOESNT_EXIST There is no tape
associated with the
given barcode.

1033

DIVA_ERR_INVALID_INSTANCE_TYPE Cannot partially restore
this instance.

1034

DIVA_ERR_OBJECT_PARTIALLY_DELETED The specified object has
instances that are
partially deleted.

1036

DIVA_ERR_COMPONENT_NOT_FOUND The specified
component (file) is not
found.

1038

DIVA_ERR_OBJECT_IS_LOCKED Attempted to restore an
object that has been
locked. A locked object
cannot be Restored or
Copied to New.

1039

DIVA_ALL_REQUESTS Specify all requests.
Used by DIVA_
cancelRequest.

-2

DIVA_ALL_INSTANCE Specify all instances.
Used by DIVA_release.

-1

DIVA_ANY_INSTANCE Allow Manager to
choose the instance.

-1

DIVA_DEFAULT_REQUEST_PRIORITY The default request
priority. This is used if
no specific priority is
selected when the
request is configured.

-1

DIVA_REQUEST_PRIORITY_MIN The default minimum
request priority.

Default = 0

Table A–2 (Cont.) API Static Constants

Static Constant Name Description Value

API Static Constant Values

A-6 C++ API Programmer’s Guide

DIVA_REQUEST_PRIORITY_LOW The default low request
priority.

Default =
25

DIVA_REQUEST_PRIORITY_NORMAL The default normal
request priority.

Default =
50

DIVA_REQUEST_PRIORITY_HIGH The default high
request priority.

Default =
75

DIVA_REQUEST_PRIORITY_MAX The default maximum
request priority.

Default =
100

DIVA_MEDIA_FORMAT_UNKNOWN The specified tape
format is unknown.

-1

DIVA_MEDIA_FORMAT_LEGACY The specified media
format for the group or
array is Legacy.

0

DIVA_MEDIA_FORMAT_AXF The specified media
format for the group or
array is AXF 0.9.

1

DIVA_MEDIA_FORMAT_AXF_10 The specified media
format for the group or
array is AXF 1.0.

2

DIVA_OFFSET_BYTE_BEGIN __int64 - The beginning
byte of the file.

0

DIVA_OFFSET_BYTE_END __int64 - The ending
byte of the file.

-1

DIVA_OFFSET_INVALID __int64 - The specified
timecode offset is
invalid.

-2

DIVA_OFFSET_TC_BEGIN string - The file's
beginning timecode.

00:00:00:0
0

DIVA_OFFSET_TC_END string - The file's ending
timecode.

99:99:99:9
9

Table A–2 (Cont.) API Static Constants

Static Constant Name Description Value

Glossary-1

Glossary

Archive Related Operations Initiator

An entity submitting requests to DIVA Core (typically, an automation process).

Array

In DIVA Core, an array designates a collection of disks identified by their name as they are
declared in the DIVA Core configuration. A disk name is associated with a mounting point.
Archive requests can be submitted with an array as the Destination Server. DIVA Core is
responsible for choosing the disk location to write the data to when several disks belong to the
same array.

AXF (Archive Exchange Format)

The AXF (Archive Exchange Format), or AXF Media Format, is based on a file and storage media
agnostic encapsulation approach which abstracts the underlying file system, operating system,
and storage technology making the format truly open and non-proprietary.

Category

Part of the access key to an object. Categories are an approach to linking the object with the
user activity field. It must not be confused with a Group, which is a storage concept.

Complex Object

An object is defined as complex when it contains one thousand (this is the default, but the
value is configurable) or more components. Complex object handling may differ from
non-complex objects as noted throughout this document.

Critical Section

A piece of code that accesses a shared resource (data structure or device) that must not be
concurrently accessed by more than one execution thread.

Destination

A system that receives restored data in the DIVA Core system (for example, video servers,
remote computers, FTP servers, and so on). Destination Servers can also be used as a Source
certain operations.

DPX (Digital Moving-Picture Exchange)

The DPX (Digital Moving-Picture Exchange) format is a high quality video format that consists
of one or more files for each frame of video. This format is likely to be used with complex
objects.

Externalization

Glossary-2

Externalization

An object instance is ejected (externalized) when one of the tapes containing the instance's
elements is ejected. An object is ejected when all of its instances are ejected. An object is
considered inserted when at least one instance of the object is inserted.

Group

A group is a logical notion for characterizing a set of object instances. This concept has a direct
influence on the instance's storage policy for tapes. Instances of the same group will be stored
on the same tapes. However, objects cannot have multiple instances stored on the same tape.

Groups are based on the DIVA Core Tape Set. Each tape inserted in the system is assigned to a
Set. Groups are then associated with a single Set. Multiple groups may be associated with the
same set. No group can use the set number 0.

Several kinds of tape can be used in a DIVA Core system. Groups can be defined either by using
a Set, in which you assign only tapes of the same type, or by defining the Set in which you can
mix tape types. Therefore, the first case specifies the tape type that stores the object instance.
See Set (of Tapes) later in this section for more information.

Initiator

See Archive Related Operations Initiator previously described.

Legacy Format

DIVA Core proprietary storage format used in DIVA Core releases 1.0 through 6.5.

Media Format

Tapes and disks may be formatted as either AXF (Archive Exchange Format) or Legacy Format.
The format is set for tape groups and disk arrays during configuration.

Medium (Media)

A set of storage resources. Currently DIVA Core provides two types of media: Groups of Tapes
and Arrays of Disks. The DIVA_archiveObject() and DIVA_copyToGroup() requests transfer objects to
a Medium.

Migration

Copying of data from a DIVA Core media to a tape (Archive operation) or from a tape to a DIVA
Core media (Restore operation).

Mutual Exclusion (Mutex)

Mutual Exclusion (mutex) avoids the simultaneous use of a common resource (that is, mutual
exclusion among threads).

Name

Part of the access key to an object. Names (file names) typically identify the object based on
the content within the object.

Object

Objects are archive entries in DIVA Core. An object is identified by a pair (Name and Category)
and contains one or more components. A component is the DIVA Core representation of a file.
The components are stored in DIVA Core as an Object Instance. Also see Complex Object.

UUID (Universally Unique Identifier)

Glossary-3

Object Instance

The mapping of an object's components onto a set of storage resources belonging to the same
storage space. Deleting instances cannot result in deleting the related object and therefore the
deletion of an instance, when that instance is unique, is not permitted.

Repack

Elimination of blank blocks between two objects on a tape (these blocks are caused by the
deletion of objects), by moving the objects to a different, empty tape.

Request

A request is an operation running in DIVA Core which progresses though steps (migration,
transfer, and so on) and ends as either Completed, Aborted, or Cancelled.

Resource

Used to denote the necessary elements involved for processing requests (for example,
Datahubs, Managers, Disks, Drives, and Tapes).

Set (of Tapes)

Every tape in a DIVA Core system belongs to one and only one Set. If the tape is not available
to DIVA Core, it belongs to Set #0, otherwise it belongs to a set with a strictly positive ID (for
example, Set #1). Each Group is associated with a Set. When the group needs an additional
tape, it takes it from its associated Set.

Source

A system that produces data to be archived in the DIVA Core system (for example, video
servers, browsing servers, remote computers, and so on). Source Servers can also be used as a
Destination for certain operations.

Spanning

Splitting an object's components onto several tapes (typically two). This can occur when the
component size is larger than the remaining size left on the initial tape.

Transfer

Copying data from a Source to a DIVA Core media (Archive operation) or from a DIVA Core
media to a Destination (Restore operation). See Request for more information.

UUID (Universally Unique Identifier)

A UUID (Universally Unique Identifier) uniquely identifies each object created in DIVA Core
across all Telestream customer sites. Objects created using the Copy As request are not
assigned a UUID. An object created by a Copy As request contains the same UUID as that of
the Source Server object.

	Title
	Copyrights
	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Document Updates
	Conventions

	1 Overview
	C++ API Overview
	DIVA Core Release Compatibility
	Alternate APIs
	New and Enhanced Features and Functionality
	Managing Connections
	Securing the API
	Java API
	C++ API

	SSL (Secure Sockets Layer) and Authentication

	Compilers
	Visual C++ Compiler on Windows
	Supported Platforms
	Supported Compilers
	API Library Options
	API Compilation
	Initiator Sample Program API Usage

	C++ Compiler on Linux
	Supported Platforms
	API Compilation

	Using the API in Multithreaded Applications
	Using Unicode Strings in the API

	2 Use and Operations
	Session Management Commands
	DIVA_getApiVersion
	Synopsis

	DIVA_SSL_initialize
	Synopsis

	DIVA_connect
	Synopsis
	Return Values

	DIVA_disconnect
	Synopsis
	Multithreaded Applications
	Return Values

	Requests and Commands
	DIVA_addGroup
	Synopsis
	Return Values

	DIVA_archiveObject
	Synopsis
	Return Values

	DIVA_associativeCopy
	Synopsis
	Return Values

	DIVA_cancelRequest
	Synopsis
	Return Values

	DIVA_changeRequestPriority
	Synopsis
	Return Values

	DIVA_copyToGroup and DIVA_copy
	Synopsis
	Return Values

	DIVA_copyToNewObject
	Synopsis
	Return Values

	DIVA_deleteGroup
	Synopsis
	Return Values

	DIVA_deleteInstance
	Synopsis
	Return Values

	DIVA_deleteObject
	Synopsis
	Return Values

	DIVA_ejectTape
	Synopsis
	Return Values

	DIVA_enable_Automatic_Repack
	Synopsis
	Return Values

	DIVA_getArchiveSystemInfo
	Synopsis
	Return Values

	DIVA_getArrayList
	Synopsis
	Return Values

	DIVA_getFinishedRequestList
	Synopsis
	Return Values

	DIVA_getFilesAndFolders
	Synopsis
	Return Values

	DIVA_getGroupsList
	Synopsis
	Return Values

	DIVA_getObjectDetailsList
	Synopsis
	Return Values
	Use with DIVA Connect
	Use and Recommended Practices
	Recommended Practices for Continuous Updates Notification Design Pattern (No Media Filter)

	DIVA_getObjectInfo
	Synopsis
	Return Values

	DIVA_getPartialRestoreRequestInfo
	Synopsis
	Return Values

	DIVA_getRequestInfo
	Synopsis
	Return Values
	Additional_Info

	DIVA_getSourceDestinationList
	Synopsis
	Return Values

	DIVA_getStoragePlanList
	Synopsis
	Return Values

	DIVA_getTapeInfo
	Synopsis
	Return Values

	DIVA_insertTape
	Synopsis
	Return Values

	DIVA_linkObjects
	Synopsis
	Return Values

	DIVA_lockObject
	Synopsis
	Return Values

	DIVA_multipleRestoreObject
	Synopsis
	Return Values

	DIVA_partialRestoreObject
	Synopsis
	Return Values

	DIVA_release
	Synopsis
	Return Values

	DIVA_require
	Synopsis
	Return Values

	DIVA_restoreInstance
	Synopsis
	Return Values

	DIVA_restoreObject
	Synopsis
	Return Values

	DIVA_transcodeArchive
	Synopsis
	Return Values

	DIVA_transferFiles
	Synopsis
	Return Values

	DIVA_unlockObject
	Synopsis
	Return Values

	3 Using the API with DIVA Connect
	What is DIVA Connect?
	DIVA Core API Support
	Input Parameters
	Return Parameters
	Return Codes
	getObjectDetailsList Call

	A Appendix
	List of Authorized Special Characters in DIVA Core
	Maximum Allowed Number of Characters
	API Static Constant Values

	Glossary

