
September 22, 2022

C++ API Programmer’s Guide

C++ API

Programmer’s Guide

Release: 8.2

Revision: 1.2

Telestream

DIVA

2

C++ API Programmer’s Guide

Copyrights and Trademark Notices
Specifications subject to change without notice. Copyright © 2022 Telestream, LLC and
its Affiliates. Telestream, CaptionMaker, Cerify, DIVA, Episode, Flip4Mac, FlipFactory, Flip
Player, Gameshow, GraphicsFactory, Kumulate, Lightspeed, MetaFlip, Post Producer,
Prism, ScreenFlow, Split-and-Stitch, Switch, Tempo, TrafficManager, Vantage, VOD
Producer, and Wirecast are registered trademarks and Aurora, ContentAgent, Cricket, e-
Captioning, Inspector, iQ, iVMS, iVMS ASM, MacCaption, Pipeline, Sentry, Surveyor,
Vantage Cloud Port, CaptureVU, Cerify, FlexVU, PRISM, Sentry, Stay Genlock, Aurora, and
Vidchecker are trademarks of Telestream, LLC and its Affiliates. All other trademarks are
the property of their respective owners.

This software and related documentation are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual property
laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All
SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

3

Contents

Telestream Contact Information 8

Preface 9
Audience 9
Documentation Accessibility 9

Access to Telestream Support 9
Related Documents 9
Document Updates 10

Overview 11
C++ API Overview 12
DIVA Core Release Compatibility 13
Alternate APIs 13
New and Enhanced Features and Functionality 14
New Terminology 15
Managing Connections 16

Securing the API 16
Java API 16
C++ API 16

SSL (Secure Sockets Layer) and Authentication 16
Compilers 18

Visual C++ Compiler on Windows 18
Supported Platforms 18
Supported Compilers 18
API Library Options 19
API Compilation 19
Initiator Sample Program API Usage 20

C++ Compiler on Linux 20
Supported Platforms 20
API Compilation 21

Using the API in Multithreaded Applications 22
Using Unicode Strings in the API 23

Contents 4

C++ API Programmer’s Guide

Use and Operations 24
Session Management Commands 25

DIVA_getApiVersion 25
Synopsis 25

DIVA_SSL_initialize 25
Synopsis 25

DIVA_connect 25
Synopsis 25
Return Values 27

DIVA_disconnect 27
Synopsis 28
Multithreaded Applications 28
Return Values 28

Requests and Commands 29
DIVA_addGroup 29

Synopsis 29
Return Values 30

DIVA_archiveObject 31
Synopsis 31
Return Values 34

DIVA_associativeCopy 35
Synopsis 35
Return Values 36

DIVA_cancelRequest 38
Synopsis 38
Return Values 38

DIVA_changeRequestPriority 39
Synopsis 39
Return Values 40

DIVA_copyToGroup and DIVA_copy 41
Synopsis 41
Return Values 43

DIVA_copyToNewObject 44
Synopsis 44
Return Values 48

DIVA_deleteGroup 49
Synopsis 49
Return Values 50

DIVA_deleteInstance 51
Synopsis 51
Return Values 52

DIVA_deleteObject 53
Synopsis 54
Return Values 55

DIVA_ejectTape 56
Synopsis 56
Return Values 57

Contents 5

C++ API Programmer’s Guide

DIVA_enable_Automatic_Repack 58
Synopsis 58
Return Values 58

DIVA_getArchiveSystemInfo 59
Synopsis 59
Return Values 65

DIVA_getArrayList 66
Synopsis 66
Return Values 68

DIVA_getFinishedRequestList 69
Synopsis 69
Return Values 70

DIVA_getFilesAndFolders 71
Synopsis 71
Return Values 75

DIVA_getGroupsList 76
Synopsis 76
Return Values 77

DIVA_getObjectDetailsList 77
Synopsis 78
Return Values 87
Use with DIVA Connect 88
Use and Recommended Practices 89
Recommended Practices for Continuous Updates Notification Design Pattern

(No Media Filter) 90
DIVA_getObjectInfo 93

Synopsis 93
Return Values 93

DIVA_getPartialRestoreRequestInfo 94
Synopsis 95
Return Values 95

DIVA_getRequestInfo 96
Synopsis 96
Return Values 100
Additional_Info 101

DIVA_getSourceDestinationList 102
Synopsis 102
Return Values 104

DIVA_getStoragePlanList 105
Synopsis 105
Return Values 105

DIVA_getTapeInfo 106
Synopsis 106
Return Values 107

DIVA_insertTape 108
Synopsis 108
Return Values 109

DIVA_linkObjects 110

Contents 6

C++ API Programmer’s Guide

Synopsis 110
Return Values 111

DIVA_lockObject 112
Synopsis 112
Return Values 112

DIVA_multipleRestoreObject 113
Synopsis 113
Return Values 115

DIVA_partialRestoreObject 117
Synopsis 121
Return Values 129

DIVA_release 131
Synopsis 131
Return Values 131

DIVA_require 132
Synopsis 133
Return Values 133

DIVA_restoreInstance 134
Synopsis 134
Return Values 137

DIVA_restoreObject 138
Synopsis 138
Return Values 141

DIVA_transcodeArchive 142
Synopsis 142
Return Values 145

DIVA_transferFiles 146
Synopsis 146
Return Values 148

DIVA_unlockObject 149
Synopsis 149
Return Values 149

Using the API with DIVA Connect 151
What is DIVA Connect? 152
DIVA Core API Support 152
Input Parameters 153
Return Parameters 154
Return Codes 154
getObjectDetailsList Call 155

Appendix 156
List of Authorized Special Characters in DIVA Core 157
Maximum Allowed Number of Characters 159
API Static Constant Values 160

Contents 7

C++ API Programmer’s Guide

Glossary 166

8

Telestream Contact
Information

To obtain product information, technical support, or provide comments on this guide,
contact us using our web site, email, or phone number as listed below.

Resource Contact Information

DIVA Core
Technical
Support

Web Site:

https://www.telestream.net/telestream-support/diva/support.htm

Depending on the problem severity, we will respond to your
request within 24 business hours. For P1, we will respond within 1
hour. Please see the Maintenance & Support Guide for these
definitions.

• Support hours for customers are Monday - Friday, 7am - 6pm
local time.

• P1 issues for customers are 24/7.

Telestream, LLC Web Site: www.telestream.net

Sales and Marketing Email: info@telestream.net

Telestream, LLC
848 Gold Flat Road, Suite 1
Nevada City, CA USA 95959

International
Distributor
Support

Web Site: www.telestream.net

See the Telestream Web site for your regional authorized
Telestream distributor.

Telestream
Technical
Writers

Email: techwriter@telestream.net

Share comments about this or other Telestream documents.

http://www.telestream.net
mailto:info@telestream.net
http://www.telestream.net
mailto:techwriter@telestream.net

9

Preface

This document contains a detailed description of the DIVA Core and DIVA Connect C++
API (Application Programmer's Interface).

Audience
This document assists System Administrators and API Application Developers with
development and deployment of applications interacting with DIVA Core and DIVA
Connect.

Documentation Accessibility
For information about Telestream's commitment to accessibility, visit the Telestream
Support Portal located at:

https://www.telestream.net/telestream-support/diva/support.htm

Access to Telestream Support
Telestream customers that have purchased support have access to electronic support
through the Telestream Support Portal located at:

https://www.telestream.net/telestream-support/diva/support.htm

Related Documents
For more information, see the DIVA Core documentation set for this release and the
C++ Standard Template Library documentation located at:

https://www.telestream.net/telestream-support/diva/support.htm

Preface
Document Updates

10

C++ API Programmer’s Guide

Document Updates
The following table identifies updates made to this document.

Date Update

April 2022 Updated copyright information

Updated book for 8.2 release

Updated terminology to new standards (see the Overview for
updated terms)

July 2022 Migrated book to Telestream format.

September 2022 Updating terminology and new title page graphic.

11

Overview

DIVA Core 8.2 supports interoperability among systems, helping to ensure long-term
accessibility to valued content, and keeping up with evolving storage technologies.

The architecture of DIVA Core allows the integration of many different types of servers
and technologies, for example Broadcast Video Servers, Storage Area Networks, and
Enterprise Tape Managed Storage.

This chapter includes the following information:

Topics:
■ C++ API Overview

■ DIVA Core Release Compatibility

■ Alternate APIs

■ New and Enhanced Features and Functionality

■ New Terminology

■ Managing Connections

■ Compilers

■ Using the API in Multithreaded Applications

■ Using Unicode Strings in the API

Overview
C++ API Overview

12

C++ API Programmer’s Guide

C++ API Overview
The main DIVA Core API is written in the C++ programming language. All of the
definitions are contained in the include file named DIVAapi.h. In this document,
parameters in function signatures are qualified by IN and OUT to specify whether the
parameter is passed as an input or an output to the function. These qualifiers are not
part of the C++ language and are only used for ease of readability. You must consider
that these qualifiers are equivalent to the following macro definitions:

• #define IN

• #define OUT

In this document, the term structure identifies both C-like structures and classes which
have only public data members and no function members1. Interfaces described in this
document show only data members, not constructors or destructors.

The DIVA Core and DIVA Connect API use only standard data types provided directly by
the C++ language, and the vector data type provided by the STL (Standard Template
Library). For more information about the vector data type, refer to the STL
documentation on the OTN.

Note: The API is not supported under the Solaris operating system.

DIVA Core 8.2 does not currently support the following API calls and features when
used with complex Virtual Objects. Even if they are enabled, they will not be executed
and no warnings will be generated.

• VerifyFollowingArchive

• VerifyFollowingRestore

• DeleteOnSource

• DeleteFile

• getObjectListbyFileName

• The getObjectInfo and getObjectDetailsList will only return a single file

When copying complex Virtual Objects to legacy-formatted media, the Copy request
terminates returning a Can't write a complex object in Legacy format error, and an error
code through the API.

1. The operators new and delete are not considered function members.

Overview
DIVA Core Release Compatibility

13

C++ API Programmer’s Guide

DIVA Core Release Compatibility
DIVA Core and DIVA Connect are backward compatible with all earlier releases of the
C++ API. Therefore, the C++ API 8.2.x is compatible with any DIVA Core release 8.0 and
later.

Any new features added to DIVA Core after the release of the C++ API in use will not be
available; the client system must be upgraded to the latest release to use all features.

Alternate APIs
The API described in this document is for use with applications implemented in C++.
However, the following additional APIs are available:

• REST API: DIVA Core exposes its functionality through a REST interface. It is self-con-
tained in DIVA Core 8.0 and all future DIVA Core releases. In the 8.0 release, the API
is used exclusively by the DIVA Core Web Application.

Telestream recommends using the REST API rather than the previous existing APIs.
Although all previous APIs will remain available, the REST API offers new and
enhance features.

See the DIVA Core REST API documentation set for more information.

• Java API: A set of libraries, samples and documentation for use with applications
implemented in Java. See the Java API Readme for Java API document location
information.

• DIVA Enterprise Connect and Web Services API: DIVA Enterprise Connect is a stan-
dards-based Web Service API implemented on the Oracle WebLogic Suite. DIVA
Enterprise Connect interacts with the DIVA Core and DIVA Connect systems, acting
as a web service binding for the API.

DIVA Enterprise Connect includes the DIVA Web Services API, which is a set of inter-
face definition files and documentation for universal use by applications support-
ing Web Services communications.

See the DIVA Enterprise Connect documentation set for more information.

Overview
New and Enhanced Features and Functionality

14

C++ API Programmer’s Guide

New and Enhanced Features and Functionality
The following new and enhanced features and functionality are included in DIVA Core
8.2:

• The Source Media Priority is reported in the getArrayList and getGroupsList calls.

• The storage options are reported in the getArrayList call, and storage options for
each disk instance is returned from the getObjectInfo and getObjectDetailsList
calls.

• Secure Socket Layer authentication has been included in DIVA Core 8.2. See SSL
(Secure Sockets Layer) and Authentication for more information.

• A new call named DIVA_SSL_initialize has been added to set the environment for
secure communications with the Core Manager service. In DIVA Core 8.2 you must
make this call before calling DIVA_connect or the connection will fail. See
DIVA_SSL_initialize for more information on this call.

Overview
New Terminology

15

C++ API Programmer’s Guide

New Terminology
The following terminology has been updated to reflect standardization efforts across
all DIVA and Kumulate applications. There will be some variations in the documentation
compared to the interface until everything is switched over to the new terminology;
the documentation uses the new terms wherever possible.

• Running Requests are now called Jobs

• Request History is now called Job History

• Libraries are now called Managed Storage

• Datahub is now called Actor

• Proxyhub is now called Proxy Actor

• DIVA Core and DIVA Manager are now called DIVA Core / Core / Core Manager

• Category is now called Collection

• Source/Destination is now called Unmanaged Storage Repository

• Storage Repository is now called Managed Storage Repository

• Object is now called Virtual Object

• Group is now called Tape Group

• Link is now called Storage Link

• Storage Plan Manager is now called Storage Policy Manager

• Drop Folder Monitor (DFM) is now called Watch Folder Monitor (WFM)

• DIVA Command and Control Panel are now called System Management App

• DIVA Analytics and DIVAProtect are now called Analytics App

Overview
Managing Connections

16

C++ API Programmer’s Guide

Managing Connections
The number of connections to the Core Manager is limited by the Core Manager and
set in the Core Manager configuration file. The default configuration is two hundred
connections, which includes GUI connections and all API connections. Once the
configured limit is reached, the API will not allow additional connections to be created.
See the manager.conf file for additional information.

Caution: It is recommended that a new connection not be created for each
request or command sent to the Core Manager. Whenever possible
allow the connection to remain open for the lifetime of the session, or
application.

Securing the API
The following sections describe securing communications when using one of the
available DIVA Core APIs. The JAVA and C++ Initiators use the default keys and
certificates file in the %DIVA_API_HOME%/Program/security folder when connecting
to the Core Manager.

The Core Manager Service is backward compatible with earlier versions of the JAVA,
C++, Web Services APIs, DIVA Enterprise Connect 1.0, and DIVA Connect 2.2
establishing connections over regular sockets. The DIVA Core 8.2 (and later) Java and
C++ API releases can establish Core Manager communications using secure, or
insecure, sockets. Secure communications are only supported by the Core Manager.

The Core Manager Service supports both secure and insecure communication ports
simultaneously. The default secure port is tcp/8000, and the default insecure port is
tcp/9000.

Java API
See the Java API documentation for information on the new methods added to the
SessionParameters Class for secure communications. Also see the Java API Readme for
the location of the full Java API documentation (delivered with the API).

C++ API
The C++ API includes a new call named DIVA_SSL_initialize added to set the
environment for secure communication with the Core Manager Service. You must call
DIVA_SSL_initialize before calling DIVA_connect with DIVA Core 8.2, otherwise the
DIVA_connect call will fail.

SSL (Secure Sockets Layer) and Authentication
DIVA Core consist of services in Java and C++. The format in how certificates and keys
are represented are different in each. DIVA Core has the keys and certificates for JAVA

Overview
Managing Connections

17

C++ API Programmer’s Guide

services in a Java Keystore file, and in PEM (Privacy Enhanced Mail) format files for the
C++ services.

The Core Manager can simultaneously support two communications ports - one
secure, and one insecure. The default secure port number is 8000 and the insecure
default port number is 9000.

All internal DIVA Core 8.2 services (System Management App, DBBackup, Migration
Utility, Actor, SPM, WFM, SNMP, Robot Manager, RDTU, and Migration Services) can only
connect to secure ports. The System Management App will report an SSL Handshake
Timeout if you attempt to connect to the non-secure port. Clients using the Java or C++
API are allowed to connect to either port.

The following is a relative snippet from the Core Manager configuration file:
Port number on which the DIVA Core is waiting for incoming
connections.
Note: If you are using a Sony Managed Storage and plan to execute
the DIVA Core
on the same machine as the PetaSite Controller (PSC) software, be
aware
that the PSC server uses the 9000 port and that this cannot be
modified.
In that situation, you have to use a different port for the DIVA
Core.
This same warning applies to FlipFactory which uses ports 9000
and 9001.
The default value is 9000.
DIVAMANAGER_PORT=9000

Secure port number on which the DIVA Core is waiting for incoming
connections.
The default value is 8000.
DIVAMANAGER_SECURE_PORT=8000

A new folder called %DIVA_API_HOME%/security is added to the API installation
structure as follows:
%DIVA_API_HOME%
 security
 conf

The conf folder contains the SSLSettings.conf file that is used to configure the SSL
handshake timeout.

Overview
Compilers

18

C++ API Programmer’s Guide

Compilers
The following sections cover the supported API compilers.

Visual C++ Compiler on Windows
These section describe using the Visual C++ compiler on the Windows operating
system.

Supported Platforms
There are two separate variants of the API for Windows: 32-bit and 64-bit. The 32-bit
model can be used on both x86 and x64 platforms. However, the 64-bit variant requires
a 64-bit platform. The API for Windows is supported on the following Windows releases:

• Microsoft Windows Server 2012

• Microsoft Windows Server 2012 R2

• Microsoft Windows Server 2008

• Microsoft Windows Server 2008 x64

• Microsoft Windows Server 2008 R2

Supported Compilers
The API is compiled and tested using the following compilers:

Microsoft Visual C++ 2010 (Release 10)
Including Microsoft Platform SDK 7.0a (April 2010)

Microsoft Visual C++ 2012 (Release 11)
Including Microsoft Platform SDK 7.1A (November 2012)

Microsoft Visual C++ 2013 (Release 13)
Including Microsoft Platform SDK 8.0A (October 2013)

Overview
Compilers

19

C++ API Programmer’s Guide

API Library Options
The API is delivered with both static and dynamic libraries. Each library is available in a
standard format with debug support and Unicode compatibility. The different options
may be found in the following build directories:

Static Library
Static_Release

Static Library with Debug Support
Static_Debug

Dynamic Library
Dynamic_Release

Dynamic Library with Debug Support
Dynamic_Debug

API Compilation
Choose the 8 Bytes setting for the Strict Member Alignment option under C/C++ Code
Generation in the project settings.

The following list identifies the library path that corresponds to each run time library.
The run time library is normally changed automatically depending upon the selected
build configuration.

Multithreaded
Static_Release

Debug Multithreaded
Static_Debug

Multithreaded DLL
Dynamic_Release

Debug Multithreaded DLL
Dynamic_Debug

You must include the DIVA Core API.lib file, or the path to this file, in the link settings
(see Initiator Sample Program API Usage). The API can be included in an application
compiled with either the IDE or a script using the command line compiler.

Overview
Compilers

20

C++ API Programmer’s Guide

Once your application is built, you must either add the folder where the API.dll file is
located to your PATH environment variable, or copy the API.dll file into the folder
containing your executable file.

Initiator Sample Program API Usage
The Initiator program is included with the API and is an example of the API usage. This
is a command line program that uses the API to send requests and get data from DIVA
Core. Use the following project files to view the compiler settings and build the
program:

Visual C++ .NET (Release 10)
doc\CppInitiator\InitiatorVc100.vcxproj(64-bit API)

Visual C++ .NET (Release 11)
doc\CppInitiator\InitiatorVc110.vcxproj(64-bit API)

Visual C++ .NET (Release 12)
doc\CppInitiator\InitiatorVc120.vcxproj(64-bit API)

C++ Compiler on Linux
These sections describe using the C++ compiler on the Linux operating system
platform.

Supported Platforms
The API for Linux is supported on Oracle Linux. The API was built with the C++ compiler
and Oracle Solaris Studio library. The following list identifies the supported CC release
and Oracle Solaris Studio library release.

• Oracle Linux 7 x86_64 (64-bit) operating system

• Oracle Solaris Studio 12.4 library

The following command returns the CC release level:
[root@LinuxBuildVM /]# CC -V
CC: Sun C++ 5.13 Linux_i386 2014/10/20

The API may work on other Linux platforms; however it is only officially validated in the
environment described here. Support for the older release previously built on SuSe
Linux 9.0 was discontinued starting with DIVA Core 8.0. For all development projects,
use of the latest release is strongly recommended.

Overview
Compilers

21

C++ API Programmer’s Guide

API Compilation
The API is delivered with the x86_64_Release_unicode shared library for the Linux
platform. The release is located in the DIVA/api/lib directory. The library is built in
Release Mode and does not contain symbolic information.

Header files that may be required to compile an application with the API libraries are
delivered in the DIVA/api/include directory.

For reference, a sample application is provided in the DIVA/api/doc/CPPInitiator
directory along with its source code. The Visual Studio project file for Microsoft
Windows, and sample makefiles for Linux platforms are also provided. Refer to the
sample makefiles provided in the DIVA/api/doc/CPPInitiator directory for platform-
specific compiler and linker options.

Overview
Using the API in Multithreaded Applications

22

C++ API Programmer’s Guide

Using the API in Multithreaded Applications
The API supports using multiple threads concurrently with the following restrictions
(see the related function's specific documentation for additional information):

• The DIVA_connect() and DIVA_disconnect() functions share the same critical sec-
tion. Although multiple simultaneous connections are supported, they must be
opened and closed one at a time.

• The init, get, and close functions used to retrieve list information (Virtual Objects
List or Virtual Objects Tape Information List) also use a Critical Section to prevent
concurrent threads reinitializing the list while another thread is currently reading it.
The critical section is entered when the list is initialized and left when the list is
closed. There are two separate critical sections, one for each type of list.

• All of the other DIVA Core functions may be called simultaneously by different
threads. For example, one thread can call the DIVA_archiveObject() function while
another one is calling DIVA_getArchiveSystemInfo().

Overview
Using Unicode Strings in the API

23

C++ API Programmer’s Guide

Using Unicode Strings in the API
The API (and other DIVA Core components) support wide character strings. Only 64-bit
Unicode is delivered with the API. You must define the _UNICODE constant before
including the DIVAapi.h header file to be able to use the wchar_t and wstring.

In addition, the application must be linked with one of the Unicode releases in the
library (for example, in lib/Release_Unicode).

Defining, or not defining, the _UNICODE macro will change the implementation of the
DIVA_STRING and DIVA_CHAR types.

The _T macro is recommended when working with static strings:

Example:
_T(“Hello”)

Type _UNICODE Not Defined _UNICODE Defined

DIVA_STRING string wstring

DIVA_CHAR char wchar_t

24

Use and Operations

This chapter discusses connection management, requests, and commands, and
includes the following information:

Topics:
■ Session Management Commands

■ Requests and Commands

Use and Operations
Session Management Commands

25

C++ API Programmer’s Guide

Session Management Commands
The following three sections describe the commands used to control the session
connection.

DIVA_getApiVersion
Returns the string pointed to by version of the major part of the release number.

Synopsis
#include “DIVAapi.h”

void DIVA_getApiVersion (
 OUT DIVA_STRING *version
);

version
Points to a string that contains the major part of the release for this API.

DIVA_SSL_initialize
The DIVA_SSL_initialize call sets the environment for secure communication with the
Core Manager Service. You must call DIVA_SSL_initialize before calling DIVA_connect
with Core 8.2, otherwise the DIVA_connect call will not establish a secure connection.

Synopsis
DIVA_STATUS DIVA_SPEC DIVA_SSL_initialize(
 DIVA_STRING KeyPath, // [in] Full path of the Key file contain
the private key and certificate in PEM format.
 DIVA_STRING TrustStorePath, // [in] Full path of the file
containing Trust certificates in PEM format.
 DIVA_STRING KeyPassword // [in] Password for the private key
)

DIVA_connect
Opens a connection with the Core Manager. All of the other API functions are only
available when a connection is open. A connection cannot be opened if another
connection is already open. To open a new connection, the previous one must be
explicitly closed by calling DIVA_disconnect().

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber

Use and Operations
Session Management Commands

26

C++ API Programmer’s Guide

);
DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
);
DIVA_STATUS DIVA_connect (
 IN string managerAddress,
 IN int portNumber,
 IN string userName,
 IN string password,
 IN string applicationName
 IN string userInfo
);

managerAddress
The IP address of the Core Manager.

portNumber
The port on which the Core Manager is listening. The default port is pointed to by the
constant value DIVA_MGER_DEFAULT_PORT.

userName
The user name.

password
The password associated with the user name.

applicationName
The name of the application.

userInfo
User specific and specified information.

Multithreaded Applications:

A critical section protects both the DIVA_connect() and DIVA_disconnect() functions. If
a thread is already in the process of closing the connection to the Core Manager, other
threads must wait until the running thread exits the DIVA_connect() function before
being able to open or close the connection.

Use and Operations
Session Management Commands

27

C++ API Programmer’s Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_NO_ARCHIVE_SYSTEM
There was a problem when establishing a connection with the specified DIVA Core
system.

DIVA_ERR_WRONG_VERSION
The release levels of the API and the Core Manager are not compatible.

DIVA_ERR_ALREADY_CONNECTED
A connection is already open.

Also see DIVA_connect.

DIVA_disconnect
Closes a connection with the Core Manager. When a connection is closed, only the
DIVA_connect() function can be called. If no connection is currently open, this function
has no effect and returns DIVA_OK.

Use and Operations
Session Management Commands

28

C++ API Programmer’s Guide

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_disconnect ()

Multithreaded Applications
A critical section protects both the DIVA_connect() and DIVA_disconnect() functions. If
a thread is already in the process of closing the connection to the Core Manager, other
threads must wait until the running thread exits the DIVA_disconnect() function before
being able to open or close the connection.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_DISCONNECTING
There was a problem when disconnecting. The connection is considered to still be
open.

Also see DIVA_connect.

Use and Operations
Requests and Commands

29

C++ API Programmer’s Guide

Requests and Commands
The following sections discuss all of the available API commands for use in your
application.

DIVA_addGroup
This function adds a new Tape Group.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_addGroup (
IN DIVA_STRING groupName,
IN int associatedSet,
IN DIVA_STRING comment,
IN bool toBeRepacked,
IN bool worstFitEnabled,
IN int worstFitRepackTapes,
IN int mediaFormatId
);

groupName
The name of the Tape Group to be added.

associatedSet
The set of tapes to associate with the new Tape Group. This value must be strictly
greater than zero.

comment
A text description of the new Tape Group.

toBeRepacked
If true, tapes belonging to this Tape Group are eligible for automatic repacking.

worstFitEnabled
If true, Worst Fit Policy (access speed optimization) will apply.

worstFitRepackTapes
The number of tapes reserved for Worst Fit Repacking.

Use and Operations
Requests and Commands

30

C++ API Programmer’s Guide

mediaFormatId
The data format to be used by the tapes assigned to this Tape Group. The value can be
DIVA_MEDIA_FORMAT_LEGACY or DIVA_MEDIA_FORMAT_AXF. See information on
media formats in the Glossary.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_GROUP_ALREADY_EXISTS
The specified Tape Group already exists.

Use and Operations
Requests and Commands

31

C++ API Programmer’s Guide

DIVA_archiveObject
Submits an archive request to the Core Manager. This function returns as soon as the
Core Manager accepts the request. The application must call the function
DIVA_getRequestInfo() to check that the operation completed successfully.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_archiveObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN DIVA_STRING source,
IN DIVA_STRING mediaName,
IN DIVA_STRING filesPathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_ARCHIVE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING comments,
IN DIVA_STRING archiveOptions,
OUT int requestNumber
);

objectName
The name of the Virtual Object to be archived.

objectCollection
The Collection of the Virtual Object to be archived.

source
The name of the Source Server (for example, the video server, browsing server, and so
on). This name must be known to the DIVA Core configuration description.

mediaName
The tape group or disk array where the Virtual Object is to be saved. The media may be
defined as follows:

Name (of the Tape Group or Array)
Provide the tape group or disk array name as defined in the configuration. The Vir-
tual Object is saved to the specified media and assigned to the default SP (Storage
Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The Virtual
Object will be assigned to the specified Storage Plan and saved to the default
media specified.

Use and Operations
Requests and Commands

32

C++ API Programmer’s Guide

Both of the above (Name and SP Name)
The Virtual Object is saved to the specified media as in Name, and assigned to the
specified Storage Plan as in SP Name. The Name and the SP Name must be sepa-
rated by the & delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is used.
Complex Virtual Objects can only be saved to AXF media types.

filesPathRoot
The root folder for the files specified by the filenamesList parameter.

filenamesList
List of file path names relative to the folder specified by the filesPathRoot parameter.
Path names must be absolute names when the filesPathRoot is null.

The following is for DIVA Core releases 7.1.2 and later only:

If the -gcinfilelist option is specified the Genuine Checksum is included with a colon
separator between the file name and the GC value as follows:
test1.txt:a6f62b73f5a9bf380d32f062f2d71cbc
test2.txt:96bf41e4600666ff69fc908575c0319

qualityOfService
One of the following codes executes the request using the specified QOS:

DIVA_QOS_DEFAULT
Archiving is performed according to the default Quality Of Service (currently direct
and cache for archive operations).

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct archive only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache archive if available, or direct archive if cache archive is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct archive if available, or cache archive if direct archive is not available.

Additional and optional services are available. To request those services, use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constant:

Use and Operations
Requests and Commands

33

C++ API Programmer’s Guide

DIVA_ARCHIVE_SERVICE_DELETE_ON_SOURCE
Delete source files when the tape migration is done. Available for local Source Serv-
ers, disk Source Servers, and standard FTP Source Servers. This feature is not avail-
able for complex Virtual Objects.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

comments
Optional information describing the Virtual Object. This can be a null string.

archiveOptions
Additional options for performing the transfer of data from the Source Server to DIVA
Core. These options supersede any options specified in the DIVA Core configuration
database. Currently the possible values for archiveOptions are as follows:

Null string
A null string specifies no options.

-delete_on_source
Executes a delete on the Source Server after an archive request completes.

-r
Using -r specifies that every name in filenamesList that refers to a folder must be
scanned recursively. This also applies when FilesPathRoot is specified and an aster-
isk designates the files to be archived. This option can be used when archiving from
a local Source Server or from a standard FTP Server.

Use and Operations
Requests and Commands

34

C++ API Programmer’s Guide

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

The following is for DIVA Core releases 7.1.2 and later only:

-gcinfilelist [gcType]
Specifies that GC (Genuine Checksum) values are included in the file names list. The
value of gcType must match the Core Manager's default checksum type as specified
in the DIVA Core configuration (MD5 by default). The GC values are then used to
verify the transfer from the Source Server.

requestNumber
The request number assigned to this request. This number is used for querying the
status or canceling the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

Use and Operations
Requests and Commands

35

C++ API Programmer’s Guide

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this
variable in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified tape group or disk array does not exist.

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_associativeCopy
Submits a request for creating new instances in the Tape Group (specified by group).
DIVA Core guarantees that these instances are stored sequentially on tapes:

• The request is completed only when every Virtual Object is copied to the same
tape.

• In the case of drive or tape failure during a write operation, instances currently writ-
ten are erased and the request is retried once.

• The choice of the tape to be used for the copy follows the policy used for the
archive operation (written tapes with enough remaining size regardless of optimi-
zations).

• Associative Copy does not span tapes - the request terminates (and is retried once)
instead of spanning. The request terminates if the sum of the size of the Virtual
Objects to copy exceeds the capacity of every individual tape present in the Man-
aged Storage.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_associativeCopy (
IN vector<DIVA_OBJECT_SUMMARY> *objectsInfo,
IN DIVA_STRING groupName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

Use and Operations
Requests and Commands

36

C++ API Programmer’s Guide

objectsInfo
A pointer to a list of Virtual Objects defined by a name and Collection pair.

groupName
The name of the Tape Group where the new instance will be located. Complex Virtual
Objects can only be saved to AXF media types. Associative Copy to a disk array is not
available.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

Use and Operations
Requests and Commands

37

C++ API Programmer’s Guide

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable
is set in the manager.conf configuration file and the default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this Virtual Object. Tape instances are ejected and no Actor
could provide a disk instance.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified tape group or disk array does not exist.

Use and Operations
Requests and Commands

38

C++ API Programmer’s Guide

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

Also see DIVA_archiveObject and DIVA_copyToGroup and DIVA_copy.

DIVA_cancelRequest
Submits a Cancel operation to the Core Manager. This function returns as soon as the
Core Manager accepts the operation. The application must call the function
DIVA_getRequestInfo() to check that the operation was successful.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_cancelRequest (
IN int requestNumber,
IN DIVA_STRING options
);

requestNumber
A number identifying the request to be canceled. This parameter can be set to
DIVA_ALL_REQUESTS to cancel all cancelable requests.

options
An optional string attribute for specifying additional parameters to the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

Use and Operations
Requests and Commands

39

C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_NO _SUCH_REQUEST
The requestNumber identifies no request.

Also see DIVA_getRequestInfo.

DIVA_changeRequestPriority
Submits a Change Request Priority request to the Core Manager. This function returns
as soon as the Core Manager accepts the request. The application must call the
DIVA_getRequestInfo() function to check that the operation was successful.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_changeRequestPriority (
IN int requestNumber,
IN int priorityLevel,
IN DIVA_STRING passThruOptions
);

requestNumber
A number identifying the request to be changed.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred. The value zero is the lowest priority and one hundred is the highest priority.

There are five predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

Use and Operations
Requests and Commands

40

C++ API Programmer’s Guide

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

The use of DIVA_DEFAULT_REQUEST_PRIORITY is not allowed with this function.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

passThruOptions
An optional string attribute for specifying additional parameters to the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

Use and Operations
Requests and Commands

41

C++ API Programmer’s Guide

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request.

DIVA_ERR_INVALID_PARAMETER
A parameter value has not been understood by the Core Manager.

Also see DIVA_getRequestInfo.

DIVA_copyToGroup and DIVA_copy
Submits a New Instance Creation request on the media specified by mediaName to the
Core Manager, and the Core Manager chooses the appropriate instance to be created.
This function returns as soon as the Core Manager accepts the request. The application
must call the DIVA_getRequestInfo() function to check that the operation was
successful.

The request will fail if the requested Virtual Object is on media that is not available. The
Media Names (tape barcodes and disk names) that contain instances of the Virtual
Object will be included in the additionalInfo field of the DIVA_getRequestInfo()
response.

A tape group may contain two instances of the same Virtual Object. In this case, DIVA
Core will terminate the request if both instances cannot be written on two different
tapes. A disk array can contain two instances of the same Virtual Object; however DIVA
Core will terminate the request if the new instance cannot be written on a different
disk. There can be a maximum of only one instance of each Virtual Object per disk or
tape.

Synopsis
DIVA_copyToGroup is a public alias to DIVA_copy and performs the same functionality.
#include “DIVAapi.h”

DIVA_STATUS DIVA_copy (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

DIVA_STATUS DIVA_copyToGroup (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,

Use and Operations
Requests and Commands

42

C++ API Programmer’s Guide

OUT int *requestNumber
);

objectName
The name of the Virtual Object to be copied.

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string; however this may result in an error if several Virtual Objects have the
same name.

instanceID
The instance's identifier. DIVA_ANY_INSTANCE as the Instance ID means that DIVA Core
will choose the appropriate instance.

mediaName
The media (tape group or disk array) where the new instance will be located.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request to be changed.

Use and Operations
Requests and Commands

43

C++ API Programmer’s Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value has not been understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This
variable is set in the manager.conf configuration file. The default is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

Use and Operations
Requests and Commands

44

C++ API Programmer’s Guide

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this Virtual Object. Tape instances are ejected and no Actor
could provide a disk instance.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this Virtual Object is ejected, or the Actor owning
the specified disk instance is not available.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified Tape Group does not exist.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

Also see DIVA_archiveObject.

DIVA_copyToNewObject
Submits a request for copying an archived Virtual Object to a new Virtual Object, with
another name or Collection, to the Core Manager. The Core Manager chooses the
appropriate instance as the source of the copy. This function returns as soon as the Core
Manager accepts the request. The application must call the DIVA_getRequestInfo()
function to check that the operation was successful.

The request will fail if the requested Virtual Object is on an unavailable media. The
media names (tape barcodes and disk names) that contain instances of the Virtual
Object will be included in the additionalInfo field of the DIVA_getRequestInfo()
response.

All types of transfers (disk to disk, disk to tape, tape to disk, and tape to tape) are
supported.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA::ObjectInstanceDescriptor &source,
IN const DIVA::ObjectInstanceDescriptor &target,

Use and Operations
Requests and Commands

45

C++ API Programmer’s Guide

IN const DIVA::RequestAttributes &attrs,
IN DIVA STRING options,
OUT int *requestNumber
);

source
The description of the Virtual Object or Virtual Object instance to be copied:

source.objectName
The Source Server Virtual Object name (required).

source.objectCollection
The Source Server Virtual Object Collection (required).

source.group
The Source Server Virtual Object instance tape group or disk array. This is optional,
however if specified DIVA Core will use this instance as the Source Server.

source.instanceID
The Instance ID of the Source Server Virtual Object instance. This is optional, how-
ever if specified and not equal to DIVA_ANY_INSTANCE, DIVA Core will use this
instance as the Source Server. The source.group parameter will be ignored if
source.instanceID is specified.

If both source.group and source.instanceID are omitted, DIVA Core will use the most
suitable instance (that provides the best performance) as a source.

target
The description of the target Virtual Object:

target.objectName
The target Virtual Object name (required).

target.objectCollection
The target Virtual Object Collection (required).

target.group
See the following paragraph.

target.instanceID
This call ignores this value.

Either the Virtual Object name or Collection (or both) must be different from name or
Collection of the Source Server Virtual Object. The request will fail if the target Virtual
Object already exists in DIVA Core.

Use and Operations
Requests and Commands

46

C++ API Programmer’s Guide

attrs
The request attributes:

attrs.priority
The request priority (optional). If this is not explicitly set the default value is used.
Possible values are zero (lowest) to one hundred (highest).

attrs.qos
QOS (Quality of Service) is not applicable to this request and this call ignores this
value.

attrs.comments
The target Virtual Object's comments (optional). If no value is specified the Source
Server Virtual Object's comments are inherited.

attrs.options
This request has no additional options and this call ignores this value.

requestNumber
The number identifying the request that is returned by DIVA Core.
DIVA_STATUS DIVA_copyToNewObject (
IN const DIVA_STRING &objectName,
IN const DIVA_STRING &objectCollection,
IN const DIVA_STRING &objectMedia,
IN int objectInstanceID,
IN const DIVA_STRING &newObjectName,
IN const DIVA_STRING &newObjectCollection,
IN const DIVA_STRING &newObjectInstanceMedia,
IN const DIVA_STRING &comments,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the Source Server Virtual Object.

objectCollection
The Collection of the Source Server Virtual Object.

objectMedia
The tape group or disk array of the Source Server Virtual Object instance (optional). If
specified (not empty), DIVA Core will use this instance as a Source Server. Complex
Virtual Objects can only be saved to AXF formatted media types.

Use and Operations
Requests and Commands

47

C++ API Programmer’s Guide

objectInstanceID
The Instance ID of the Source Server Virtual Object instance (optional). If specified and
not equal to DIVA_ANY_INSTANCE, DIVA Core will use this instance as the Source
Server. This call ignores the ObjectMedia parameter if an instanceID value is specified.

If both objectMedia and instanceID are not specified, DIVA Core will use the most
suitable instance (providing the best performance) as the Source Server.

newObjectName
The target Virtual Object name.

newObjectCollection
The target Virtual Object Collection. Either the Virtual Object name or Collection (or
both) must be different from name or Collection of the Source Server Virtual Object.

This request will fail if the target Virtual Object already exists in DIVA Core.

newObjectInstanceMedia
The tape group or disk array where the Virtual Object will be saved. The media may be
defined as follows:

Name (of the Tape Group or Array)
Provide the tape group or disk array name as defined in the configuration. The Vir-
tual Object is saved to the specified media and assigned to the default SP (Storage
Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The Virtual
Object will be saved to the default media specified in the Storage Plan and
assigned to the specified Storage Plan.

Both of the above (Name and SP Name)
The Virtual Object is saved to the specified media as in Name above. The Virtual
Object is assigned to the specified SP as in SP Name above. The Name and the SP
Name must be separated by the & delimiter (this is configurable).

comments
Optional information describing the target Virtual Object. If left empty the Source
Server Virtual Object comments are inherited.

priorityLevel
Level of priority for this request. The possible values can be in the range zero to one
hundred, and the DIVA_DEFAULT_REQUEST_PRIORITY (use default request priority).

Use and Operations
Requests and Commands

48

C++ API Programmer’s Guide

options
Optional string attribute for specifying additional parameters to the request.

requestNumber
The request number assigned to this request by DIVA Core.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This
variable is set in the manager.conf configuration file. The default value is three hundred.

Use and Operations
Requests and Commands

49

C++ API Programmer’s Guide

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
No available instance for this Virtual Object. Tape instances are ejected and no Actor
could provide a disk instance.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this Virtual Object is ejected, or the Actor owning
the specified disk instance is not available.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified Tape Group does not exist.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

Also see DIVA_copyToGroup and DIVA_copy.

DIVA_deleteGroup
Deletes the Tape Group passed as an argument. You can only delete a Tape Group
when the Tape Group is empty.

Synopsis
#include “DIVAapi.h”

IN DIVA_STRING groupName
DIVA_STATUS DIVA_deleteGroup (
);

Use and Operations
Requests and Commands

50

C++ API Programmer’s Guide

groupName
The name of the Tape Group to be deleted.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h.

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_GROUP_DOESNT_EXIST
The specified Tape Group does not exist.

DIVA_ERR_GROUP_IN_USE
The Tape Group contains at least one Virtual Object currently in use (being archived,
restored, deleted, and so on).

Use and Operations
Requests and Commands

51

C++ API Programmer’s Guide

DIVA_deleteInstance
Deletes a Virtual Object instance.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

DIVA_STATUS DIVA_deleteInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN DIVA_STRING mediaName,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the Virtual Object to be deleted.

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string, however this may result in an error if several Virtual Objects have the
same name.

instanceID
The instance's identifier

mediaName
Defines the media that contains the valid instance. If the instanceId is -1, the instance
on the media will be deleted. If the media contains 2 or more instances, only one of the
instances will be deleted.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred is the highest priority.

There are six predefined values as follows:

Use and Operations
Requests and Commands

52

C++ API Programmer’s Guide

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

53

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This
variable is set in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_SEVERAL _OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The specified instance does not exist.

DIVA_ERR_LAST_INSTANCE
DIVA_deleteObject() must be used to delete the last instance of an Virtual Object.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

See also DIVA_getObjectInfo.

DIVA_deleteObject
Submits an Virtual Object Delete Request to the Core Manager. The Core Manager
deletes every instance of the Virtual Object. This function returns as soon as the Core
Manager accepts the request. To check that the operation was successful the
application must call the function DIVA_getRequestInfo().

Use and Operations
Requests and Commands

54

C++ API Programmer’s Guide

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_deleteObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN int priorityLevel,
IN DIVA_STRING options,
OUT int *requestNumber
);

objectName
The name of the Virtual Object to be deleted.

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string, however this may result in an error if several Virtual Objects have the
same name.

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

options
An optional string attribute for specifying additional parameters to the request.

requestNumber
A number identifying the request.

Use and Operations
Requests and Commands

55

C++ API Programmer’s Guide

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This
variable is set in the manager.conf configuration file. The default value is three
hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

Use and Operations
Requests and Commands

56

C++ API Programmer’s Guide

DIVA_ERR_SEVERAL _OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being archived, restored, deleted, and so on).

DIVA_ERR_OBJECT_BEING_ARCHIVED
The specified Virtual Object does not exist in the DIVA Core database, but it is currently
being archived.

See also DIVA_getRequestInfo and DIVA_deleteInstance.

DIVA_ejectTape
Submits an Eject Request to DIVA Core. The request completes when the specified
tapes are outside of the Managed Storage.

If at least one of the tapes does not exist, is already ejected, or currently in use by
another request, the DIVA_ERR_INVALID_PARAMETER status code is returned and no
tapes are ejected.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_ejectTape (
IN vector<DIVA_STRING> *vsnList,
IN bool release
IN DIVA_STRING comment,
IN int priorityLevel,
OUT int *requestNumber
);

vsnList
List of VSNs for identifying the tapes to be ejected.

release
When true, perform a DIVA_release() on every instance located on the successfully
ejected tapes.

comment
Externalization comment.

Use and Operations
Requests and Commands

57

C++ API Programmer’s Guide

priorityLevel
The level of priority for this request. The priorityLevel can be in the range zero to one
hundred or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred is the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

requestNumber
The number identifying the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

58

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager, or at least one of the
barcodes refers to a bad tape (that is, an unknown tape, offline tape, or tape in use).

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests has reached the maximum allowed value. This
variable is set in the manager.conf configuration file. The default value is three hundred.

See also DIVA_insertTape.

DIVA_enable_Automatic_Repack
Enable or disable the automatic repack scheduling in the Core Manager.

When the automatic repack scheduling is enabled, the schedule defined in the System
Management App is applied and tapes belonging to Tape Groups for which repack is
allowed can be repacked according to the other automatic repack settings.

When the automatic repack scheduling is disabled, all running automatic repack
requests might be canceled (or not, according to other automatic repack settings), and
no other automatic repack requests will be started until the automatic repack
scheduling is turned on again (either from this API or from the System Management
App).

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_enableAutomaticRepack (
IN bool enable
);

enable
Set true to enable automatic repack scheduling, false to disable.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h.

Use and Operations
Requests and Commands

59

C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_getArchiveSystemInfo
Retrieves general information about the DIVA Core system.

A DIVA Core system communicates with a Robotic System composed of one or more
independent ACSs (Automated Cartridge Systems). An ACS is composed of one or more
LSMs (Managed Storage Modules) that can exchange tapes through a PTP (Pass
Through Port). Each tape drive is located in a LSM.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getArchiveSystemInfo (
IN string options;
OUT DIVA_GENERAL_INFO *info
);

Use and Operations
Requests and Commands

60

C++ API Programmer’s Guide

info
Pointer to a DIVA_GENERAL_INFO structure that will be modified to include
information about the DIVA Core system.
typedef enum {
DIVA_IS_ON = 0,
DIVA_IS_OFF,
DIVA_GLOBAL_STATE_IS_UNKNOWN
} DIVA_GLOBAL_STATE;

typedef enum {
DIVA_LIBRARY_OK = 0,
DIVA_LIBRARY_OUT_OF_ORDER,
DIVA_LIBRARY_STATE_UNKNOWN
} DIVA_LIBRARY_STATE;

class DIVA_ACTOR_AND_DRIVES_DESC {
public:
string actorName;
string actorAddress;
bool actorIsAvailable;
vector<string> *connectedDrives;
bool repackEnabled;
bool classicEnabled;
bool cacheArchiveEnabled;
bool directArchiveEnabled;
bool cacheRestoreEnabled;
bool directRestoreEnabled;
bool deleteEnabled;
bool copyToGroupEnabled;
bool associativeCopyEnabled;
int cacheForRepack;
};
class DIVA_LSM_DESC {

public:
string lsmName;
int lsmID;
bool lsmIsAvailable;
};

class DIVA_DRIVE_DESC {
public:
string driveName;
int driveTypeID;
string driveType;
int lsmID;
bool driveIsAvailable;
bool repackEnabled;
bool classicEnabled;
};

class DIVA_GENERAL_INFO {
public:
DIVA_GLOBAL_STATE status;
DIVA_LIBRARY_STATE lib_status;

Use and Operations
Requests and Commands

61

C++ API Programmer’s Guide

int totalNumberOfObjects;
vector<DIVA_ACTOR_AND_DRIVES_DESC> *actorsDrivesList;
vector<DIVA_LSM_DESC> *lsmList;
vector<DIVA_DRIVE_DESC> *drivesList;
int numberOfBlankTapes;
long remainSizeOnTapes;
long totalSizeOnTapes;
int capSize;
vector<int> *pendingRequests;
vector<int> *currentRequests;
int numOfAvailableActors
int numOfAvailableDrives
int numOfAvailableDisks
string siteName
string siteIpAddress
int sitePort
int firstUsedRequestId
int lastUsedRequestId
};

The following parameters are listed in the order they appear in the preceding code
example. Therefore there may be duplicates because the same parameter is used in
different places in the code to represent different items.

actorName
The name of the Actor.

actorAddress
The Actor IP address.

actorIsAvailable
Determines if the Actor is available.

connectedDrives
Identifies the connected drives.

repackEnabled
This is true if Repack is enabled.

classicEnabled
This parameter is maintained for compatibility purposes only. This is only true if all
seven standard operations are enabled.

Use and Operations
Requests and Commands

62

C++ API Programmer’s Guide

cacheArchiveEnabled
This is true if Cached Archive is enabled.

directArchiveEnabled
This is true if Direct Archive is enabled.

cacheRestoreEnabled
This is true if Cached Restore is enabled.

directRestoreEnabled
This is true if Direct Restore is enabled.

deleteEnabled
This is true if Delete is enabled.

copyToGroupEnabled
This is true if Copy To Group is enabled.

associativeCopyEnabled
This is true if Associative Copy is enabled.

cacheForRepack
This is true if Cached Repack is enabled.

lsmName
User-friendly Managed Storage Module name.

lsmID
This is the unique LSM ID.

lsmIsAvailable
This is true if the LSM identified by the preceding lsmID parameter is available for DIVA
Core.

driveName
This is the Drive Name.

Use and Operations
Requests and Commands

63

C++ API Programmer’s Guide

driveTypeID
This is the Drive Type ID.

driveType
This is the Drive Type Name.

lsmID
This is the ID of the LSM containing the drive. See lsmList.

driveIsAvailable
This is true if the identified drive is available for DIVA Core.

status
The status of DIVA Core.

lib_status
This is ok if at least one ACS is online. See lsmList.

totalNumberOfObjects
The number of Virtual Objects managed by this DIVA Core system.

actorsDrivesList
<DIVA_ACTOR_AND_DRIVES_DESC>

lsmList
<DIVA_LSM_DESC>

drivesList
<DIVA_DRIVE_DESC>

numberOfBlankTapes
The number of blank tapes in a Set associated with at least one Tape Group. Tape(s)
may be externalized or write disabled.

remainSizeOnTapes
The sum of the remaining size of tapes (in gigabytes) that are online, in a Set associated
with at least one Tape Group in an ACS where DIVA Core has a drive that is writable, and

Use and Operations
Requests and Commands

64

C++ API Programmer’s Guide

the remaining size on disks accepting permanent storage. Only disks that are currently
visible are used in the calculation.

Remaining_Size_of_Online_Tapes +
Remaining_Size_of_Disks_Accepting_Permanent_Storage

totalSizeOnTapes
The sum of the total size of all tapes (in gigabytes) in a Set associated with at least one
Tape Group available for DIVA Core, and of the total size of all disks accepting storage.
Only disks that are currently visible are used in the calculation.

Total_Size_of_all_Available_Tapes + Total_Size_of_all_Disks_Accepting_Storage

capSize
The number of slots in the default CAP.

pendingRequests
The number of pending requests.

currentRequests
The number of current requests.

numOfAvailableActors
The number of currently running Actors.

numOfAvailableDrives
The number of drives currently in online status.

numOfAvailableDisks
The number of disks currently in online status.

siteName
The name of the main site as entered in the System Management App.

siteIpAddress
The Core Manager IP Address.

sitePort
The port number where the Core Manager is listening.

Use and Operations
Requests and Commands

65

C++ API Programmer’s Guide

firstUsedRequestId
The first request ID used by the current Core Manager session. This value is -1 if no
requests were processed.

lastUsedRequestId
The last request ID used by the current Core Manager session. This value is -1 if no
requests were processed.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

Use and Operations
Requests and Commands

66

C++ API Programmer’s Guide

DIVA_getArrayList
The purpose of this function is to provide a list of arrays and disks associated with the
arrays in the DIVA Core system. It also returns arrays without any disks associated with
them. In DIVA Core 8.2 and later the Source Media Priority and storage options are
reported in the returned data from this call.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getArrayList (
IN string options;
OUT vector<DIVA_ARRAY_DESC> *&arraysInfo
);

arraysInfo
A pointer to a list of DIVA_ARRAY_DESC structures.
#ifndef WIN32
typedef long long __int64;
#endif

typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ARRAY_DESC {
public:
DIVA_STRING arrayDesc;
DIVA_STRING arrayName;
int number_Of_Disk;
int mediaFormatId;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (deprecated)
vector<DIVA_DISK_ARRAY> *arrayDiskList;
DIVA_STRING storageOptions
};

typedef enum {
DIVA_DISK_STATUS_UNKNOWN = 0,
DIVA_DISK_STATUS_ONLINE,
DIVA_DISK_STATUS_OFFLINE,
DIVA_DISK_STATUS_NOT_VISIBLE
} DIVA_DISK_STATUS;

class DIVA_DISK_ARRAY {
public:
__int64 disk_CurrentRemainingSize;
bool disk_isWritable;
__int64 disk_maxThroughput;
__int64 disk_minFreeSpace;
DIVA_STRING disk_name;
DIVA_STRING disk_site;

Use and Operations
Requests and Commands

67

C++ API Programmer’s Guide

DIVA_DISK_STATUS disk_status;
__int64 disk_total_size;
__int64 consumedSize;
DIVA_STRING disk_array_name;
};

arrayDesc
The description of the array.

arrayName
The name of the array.

numberOfDisk
The number of disks in the array.

mediaFormatId
The format of the data on disks in this array. The value can be
DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or
DIVA_MEDIA_FORMAT_AXF_10. See information on media formats in the Glossary.

storageOptions
The Storage Class and Storage Location. Formatted as follows:

• oracle_storage_class=[NONE|ARCHIVE|STANDARD]

• storage_location=[LOCAL|OPC|OCI]

arrayDiskList
A list of the disks in an array.

DIVA_DISK_STATUS_UNKNOWN = 0
The disk status is unknown.

DIVA_DISK_STATUS_ONLINE
The disk status is online.

DIVA_DISK_STATUS_OFFLINE
The disk status is offline.

DIVA_DISK_STATUS_NOT_VISIBLE
The disk status is not visible.

Use and Operations
Requests and Commands

68

C++ API Programmer’s Guide

disk_CurrentRemainingSize
The current remaining disk size.

disk_consumedSize
The current consumed size on disk in kilobytes. Useful for unlimited cloud disks to
determine the space consumed on the disk.

disk_isWritable
This flag checks to see whether the disk is writable.

disk_maxThroughput
The maximum throughput of a disk.

disk_minFreeSpace
The minimum free space available on a disk.

disk_name
The name of the disk.

disk_site
The name of the site where the disk is located.

disk_status
The current disk status.

disk_total_size
The total size of the disk.

disk_array_name
The name of the array containing the disk.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

Use and Operations
Requests and Commands

69

C++ API Programmer’s Guide

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_getFinishedRequestList
Get all of the finished requests starting from the specified number of seconds before
the present. Finished requests are requests that have completed normally or were
terminated.

Use this function as follows:

If the list of requests to be processed is greater than the batch size, make successive
calls to this function. The first time the function is called, set initialTime to the desired
number of seconds earlier, where the list is to start. The maximum is three days. For
successive calls set initialTime to zero and set the uniqueId to the value returned by the
previous call. The returned list will be empty after all of the requests have been
returned.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getFinishedRequestList (
IN int batchSize,
IN int initialTime,
IN DIVA_STRING uniqueId,
OUT DIVA_FINISHED_REQUEST_INFO *pFinishedRequestInfo
);

Use and Operations
Requests and Commands

70

C++ API Programmer’s Guide

batchSize
The maximum size of the returned list of Virtual Objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and may
be overridden by the underlying functionality. This parameter should not be used to
guarantee that the list will be a certain size.

initialTime
The first time the function is called this value defines how far back in time to go to look
for finished requests. Requests that have finished between this time and the present
will be retrieved. The valid range for this parameter is 1 to 259200 (three days). If the
number of requests to be returned is greater than the batch size, the call is repeated.
For these calls this parameter should be set to zero (0).

uniqueId
The first time the function is called this value must be set to an empty string (_T("")). Do
not set this parameter to NULL. If the number of request to be returned is greater than
the batch size, the call is repeated. For these calls this value should be set to the
uniqueId as found in DIVA_FINISHED_REQUEST_INFO that was returned by the
previous call.

pFinishedRequestInfo
This is a pointer to the returned data. See the description of
DIVA_FINISHED_REQUEST_INFO later in this section. It is the user's responsibility to
allocate and delete instances of this class.
class DIVA_FINISHED_REQUEST_INFO {
public:
DIVA_STRING uniqueId;
vector<DIVA_REQUEST_INFO> *pRequestList;
};

uniqueId
After the first (and any subsequent) call, the API libraries update this variable with the
current position in the search. Use this value as the input parameter to subsequent
calls.

pRequestList
This is a pointer to the returned data. See the description of DIVA_REQUEST_INFO
under the description of DIVA_getRequestInfo.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

Use and Operations
Requests and Commands

71

C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_getFilesAndFolders
Retrieves the names of the files and folders for the specified Virtual Object from DIVA
Core. This function is included to support complex Virtual Objects, but is valid for any
Virtual Object.

You set the startIndex to zero to get all of the file and folder names for a Virtual Object.
A list of names of the specified size is returned. You then set startIndex to the value of
nextStartIndex and again make the function call. Continue this process until the return
value equals DIVA_WARN_NO_MORE_OBJECTS.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getFilesAndFolders (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN int listType,
IN int startIndex,
IN int batchSize,

Use and Operations
Requests and Commands

72

C++ API Programmer’s Guide

IN DIVA String options,
OUT DIVA_FILES_AND_FOLDERS *pFilesAndFolders
);

objectName
The name of the Virtual Object to be queried.

objectCollection
The Collection assigned to the Virtual Object when it was archived.

listType
Specifies what the returned list will include. See the definition of
DIVA_FILE_FOLDER_LIST_TYPE later in this section.

startIndex
The position in the list to start this iteration. Set at one (1) to start at the beginning.
Values less than one are not valid. Set startIndex equal to nextStartIndex as returned in
DIVA_FILES_AND_FOLDERS for all subsequent calls.

batchSize
The maximum size of the returned list of Virtual Objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and may
be overridden by the underlying functionality. This parameter should not be used to
guarantee that the list will be a certain size.

options
Field for optional getFilesAndFolders parameters.

pFilesAndFolders
This is a pointer to the returned data. See the description of DIVA_FILES_AND_FOLDERS
later in this section. It is the responsibility of the user to allocate and delete instances of
this class.
Typedef enum {
 DIVA_LIST_TYPE_FILES_ONLY = 0,
 DIVA_LIST_TYPE_FOLDERS_ONLY = 1,
 DIVA_LIST_TYPE_FILES_AND_FOLDERS = 2
} DIVA_FILE_FOLDER_LIST_TYPE;

DIVA_LIST_TYPE_FILES_ONLY
This function will return files and symbolic links.

Use and Operations
Requests and Commands

73

C++ API Programmer’s Guide

DIVA_LIST_TYPE_FOLDERS_ONLY
This function will return folders only.

DIVA_LIST_TYPE_FILES_AND_FOLDERS
This function will return files and folders and symbolic links.
class DIVA_FILES_AND_FOLDERS {
public:
DIVA_OBJECT_SUMMARY objectSummary;
bool isComplex;
int nextStartIndex;
DIVA String siteName;
vector<DIVA_FILE_FOLDER_INFO> *pFileFolderList;
};

objectSummary
The ID of the Virtual Object. See the description later in this section.

isComplex
This is true when the Virtual Object is a complex Virtual Object.

nextStartIndex
After the first and any subsequent call, the API libraries update this variable with the
current position in the search. Use this value as the input parameter for subsequent
calls.

siteName
This contains the site name of the Core Manager that satisfied the request.

pFileFolderList
This is a pointer to the list of files and folders. See the description of
DIVA_FILE_FOLDER_INFO later in this section.
class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCollection;
};

objectName
This is the name of the Virtual Object.

Use and Operations
Requests and Commands

74

C++ API Programmer’s Guide

objectCollection
This is the Collection of the Virtual Object.
class DIVA_FILE_FOLDER_INFO {
public:
DIVA_STRING fileOrFolderName;
bool isDirectory;
bool isSymbolicLink;
__int64 sizeBytes;
int fileId;
int totalNumFilesFolders;
__int64 totalSizeFilesFolders;
vector<DIVA_CHECKSUM_INFO> pChecksumInfoList;
};

fileOrFolderName
The name of the file or folder.

isDirectory
This is true if the component is a directory.

isSymbolicLink
This is true if the component is a symbolic link.

sizeBytes
The size of the file in bytes. This is valid only for files.

fileId
This is a unique ID for each file created by DIVA Core as part of the processing of this
command.

totalNumFilesFolders
The number of files and sub folders. This is valid only for folders in a complex Virtual
Object.

totalSizeFilesFolders
The total size of all files, including files in sub folders. This is valid only for folders in a
complex Virtual Object.

pChecksumInfoList
This is a pointer to a list of checksums for a file. Directories will not contain checksums.
It is also possible that some files in the archive will not contain checksum information.
See the description later in this section.

Use and Operations
Requests and Commands

75

C++ API Programmer’s Guide

class DIVA_CHECKSUM_INFO {
public:
DIVA_STRING checksumType;
DIVA_STRING checksumValue;
bool isGenuine;
};

checksumType
The type of checksum (MD5, SHA1, and so on).

checksumValue
The value of the checksum in hexadecimal string format.

isGenuine
This is true if this checksum was provided at the time of archiving and verified as a
Genuine Checksum.

Return Values
The API includes the following return values for this call:

• The file list contains empty files for non-complex Virtual Objects.

• The folders list contains all folders in a non-complex Virtual Object.

• Both the Folders Only and Files and Folders options are available for use with non-
complex Virtual Objects.

One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

Use and Operations
Requests and Commands

76

C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_WARN_NO_MORE_OBJECTS
The end of the list was reached during the call.

DIVA_getGroupsList
Returns the description of all Tape Groups. In DIVA Core 8.2 and later the Source Media
Priority is reported in the returned data from this call.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getGroupsList (
OUT vector<DIVA_GROUP_DESC> *&groups
);

groups
This is a pointer to a list of DIVA_GROUP_DESC structures.
class DIVA_GROUP_DESC {
public:
string group_name;
string group_desc;
int mediaFormatId;
};

group_name
The configured name of the tape group.

group_desc
The description of the tape group.

Use and Operations
Requests and Commands

77

C++ API Programmer’s Guide

mediaFormatId
The format of the tapes added to this Tape Group. The value can be
DIVA_MEDIA_FORMAT_LEGACY, DIVA_MEDIA_FORMAT_AXF, or
DIVA_MEDIA_FORMAT_AXF_10. See information on media formats in the Glossary.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

See also DIVA_getObjectInfo.

DIVA_getObjectDetailsList
The DIVA_getObjectDetailsList is an API call to retrieve Virtual Object information from
the DIVA Core database. Only the latest state of the Virtual Object is returned. Virtual
Objects may be repeated across batches if the Virtual Object is modified multiple times
as the call advances (in time) from a user-specified time across Virtual Objects in the
DIVA Core database.

Use and Operations
Requests and Commands

78

C++ API Programmer’s Guide

• The created-since call retrieves all Virtual Objects created since a certain time.

• The deleted-since call retrieves all Virtual Objects deleted since a certain time.

• If starting from a user-specified time of zero, the modified-since call retrieves all Vir-
tual Objects created since a certain time, and returns the state of the database from
a time of zero.

• If starting from a user-specified time greater than zero, the call returns all Virtual
Objects created and deleted since a certain time, and all Virtual Objects with newly
created and (or) deleted instances.

In DIVA Core 8.2 and later storage options (at the instance level) are reported in the
returned data from this call.

The listPosition vector returned by a GetObjectDetailsList call must be passed in to a
subsequent call. Its content must not be altered by the user of the call.

Different detail levels can be specified (see the following Level of Detail Setting
information). Level 0 will be the fastest, while Level 3 will return all possible details.
Only the highest level of detail is supported. Using a lower level of detail will still return
all information for Virtual Objects.

The output can be structured using the DIVA_OBJECTS_LIST option, or through the
DIVA_TAPE_INFO_LIST option. The output structure type is configured by setting the
pListType parameter of the call.

The API client application should use the DIVA_OBJECTS_LIST setting in the following
cases:

• To retrieve a list of Virtual Objects instances added to DIVA Core.

• To retrieve a list of Virtual Objects instances deleted from DIVA Core.

• To retrieve a combined list of all changes in the DIVA Core Virtual Object database
(adding and deleting Virtual Objects, adding and deleting instances)

• To continuously monitor the DIVA Core system to retrieve events of adding and
deleting Virtual Objects, and adding and deleting instances.

The API client application should use the DIVA_TAPE_INFO_LIST setting to retrieve a list
of tape instances for any instances added, deleted, repacked, ejected, or inserted.

Note: The DIVA_TAPE_INFO_LIST will not return any results for deleted instances if all
Virtual Objects are deleted.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getObjectDetailsList (
IN bool fFirstTime,
IN time_t *initialTime,
IN int pListType,
IN int pObjectsListType,
IN int pMaxListSize,

Use and Operations
Requests and Commands

79

C++ API Programmer’s Guide

IN DIVA_STRING pObjectName,
IN DIVA_STRING pObjectCollection,
IN DIVA_STRING pMediaName,
DIVA_LEVEL_OF_DETAIL pLevelOfDetail,
IN vector<DIVA_STRING> listPosition,
OUT vector<DIVA_OBJECT_DETAILS_LIST> *&pObjectDetailsList
);

fFirstTime
The first time this function is called this parameter must be set to true. Every
subsequent call should be set to false and listPosition must be copied from the
listPosition value returned by the previous call to DIVA_GetObjectDetailsList.

intialTime
The start time of the list. Data is collected and returned corresponding to this time and
later. To retrieve all items in the database, use zero as the start time value.

pListType
One of the codes defined by the enumeration DIVA_LIST_TYPE.

pObjectsListType
One of the codes defined by the enumeration DIVA_OBJECTS_LIST_TYPE.

To retrieve all Virtual Objects created, deleted, or modified since a certain time, set this
to DIVA_OBJECTS_CREATED_SINCE, DIVA_OBJECTS_DELETED_SINCE, or
DIVA_OBJECTS_MODIFIED_SINCE, respectively.

To retrieve tape related information for all Virtual Objects that have been created,
deleted, repacked, ejected, and (or) inserted since a certain time, set this parameter to
DIVA_INSTANCE_CREATED, DIVA_INSTANCE_DELETED, DIVA_INSTANCE_REPACKED,
DIVA_INSTANCE_EJECTED, DIVA_INSTANCE_INSERTED, respectively.

To retrieve any combination of the above, use the pipe operator. For example, to
retrieve tape information for Virtual Objects with tape instances that have been created
and repacked since a certain time, use DIVA_INSTANCE_CREATED |
DIVA_INSTANCE_REPACKED.

pMaxListSize
The maximum size of the returned list of Virtual Objects. This must be set to a value no
greater than 1000; the recommended setting is 500. This is only a suggestion and may
be overridden by the underlying functionality. This parameter should not be used to
guarantee that the list will be a certain size.

Use and Operations
Requests and Commands

80

C++ API Programmer’s Guide

pObjectCollection
Filter the returned list of Virtual Objects based on the provided Virtual Object
Collection. The asterisk wildcard can be used (for example, *video).

pMediaName
Filter the returned list of Virtual Objects based on the provided media name. The
asterisk wildcard can be used (for example, soap*).

pLevelOfDetail
One of the codes defined by the enumeration DIVA_LEVEL_OF_DETAIL. Filtering by
Virtual Object name, Collection, and Tape Group (media name) is performed at all levels
of detail.

The DIVA_OBJECTS_CREATED_SINCE and DIVA_OBJECTS_MODIFIED_SINCE options
work with all levels of detail.

The DIVA_OBJECTS_DELETED_SINCE option only works with the
DIVA_OBJECTNAME_AND_COLLECTION level of detail.

The DIVA_TAPE_INFO_LIST only works with the
DIVA_OBJECTNAME_AND_COLLECTION and DIVA_INSTANCE level of detail.

listPosition
A vector of DIVA_STRING type. The elements of this list are for internal use only and do
not need to be extracted by the user.

When pFirstTime is true, a new empty list must be constructed and included.

When pFirstTime is false, listPosition must be updated with the listPosition attribute of
pObjectDetailsList since this attribute points to the last Virtual Object retrieved by the
last call of DIVA_getObjectDetailsList.

pObjectDetailsList
This is a pointer to the DIVA_OBJECT_DETAILS_LIST class. This is the output parameter
that will contain the response to the call.

Use the listPosition parameter from this response as the listPosition argument in
subsequent calls to GetObjectDetailsList.

For pListType = DIVA_OBJECTS_LIST, all of the Virtual Object and (or) instance
information is stored in the objectInfo attribute.

For pListType = DIVA_TAPE_INFO_LIST, all Virtual Object and tape information is stored
in the objectTapeInfo attribute.
typedef enum {

DIVA_OBJECTNAME_AND_Collection = 0,
DIVA_MISC = 1,

Use and Operations
Requests and Commands

81

C++ API Programmer’s Guide

DIVA_COMPONENT = 2,
DIVA_INSTANCE = 3
} DIVA_LEVEL_OF_DETAIL;

DIVA_OBJECTNAME_AND_COLLECTION (0)
The getObjectDetailsList function will only return the Virtual Object name and
Collection.

DIVA_MISC (1)
The getObjectDetailsList function will return the comments, archive date, name and
path on the source, and all data returned with the
DIVA_OBJECTNAME_AND_COLLECTION level of detail.

DIVA_COMPONENT (2)
The getObjectDetailsList function will return the size of the Virtual Object, list of
components value, and all data returned with the DIVA_MISC level of details.

DIVA_INSTANCE (3)
The getObjectDetailsList function will return all instance information, repack state,
related active request information data, and all data returned with the
DIVA_COMPONENT level of detail.
typedef enum {

DIVA_OBJECTS_LIST = 1,
DIVA_TAPE_INFO_LIST = 2
} DIVA_LIST_TYPE;

DIVA_OBJECTS_LIST_TYPE is defined as follows:
typedef enum {

DIVA_OBJECTS_CREATED_SINCE = 0x0001,
DIVA_OBJECTS_DELETED_SINCE = 0x0002,
DIVA_OBJECTS_MODIFIED_SINCE = 0x0003,
DIVA_INSTANCE_NONE = 0x0000,
DIVA_INSTANCE_DELETED = 0x0020,
DIVA_INSTANCE_REPACKED = 0x0040,
DIVA_INSTANCE_EJECTED = 0x0080,
DIVA_INSTANCE_INSERTED = 0x0100
} DIVA_OBJECTS_LIST_TYPE;

class DIVA_OBJECT_DETAILS_LIST {
public:
int listType;
DIVA_STRING siteID;
vector<DIVA_STRING> *listPosition;
vector<DIVA_OBJECT_INFO> *objectInfo;
vector<DIVA_OBJECT_TAPE_INFO> *objectTapeInfo;
};

Use and Operations
Requests and Commands

82

C++ API Programmer’s Guide

listType
One of the codes defined by the enumeration DIVA_LIST_TYPE.

siteId
The DIVA Core system name as configured in manager.conf.

listPosition
After the first and any subsequent call, the API libraries update this variable with the
current position in the search. This Virtual Object must be provided as the input
parameter to any subsequent calls.

objectInfo
This is a pointer to a DIVA_OBJECT_INFO structure. The structure should be allocated
and deleted by the caller. The structure contains information about the Virtual Object
details, such as the list of components, tape instances, and other properties described
in API call getObjectInfo.

objectTapeInfo
This is a pointer to a list of DIVA_OBJECT_TAPE_INFO structures. The structure should
be allocated and deleted by the caller. The structure contains information about the
tapes containing instances of the Virtual Object and other properties described in API
call getObjectTapeInfo.
class DIVA_OBJECT_INFO {
public:
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_STRING uuid;
int lockStatus;
__int64 objectSize;
__int64 objectSizeBytes;
vector<string> *filesList;
string objectComments;
time_t archivingDate;
bool isInserted;
vector<DIVA_TAPE_INSTANCE_DESC> *tapeInstances;
vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances;
string objectSource;
string rootDirectory;
vector<int> *relatedRequests;
bool toBeRepacked;
int modifiedOrDeleted;
bool isComplex;
int nbFilesInComplexComponent;
int nbFoldersInComplexComponent;
};

Use and Operations
Requests and Commands

83

C++ API Programmer’s Guide

objectSummary
The Virtual Object name and Collection.

UUID
Universally Unique Identifier to uniquely identify each Virtual Object created in DIVA
Core across all Telestream customer sites. This does not include Virtual Objects created
using Copy As requests. A Virtual Object created through a Copy As request will contain
the same UUID as that of the Source Server Virtual Object.

lockStatus
This is the locking status of the Virtual Object. Virtual Objects in the archive can be
locked. When a Virtual Object is locked it cannot be restored or copied to a new name.
This feature prevents the use of a Virtual Object that has an expired copyright, and so
on. The Virtual Object is unlocked when this value is zero.

objectSize
This is the Virtual Object size in kilobytes.

objectSizeBytes
This is the Virtual Object size in bytes.

filesList
This is a list of the files in the Virtual Object. A single wrapper file name is returned for
complex Virtual Objects.

objectComments
This is the comments saved when the Virtual Object was archived.

archivingDate
Then number of seconds since January 1, 1970.

isInserted
This is true if at least one instance of this Virtual Object is either on a tape that is
currently inserted in the Managed Storage, or a disk that is online.

tapeInstances
This is a list of Virtual Object instances saved to tape.

Use and Operations
Requests and Commands

84

C++ API Programmer’s Guide

actorInstances
This is a list of Virtual Object instances saved to disk.

objectSource
The Source Server system used to archive the Virtual Object.

rootDirectory
The root directory containing the Virtual Object files on the objectsource.

relatedRequests
This is non-terminated requests.

toBeRepacked
This is false unless all instances are going to be repacked.

modifiedOrDeleted
One of DIVA_MODIFIED_OR_DELETED as follows:

UNDEFINED - The levelOfDetail does not equal DIVA_INSTANCE.

DIVA_CREATED_OR_MODIFIED - The Virtual Object was created, or an instance was
either added or removed.

DIVA_DELETED - The Virtual Object was removed.

isComplex
This is true if this is a complex Virtual Object.

nbFilesInComplexComponent
This is the number of files in the Virtual Object. This is used only for complex Virtual
Objects. The value is zero for non-complex Virtual Objects.

nbFoldersInComplexComponent
This is the number of folders in the Virtual Object. This is used only for complex Virtual
Objects. The value is zero for non-complex Virtual Objects.
class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCollection;
};

Use and Operations
Requests and Commands

85

C++ API Programmer’s Guide

objectName
This is the Virtual Object name.

objectCollection
This is the Virtual Object Collection.
class DIVA_TAPE_INSTANCE_DESC {
public:
int instanceID;
string groupName;
vector<DIVA_TAPE_DESC> *tapeDesc;
bool isInserted,
DIVA_REQUIRE_STATUS reqStatus;
};

instanceId
The numeric instance identifier.

groupName
The name of the Tape Group this tape is assigned to.

tapeDesc
Additional information about this tape.

isInserted
This is true if at least one instance of this Virtual Object is either on a tape that is
currently inserted in the Managed Storage, or a disk that is online.

reqStatus
Determines if the instance is Required or Released.

DIVA_REQUIRED - The instance is requested to be inserted into the Managed Storage.

DIVA_RELEASED - There is no need to have this instance present in the Managed
Storage.
class DIVA_TAPE_DESC {
public:
string vsn;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;
};

Use and Operations
Requests and Commands

86

C++ API Programmer’s Guide

vsn
The volume serial number (barcode).

isInserted
This is true if at least one instance of this Virtual Object is either on a tape that is
currently inserted in the Managed Storage or a disk that is online.

externalizedComment
Comment saved when the tape was exported.

isGoingToBeRepacked
This is false unless all instances are going to be repacked.

mediaFormatId
The format of the data on to be used. The value can be
DIVA_MEDIA_FORMAT_DEFAULT, DIVA_MEDIA_FORMAT_LEGACY,
DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10. This is only used when
the listType is Tape.
typedef enum {
DIVA_CLOUD_STORAGECLASS_NONE=0
 DIVA_CLOUD_STORAGECLASS_ARCHIVE,
 DIVA_CLOUD_STORAGECLASS_STANDARD
} DIVA_CLOUD_STORAGECLASS;

class DIVA_ACTOR_INSTANCE_DESC {
public:
int instanceID;
string actor;
DIVA_CLOUD_STORAGECLASS cloudStorageClass; (depreciated)
DIVA_STRING storageOptions;
};

instanceID
The numeric ID of the instance.

actor
This field reports the name of the disk array where the instance is stored instead of the
Actor name.
typedef enum {
DIVA_REQUIRED = 0,
DIVA_RELEASED
} DIVA_REQUIRE_STATUS;

typedef enum {

Use and Operations
Requests and Commands

87

C++ API Programmer’s Guide

DIVA_UNDEFINED = 0,
DIVA_CREATED_OR_MODIFIED,
DIVA_DELETED
} DIVA_MODIFIED_OR_DELETED;

Return Values
The file list of each Virtual Object in the Virtual Objects list now contains empty files
(that is, files of size 0 bytes). Client applications developed against API releases before
release 7.5 will receive empty files in the file list that accompanies a Details List
message. Depending on the input parameters, the DIVA_getObjectDetailsList function
will return values as described in the following table.

List Type
Virtual Object
List Type

Supported Detail
Level Return Value

DIVA_OBJECTS_LIST DIVA_OBJECTS_CR
EATED_SINCE

All List Virtual Objects that
have been created
since a specified time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_DE
LETED_SINCE

Only
DIVA_OBJECTNAME_AN
D_COLLECTION

List Virtual Objects that
have been deleted
since a specified time.

DIVA_OBJECTS_LIST DIVA_OBJECTS_M
ODIFIED_SINCE

Only DIVA_INSTANCE List Virtual Objects that
have been created/
deleted since a certain
time, plus Virtual
Objects with new or
deleted instances.
If the list of instances is
empty, Virtual Objects
were deleted.
If the list of instances is
not empty, Virtual
Objects were created
or updated.

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_N
ONE (0x0000)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances (no
filter).

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_C
REATED (0x0010)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances created
since a specified time.

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_D
ELETED (0x0020)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances deleted
since a specified time.

Use and Operations
Requests and Commands

88

C++ API Programmer’s Guide

Use with DIVA Connect
All filters are applied at an Virtual Object level as follows:

• If you request Virtual Objects satisfying certain filter constraints, those constraints
are applied to the Virtual Object and not to individual instances of a Virtual Object.

• If you specify a Virtual Object name and Collection filter, the list will be filtered to
contain only Virtual Objects satisfying the specified Virtual Object name and Collec-
tion.

Media name is defined at an instance level, not at a Virtual Object level. A media name
filter will only allow Virtual Objects with at least one instance satisfying the requested
media name filter.

Note: If an instance of a Virtual Object is created or deleted, and you request all
modified Virtual Objects with a particular media name, the Virtual Object will
be returned if and only if any instance of the Virtual Object satisfies the media
name filter.

Example:

A new instance Virtual Object-A was added at time 101 with the media name CAR.
Virtual Object-A has a total of two instances. One instance has the media name TRUCK
and the other has the media name CAR.

An instance of Virtual Object-B was removed at time 101 with the media name CAR.
Virtual Object-B has only one instance.

A new instance of Virtual Object-C was added at time 99 with the media name TRAIN.
Virtual Object-C has a total of two instances. One instance has the media name TRAIN
and the other has the media name HANG GLIDE.

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_R
EPACKED (0x0040)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances
repacked since a
specified time.

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_E
JECTED (0x0080)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances ejected
since a specified time.

DIVA_TAPE_INFO_LI
ST

DIVA_INSTANCE_I
NSERTED (0x0100)

Only
DIVA_OBJECTNAME_AN
D_COLLECTION and
DIVA_INSTANCE level.

List Virtual Objects and
tape information for all
tape instances inserted
since a specified time.

List Type
Virtual Object
List Type

Supported Detail
Level Return Value

Use and Operations
Requests and Commands

89

C++ API Programmer’s Guide

A user executes a getObjectDetailsList call with MODIFIED SINCE TIME 100 and MEDIA
NAME FILTER = T*.

The only Virtual Object that was modified since time 100, and has at least one instance
with a media name of T is Virtual Object-A. Therefore, the result is that the list returned
by the getObjectDetailsList call contains only Virtual Object-A.

Use and Recommended Practices
Telestream recommends that the API client application adhere to the following
sequence of actions:

1. Create a variable of DIVA_OBJECT_DETAILS_LIST type to store the Virtual Object
information returned by the call.

2. Create a variable of vector <DIVA_STRING> type to serve as the listPosition Virtual
Object. This will be used as the listPosition argument to DIVA_GetObjectDetailsList.

3. Create a variable of time_t type and set to the time at which the list is to start. Set
this to zero to include all Virtual Objects in the database.

4. Create a variable of Boolean type and set it to true to indicate that this is the first
call in a sequence of calls.

5. Create a variables of Integer type to hold the listType and objectsListType to specify
the type of call.

Example: Use DIVA_OBJECTS_LIST and DIVA_OBJECTS_MODIFIED_SINCE to indi-
cate that you want Virtual Object information for modified Virtual Objects.

6. Create a variable of Integer type to hold the suggested number of Virtual Objects
you want returned by the call.

7. Create list filtering variables of DIVA_CHAR[] type to hold the Virtual Object name,
Collection and media filters.

8. Create a variable of Integer type to hold the level of detail you want returned.

9. Execute DIVA_GetObjectDetailsList with the variables previously mentioned.

10. Use the data stored in the variable from Step 1 as needed by your application.

11. Copy the listPosition attribute of the call's output created in Step 1 into the
listPosition variable created in Step 2.

12. Repeat steps 8, 9, and 10 for until you no longer need to monitor DIVA Core.

13. All variables must be deallocated after exiting the loop.

Multiple simultaneous calls to DIVA_getObjectDetailsList are supported. However, this
call places a heavy demand on the database. Therefore simultaneous and (or) frequent
calls to this function should be avoided.

Continuous monitoring of DIVA Core requires a procedure similar to the one defined in
the section Recommended Practices for Continuous Updates Notification Design Pattern
(No Media Filter).

Duplication of Virtual Objects can occur across different return portions. It is important
to handle these cases by examining the data returned by the call. For a
MODIFIED_SINCE call, you must compare the instances of the duplicate Virtual Object

Use and Operations
Requests and Commands

90

C++ API Programmer’s Guide

returned by successive calls to identify whether new information about the Virtual
Object is available and update your local repository accordingly.

An empty list may be returned as a valid result. This indicates that there were no
changes to the system after the time specified in the last call. It is important to continue
querying DIVA Core with the DIVA_getObjectDetailsList call using the ID from the
previous call. However, the call frequency must be reduced after you receive an empty
list. This reduces the load on the DIVA Core database.

The same application can use the DIVA_getObjectDetailsList function effectively for
both the initial database synchronization (if the client application maintains a
database) and later use it for continuous monitoring after the database is updated.

During the initial database synchronization phase, it is necessary for the application to
make frequent sequential calls to synchronize the local database with the DIVA Core
database. The application must call DIVA_getObjectDetailsList, wait for a response, and
then repeat the process.

After the synchronization phase, it is necessary for the application to go into the
continuous monitoring phase, where it must make periodic calls to update the system
with the latest Virtual Object information. Telestream recommends a call interval of
once every several minutes. Continuous, frequent execution of this call can heavily
impact the database and degrade system performance.

The amount of data retrieved by the CREATED_SINCE and MODIFIED_SINCE call is
substantial (Virtual Object, instance, and component data for each Virtual Object).
Therefore, Telestream recommends that most applications use 500 as the maximum list
size setting.

Recommended Practices for Continuous Updates Notification
Design Pattern (No Media Filter)
The continuous updates notification design pattern is used in multiple applications,
and is important when using the API. The client application can use the internal
database to continuously update the local database information with changes in the
DIVA Core database. Following the design pattern helps develop the performance-
optimized updates notification workflow.

The application must submit the call with the objectListType set to MODIFIED_SINCE
with the level of detail required to collect instance-level information. Additionally, the
First Time flag must be set true, and all necessary filter parameters must be set (Virtual
Object name and Collection).

This is the process the application will follow:

1. The application receives a list of Virtual Objects and a new listPosition.

2. On the next cycle, the application will execute the call using the listPosition
obtained in Step 1 and the First Time flag set to false. It is acceptable to submit
another call immediately after receiving the list if the system is being used solely for
synchronization purposes. Otherwise, it is recommended to wait for a period
between calls to allow other requests to process.

Use and Operations
Requests and Commands

91

C++ API Programmer’s Guide

3. Repeat Steps 1 and 2 for the course of execution to keep the internal database
synchronized with DIVA Core database.

4. If none of the Virtual Objects in DIVA Core have been modified, the list will be
EMPTY, which indicates there were no updates since the last call. The application
should wait for a specific amount of time, and then retry.

The application must check the list of instances to see if the following occurred:

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals DELETED, Virtual
Objects were deleted and the database must be updated.

• The value of modifiedOrDeleted in the DIVA_OBJECT_INFO equals CREATED_OR_-
MODIFIED, the Virtual Object was either created or updated.

– If the Virtual Object previously existed in the database, the database list of
instances must be updated.

– If the Virtual Object does not exist in the database, it must be added to the
database.

Note: To ensure continuous updates, the listPosition Virtual Object should be
preserved throughout the course of operations.

Example:
MAIN:

CREATE LIST_POSITION VARIABLE
CREATE DETAILS_LIST VARIABLE
SET FIRST_TIME = TRUE
SET INITIAL_TIME = 0
SET LIST_TYPE = DIVA_OBJECTS_LIST
SET OBJECTS_LIST_TYPE = DIVA_OBJECTS_MODIFIED_SINCE
SET LEVEL_OF_DETAIL = DIVA_OBJECTS_MODIFIED_SINCE
SET SIZE = 500
SET OBJECT_NAME = “*”
SET COLLECTION = “*”
SET MEDIA_NAME = “*”
CALL GetObjectDetailsList(FIRST_TIME, LIST_TYPE,
OBJECTS_LIST_TYPE, LIST_POSITION, SIZE, INITIAL_TIME, OBJECT_NAME,
COLLECTION, MEDIA_NAME, LEVEL_OF_DETAIL, DETAILS_LIST)
// 1

UNIQUE_ID AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL // 2

CALL SYNC_OBJECTS // 6

START LOOP
 SET FIRST TIME = FALSE
 CALL GetObjectDetailsList(…) // 3
 LIST_POSITION AND DETAILS_LIST VARIABLES WERE UPDATED BY CALL
 CALL SYNC_OBJECTS // 6
END LOOP (TERMINATE AT END OF APPLICATION LIFE) // 4

SYNC_OBJECTS:
 IF (DETAILS_LIST IS NOT EMPTY) // 5

Use and Operations
Requests and Commands

92

C++ API Programmer’s Guide

 FOR(OBJECT IN DETAILS_LIST)
 IF (OBJECT.modifiedOrDeleted EQUALS DELETED)
 DELETE OBJECT FROM DATABASE // 6a
 ELSE
 IF (OBJECT.modifiedOrDeleted EQUALS CREATED_OR_MODIFIED)
 ADD OR UPDATE OBJECT TO DATABASE // 6b
 END IF
 END IF
 END FOR
 END IF

Return Values

One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_WARN_NO_MORE_OBJECTS
The end of the list was reached during the call.

Use and Operations
Requests and Commands

93

C++ API Programmer’s Guide

DIVA_getObjectInfo
Returns information about a particular Virtual Object in the DIVA Core system.

The vector<DIVA_ACTOR_INSTANCE_DESC> *actorInstances parameter is kept
unchanged for compatibility, although it is formally a vector of diskInstance and not
actorInstance.

The file list can contain empty files (that is, files of size 0 bytes). Client applications
developed against API releases before release 7.5 will also receive empty files in the file
list that accompanies an objectInfo message.

For compatibility reasons, the class DIVA_ACTOR_INSTANCE_DESC designates a disk
instance (not a Actor instance) and its string actor field now contains the array name
instead of a Actor name.

In DIVA Core 8.2 and later storage options (at the instance level) are reported in the
returned data from this call.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getObjectInfo (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN DIVA_STRING options,
OUT DIVA_OBJECT_INFO *objectInfo
);

objectName
The name of the queried Virtual Object.

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string, however this may result in an error if several Virtual Objects have the
same name.

options
Optional string attribute for specifying additional parameters to the request.

objectInfo
Pointer to a DIVA_OBJECT_INFO structure allocated and deleted by the caller. See
DIVA_getObjectDetailsList for a description of DIVA_OBJECT_INFO.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

Use and Operations
Requests and Commands

94

C++ API Programmer’s Guide

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core Database.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core Database.

See also DIVA_archiveObject, DIVA_restoreObject, and DIVA_deleteObject.

DIVA_getPartialRestoreRequestInfo
When processing the request DIVA_PartialRestoreObject(), and the format for the
offsets was specified as timecodes, the offsets that are actually used may differ
(somewhat) from what was specified in the request. Once the Partial File Restore
request is complete, you can use this command to obtain the actual offsets of the
restored files.

Use and Operations
Requests and Commands

95

C++ API Programmer’s Guide

This is a special purpose command that is valid only as follows:

• The request number to be queried must be a partial file restore request that has
been successfully completed.

• The format specified in the partial file restore request must be a timecode type. This
command is therefore not valid when the format of the request was folder-based or
DPX.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getPartialRestoreRequestInfo (
IN int requestNumber,
OUT vector <DIVA_OFFSET_SOURCE_DEST> *fileList
);

requestNumber
Identifies the completed Partial File Restore request to be queried.

fileList
List of the files of an Virtual Object that have been partially restored. Each structure
contains the Source Server file name, a vector of the offsets used for the transfer, and a
Destination Server file name. This vector must be similar to the vector provided to the
DIVA_partialRestoreObject() function in terms of files and offset pairs. This function is
provided to eventually detect that the actual offsets used for the transfer to the
Destination Server have been adapted based on the format of the data to transfer.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

Use and Operations
Requests and Commands

96

C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request.

DIVA_ERR_INVALID_PARAMETER
The requestNumber identifies no completed partial file restore request.

See also DIVA_partialRestoreObject and DIVA_getRequestInfo.

DIVA_getRequestInfo
Obtains information about an archive, restore, delete, or repack request.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getRequestInfo (
IN int requestNumber,
OUT DIVA_REQUEST_INFO *requestInfo
);

requestNumber
Identifies the queried request.

requestInfo
Pointer to a DIVA_REQUEST_INFO structure. This is allocated and deleted by the caller.
class DIVA_REQUEST_INFO {
public:
int requestNumber;
DIVA_REQUEST_TYPE requestType;
DIVA_REQUEST_TYPE
DIVA_REQUEST_STATE requestState;
DIVA_REQUEST_STATE
int progress;

Use and Operations
Requests and Commands

97

C++ API Programmer’s Guide

DIVA_ABORTION_REASON abortionReason;
DIVA_OBJECT_SUMMARY objectSummary;
DIVA_REPACK_TAPES_INFO repackTapes;
int currentPriority;
DIVA_STRING additionalInfo;
time_t submissiondate
time_t completiondate
};

requestNumber
The DIVA Core request number.

requestType
See the definition of DIVA_REQUEST_TYPE later in this section.

requestState
See the definition of DIVA_REQUEST_STATE later in this section.

progress
The progress of the request from zero to one hundred percent if the requestState is
DIVA_TRANSFERRING or DIVA_MIGRATING.

abortionReason
The reason the request was terminated if the requestState is DIVA_ABORTED, otherwise
this is zero.

objectSummary
See the definition of DIVA_OBJECT_SUMMARY later in this section.

repackTapes
Used if the requestType is REPACK.

additionalInfo
See Additional_Info later in this section for use of this field.

submissionDate
The date and time the request was submitted. This is UTC time in seconds (that is,
seconds since January 1, 1970).

Use and Operations
Requests and Commands

98

C++ API Programmer’s Guide

completionDate
The date and time the request completed. This is UTC time in seconds and will be -1 if
the request is still processing.
Typedef enum {
DIVA_ARCHIVE_REQUEST = 0,
DIVA_RESTORE_REQUEST,
DIVA_DELETE_REQUEST,
DIVA_EJECT_REQUEST,
DIVA_INSERT_REQUEST,
DIVA_COPY_REQUEST,
DIVA_COPY_TO_NEW_REQUEST,
DIVA_RESTORE_INSTANCE_REQUEST,
DIVA_DELETE_INSTANCE_REQUEST,
DIVA_UNKNOW_REQUEST_TYPE,
DIVA_AUTOMATIC_REPACK_REQUEST,
DIVA_ONDEMAND_RAPACK_REQUEST,
DIVA_ASSOC_COPY_REQUEST,
DIVA_PARTIAL_RESTORE_REQUEST,
DIVA_MULTIPLE_RESTORE_REQUEST,
DIVA_TRANSCODE_ARCHIVED_REQUEST,
DIVA_EXPORT_REQUEST,
DIVA_TRANSFER_REQUEST,
DIVA_AUTOMATIC_VERIFY_TAPES_REQUEST,
DIVA_MANUAL_VERIFY_TAPES_REQUEST,
} DIVA_REQUEST_TYPE ;

typedef enum {
DIVA_PENDING = 0,
DIVA_TRANSFERRING,
DIVA_MIGRATING,
DIVA_COMPLETED,
DIVA_ABORTED,
DIVA_CANCELLED,
DIVA_UNKNOWN_STATE,
DIVA_DELETING,
DIVA_WAITING_FOR_RESOURCES,
DIVA_WAITING_FOR_OPERATOR,
DIVA_ASSIGNING_POOL,
DIVA_PARTIALLY_ABORTED,
DIVA_RUNNING
} DIVA_REQUEST_STATE;

typedef enum {
DIVA_AR_NONE = 0,
DIVA_AR_DRIVE,
DIVA_AR_TAPE,
DIVA_AR_ACTOR,
DIVA_AR_DISK,
DIVA_AR_DISK_FULL,
DIVA_AR_SOURCE_DEST,
DIVA_AR_RESOURCES,
DIVA_AR_LIBRARY,
DIVA_AR_PARAMETERS,
DIVA_AR_UNKNOWN,
DIVA_AR_INTERNAL,

Use and Operations
Requests and Commands

99

C++ API Programmer’s Guide

DIVA_AR_SOURCE_DEST2
} DIVA_ABORTION_CODE;

DIVA_AR_NONE = 0
Request not terminated.

DIVA_AR_DRIVE
Drive trouble

DIVA_AR_TAPE
Tape trouble

DIVA_AR_ACTOR
Actor trouble

DIVA_AR_DISK
Disk trouble

DIVA_AR_DISK_FULL
The disk is full.

DIVA_AR_SOURCE_DEST
Server trouble

DIVA_AR_RESOURCES
Resource attribution trouble

DIVA_AR_LIBRARY
Managed Storage trouble

DIVA_AR_PARAMETERS
Incorrect request parameters

DIVA_AR_UNKNOWN
Unknown code

DIVA_AR_INTERNAL
Internal Core Manager error

Use and Operations
Requests and Commands

100

C++ API Programmer’s Guide

DIVA_AR_SOURCE_DEST2
This parameter has been deprecated but left intact for software compatibility.
class DIVA_ABORTION_REASON {
public:
DIVA_ABORTION_CODE code;
string description;
};

class DIVA_OBJECT_SUMMARY {
public:
string objectName;
string objectCollection ;
};

objectName
The name of the Virtual Object.

objectCollection
The Collection of the Virtual Object.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

101

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_NO_SUCH_REQUEST
The requestNumber identifies no request.

Additional_Info
The Additional_Info field of the DIVA_REQUEST_INFO structure can contain one or
more of the following depending on the request type:

MOB ID
MOB ID is a unique Virtual Object identifier generated and used by AVID software. The
API provides the interface to retrieve the MOB ID for third party vendors after restoring
archived Virtual Objects to Unity. The MOB ID is available in the additionalInfo field of
the DIVA_REQUEST_INFO structure. The MOB ID can be retrieved only when the Virtual
Object is restored to the AVID Unity system.

Example MOB ID:

060c2b34020511010104100013-000000-002e0815d552002b-060e2b347f7f-2a80

XML Document
Depending on the type of request the XML document may be empty, or it may contain
any combination of the following elements. See the schema
additionalInfoRequestInfo.xsd found in the program\Common\schemas folder of the
DIVA Core installation.

When the request was a Restore, N-Restore, Partial File Restore, Copy, or Copy To New
the list of media that contains the requested Virtual Object is provided as follows:
<ADDITIONAL_INFO xmls=”http://www.telestream.net/divacore/
additionalInfoRequestInfo/v1.0>” <Object>
 <Name>Object Name</Name>
 <Collection>Collection</Collection>
 <Instances>
 <DiskInstance>
 <Id>0</Id>
 <Disk>
 <MediaName>disk name</MediaName>
 </Disk>
 </DiskInstance>
 <TapeInstance>
 <Id>1</Id>
 <Tape>

Use and Operations
Requests and Commands

102

C++ API Programmer’s Guide

 <MediaName>barcode</MediaName>
 </Tape>
 </TapeInstance>
 </Instances>
 </Object>
</ADDITIONAL_INFO>

The following is included when the request was a Multiple Restore. If the restore is OK
for one of the Destination Servers, but NOT OK for another, the Request State Parameter
is DIVA_PARTIALLY_ABORTED and the Request Abortion Code is
DIVA_AR_SOURCE_DEST. The status of each Destination Server is as follows:
<ADDITIONAL_INFO xmls=”http://www.telestream.net/divacore/
additionalInfoRequestInfo/v1.0”>”
 <request id=”12345” type=”Restore”>
 <destination name=”destination name one” success=”true”/>
 <destination name=”destination name two” success=”false”/>
 </request>
</ADDITIONAL_INFO>

The ClipID is included when the request was for a restore to a Quantel device. An ISA
gateway never overwrites clips. A new ClipID is created for every imported clip. The
ClipID of the created clip will be supplied after the Transfer Complete message as
follows:

226 Transfer Complete. [new ClipID]

The Actor captures this new ClipID after the transfer and forwards it to the Core
Manager. To use the API, DIVA_GetRequestInfo must be called. If the request is
completed, the new ClipID will be in the Additional Request Information field as
follows:
<ADDITIONAL_INFO xmls=”http://www.telestream.net/divacore/
additionalInfoRequestInfo/v1.0”>”
 <ClipID>98765</ClipID>
</ADDITIONAL_INFO>

DIVA_getSourceDestinationList
This function returns a list of Source Servers present in a particular DIVA Core System.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS
DIVA_getSourceDestinationList (
IN string options;
OUT vector<DIVA_ACTOR_INSTANCE_DESC> *&arraysInfo
)

arraysInfo
Pointer to a list of DIVA_SOURCE_DESTINATION_LIST structures.

Use and Operations
Requests and Commands

103

C++ API Programmer’s Guide

#ifndef WIN32
typedef long long __int64;
#endif

typedef enum {
 DIVA_SOURCE_TYPE_UNKNOWN = 0,
 DIVA_SOURCE_TYPE_MSS,
 DIVA_SOURCE_TYPE_PDR,
 DIVA_SOURCE_TYPE_SEACHANGE_BMC,
 DIVA_SOURCE_TYPE_SEACHANGE_BML,
 DIVA_SOURCE_TYPE_SEACHANGE_FTP,
 DIVA_SOURCE_TYPE_LEITCH,
 DIVA_SOURCE_TYPE_FTP_STANDARD,
 DIVA_SOURCE_TYPE_SFTP,
 DIVA_SOURCE_TYPE_DISK,
 DIVA_SOURCE_TYPE_LOCAL,
 DIVA_SOURCE_TYPE_CIFS,
 DIVA_SOURCE_TYPE_SIMULATION,
 DIVA_SOURCE_TYPE_OMNEON,
 DIVA_SOURCE_TYPE_MEDIAGRID,
 DIVA_SOURCE_TYPE_AVID_DHM,
 DIVA_SOURCE_TYPE_AVID_DET,
 DIVA_SOURCE_TYPE_AVID_AMC,
 DIVA_SOURCE_TYPE_QUANTEL_ISA,
 DIVA_SOURCE_TYPE_QUANTEL_QCP,
 DIVA_SOURCE_TYPE_SONY_HYPER_AGENT,
 DIVA_SOURCE_TYPE_METASOURCE,
 DATA_SOURCE_TYPE_MOVIETOME,
 DATA_SOURCE_TYPE_EXPEDAT,
 DATA_SOURCE_TYPE_AVID_DIRECT
} DIVA_SOURCE_TYPE;

class DIVA_SOURCE_DESTINATION_LIST{
public:
 DIVA_STRING server_Address;
 DIVA_STRING server_ConnectOption;
 int server_MaxAccess;
 int server_MaxReadAccess;
 __int64 server_MaxThroughput;
 int server_MaxWriteAccess;
 DIVA_STRING server_Name;
 DIVA_STRING server_ProductionSystem;
 DIVA_STRING server_RootPath;
 DIVA_SOURCE_TYPE server_SourceType;
};

server_Address
The server IP address.

server_ConnectOption
The server connection options.

Use and Operations
Requests and Commands

104

C++ API Programmer’s Guide

server_MaxAccess
The server maximum number of accesses.

server_MaxReadAccess
The server maximum number of read accesses.

server_MaxThroughput
The server maximum throughput.

server_MaxWriteAccess
The server maximum write access.

server_Name
The server name.

Server_ProductionSystem
The server Network name.

server_RootPath
The server root path.

server_SourceType
The Source Server type.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

105

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_getStoragePlanList
This function returns the list of Storage Plan Names that are defined in the DIVA Core
system.

Synopsis
#include "DIVAapi.h"

DIVA_STATUS DIVA_getStoragePlanList (
IN string options;
OUT vector<DIVA_STRING> *&spList
);

spList
A pointer to a list of Storage Plan Names.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

106

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_getTapeInfo
Returns detailed information about a given tape identified by its barcode.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_getTapeInfo (
 IN DIVA_STRING barcode,
 OUT DIVA_DETAILED_TAPE_DESC *tapeInfo
);

barcode
The barcode of the tape for which information is to be returned.

tapeInfo
The returned information.
class DIVA_DETAILED_TAPE_DESC {
public:
string vsn;
int setID;
string group;
int typeID;
string type;
int fillingRatio;
int fragmentationRatio;
__int64 remainingSize;
__int64 totalSize;
bool isInserted;
string externalizationComment;
bool isGoingToBeRepacked;
int mediaFormatId;
};

setID
Tape Set ID

typeID
Tape Type ID

Use and Operations
Requests and Commands

107

C++ API Programmer’s Guide

type
Tape Type Name

fillingRatio
The tape filling ratio using the equation:

last_written_block / total_block_count.

fragmentationRatio
The tape fragmentation ration using the equation:

1 - (valid_blocks_count) / (last_written_block)

Valid blocks are blocks used for archived Virtual Objects not currently deleted.

mediaFormatId
The format of the data on to be used. The value can be
DIVA_MEDIA_FORMAT_DEFAULT, DIVA_MEDIA_FORMAT_LEGACY,
DIVA_MEDIA_FORMAT_AXF, or DIVA_MEDIA_FORMAT_AXF_10.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

Use and Operations
Requests and Commands

108

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_TAPE_DOESNT_EXIST
There is no tape associated with the given barcode.

DIVA_insertTape
Submits an Insert request to DIVA Core. This request completes when the operator has
entered the requested tapes into the Managed Storage. The application is responsible
for managing which tapes must be entered.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
OUT int *requestNumber
)

DIVA_STATUS DIVA_insertTape (
IN bool require,
IN int priorityLevel,
IN int acsId,
IN int capId,
OUT int *requestNumber
);

require
When true, perform a DIVA_require() on every instance located on the successfully
inserted tapes.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

Use and Operations
Requests and Commands

109

C++ API Programmer’s Guide

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

acsId (second form only)
The numeric ID of the ACS where the Insert operation must be executed.

When acsId = -1 (default used for the first form), the Insert attempt will be performed in
all known ACSs.

capId (second form only)
The numeric ID of the CAP from where tapes will be inserted.

When capId = -1 (default used for the first form), the Insert attempt will be performed in
the first available CAP in the specified ACS.

requestNumber
The number identifying the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

Use and Operations
Requests and Commands

110

C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default value is 300.

See also DIVA_ejectTape.

DIVA_linkObjects
This function provides the opportunity to link together two existing Virtual Objects;
parent and child. If the Virtual Objects are linked for Delete, anytime the parent Virtual
Object is deleted, the child will also be deleted. If Virtual Objects are linked for Restore,
anytime the parent Virtual Object is restored, the child will be restored to the original
location from where the child Virtual Object was archived.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_linkObjects (
IN DIVA_STRING parentName,
IN DIVA_STRING parentCollection,
IN DIVA_STRING childName,
IN DIVA_STRING childCollection,
IN bool cascadeDelete,
IN bool cascadeRestore
);

parentName
The parent Virtual Object name.

Use and Operations
Requests and Commands

111

C++ API Programmer’s Guide

parentCollection
The parent Virtual Object Collection.

childName
The child Virtual Object name.

childCollection
The child Virtual Object Collection.

cascadeDelete
Indicates if the child Virtual Object should be deleted along with parent.

cascadeRestore
Indicates if the child Virtual Object should be restored along with parent.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_OBJECT_ALREADY_EXISTS
An Virtual Object with this name and Collection already exists in the DIVA Core system.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

Use and Operations
Requests and Commands

112

C++ API Programmer’s Guide

DIVA_lockObject
A call to this function will lock an Virtual Object. Locked Virtual Objects cannot be
restored.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_lockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING Collection,
IN string options
);

objectName
The name of the Virtual Object.

Collection
The Collection assigned to the Virtual Object when it was archived.

options
Not currently in use.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

Use and Operations
Requests and Commands

113

C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_multipleRestoreObject
Submits an Virtual Object Restore request to the Core Manager using several
Destination Servers. The Core Manager chooses the appropriate instance to be
restored. This function returns as soon as the Core Manager accepts the request.

The request will continue even if an error occurs with one of the Destination Servers. To
check that the operation was successful the application must call the function
DIVA_getRequestInfo().

If DIVA_MultipleRestoreObject() is launched with a single Destination Server, the
restore automatically converts to a DIVA_RestoreObject().

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_MultipleRestoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN vector <DIVA_DESTINATION_INFO> destinations,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
)
public typedef struct _DIVA_DESTINATION_INFO {
DIVA_STRING destination;
DIVA_STRING filePathRoot;
} DIVA_DESTINATION_INFO, *PDIVA_DESTINATION_INFO;

objectName
The name of the Virtual Object to be restored.

Use and Operations
Requests and Commands

114

C++ API Programmer’s Guide

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string, however this may result in an error if several Virtual Objects have the
same name.

destinations
A list of available Destination Servers (for example, a video server or browsing server)
where Virtual Object files can be restored. The names must be known by the DIVA Core
configuration description.

A root folder where the Virtual Object files will be placed is associated with each
Destination Server. If null (string("")), the files will be placed in the FILES_PATH_ROOT
folder specified when archiving the Virtual Object using the DIVA_archiveObject()
function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct
and cache for restore operations).

DIVA_QOS_CACHE_ONLY
Use cache restore only.

DIVA_QOS_DIRECT_ONLY
Use direct restore only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct restore if available, or cache restore if direct restore is not available.

DIVA_QOS_NEARLINE_ONLY
Use nearline restore only. Nearline restore will restore from a disk instance if a disk
instance exists, otherwise, it will create a disk instance and restore from the newly
created disk instance.

DIVA_QOS_NEARLINE_AND_DIRECT
Use nearline restore if available, or direct restore if nearline restore is not available.

Additional and optional services are available. To request those services, use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constant:

Use and Operations
Requests and Commands

115

C++ API Programmer’s Guide

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA
Core to the Destination Server. These options supersede any options specified in the
DIVA Core configuration database. Currently the possible values for restoreOptions are:

• A null string to specify no Virtual Objects

• -login represents the log in required for some Source Servers. This option obsoletes
the -gateway option in earlier releases.

• -pass represents the password used with the -login option for some Source Servers.

requestNumber
The request number assigned to this request. This number is used for querying the
status or canceling the request.

Return Values
One of these DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

Use and Operations
Requests and Commands

116

C++ API Programmer’s Guide

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system cannot accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default is 300.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the Managed Storage and no Actor could provide a disk
instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

Use and Operations
Requests and Commands

117

C++ API Programmer’s Guide

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (for example, Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

See also DIVA_restoreObject, DIVA_getRequestInfo, and DIVA_copyToGroup and
DIVA_copy.

DIVA_partialRestoreObject
Submits a Partial Virtual Object Restore request to the Core Manager and the Core
Manager chooses the appropriate instance to be restored. This function returns as soon
as the Core Manager accepts or rejects the request. To check that the operation was
successful the application must call the DIVA_getRequestInfo() function.

If the request was not accepted (for example, if the requested Virtual Object is on media
not currently available) the request will generate an error. The media names (tape
barcodes and disk names) that contain instances of the Virtual Object are included in
the additionalInfo field of the DIVA_getRequestInfo() response.

The Core Manager will use the instanceID field to select the instance of the Virtual
Object to use for the Partial Restore operation. The Core Manager will choose an
appropriate instance to restore if DIVA_ANY_INSTANCE is used

DIVA Core supports four types of Partial Restore. The type implemented is determined
by the format parameter in the request.

The following describes each type of Partial Virtual Object Restore:

Byte Offset
The format equals DIVA_FORMAT_BYTES and provides for a range of bytes to be
extracted from a particular file in the archive. For example, you can extract bytes 1 to
2000 (the first 2000 bytes of the file), or byte 5000 to the end of the file (or both) and
store them to an output file such as movie.avi.

The result of the Byte Offset Partial Restore is usually not playable when applied to
video files. Actor will not apply the header, footer, and so on, according to the video
format.

To issue a Byte Offset Partial Restore, pass DIVA_FORMAT_BYTES in the format field of
the request. Create a DIVA_OFFSET_SOURCE_DEST Virtual Object (in the fileList
parameter of the request). In the Virtual Object you must specify the sourceFile in the
archive and name the output file (destFile). One or more DIVA_OFFSET_PAIR Virtual

Use and Operations
Requests and Commands

118

C++ API Programmer’s Guide

Objects must be inserted within the DIVA_OFFSET_SOURCE_DEST Virtual Object. These
offset Virtual Objects contain the ranges of bytes to be restored to the output file. The
fileFolder and range fields within the DIVA_OFFSET_SOURCE_DEST Virtual Object do
not need to be populated.

Example:

start=10000 end=50000

Timecode
The format equals DIVA_FORMAT_VIDEO_* and provides for a selected portion of a
particular media file based on timecode. For example, you could extract from
00:00:04:00 to 00:10:04:00 (a 10 minute segment starting 4 seconds in and ending at 10
minutes and 4 seconds) and place that segment into an output file such as movie.avi.
The file is a smaller version of the original movie file.

The result of the Timecode Partial Restore is a valid clip when applied to video files.
Actor will apply the header, footer, and so on, according to the video format. The
request will be terminated if the Actor cannot parse the format. This type of Partial
Restore can only be applied to a valid video clip.

To issue a Timecode Partial Restore populate the format field in the request with the
format of the file being partially restored. For example, if the file being restored is a GXF
file, specify a value of DIVA_FORMAT_VIDEO_GXF in the format field of the request.
DIVA Core provides an auto-detect feature that works for many types of media. Specify
DIVA_FORMAT_AUTODETECT in the format field to use auto-detect.

Create a DIVA_OFFSET_SOURCE_DEST Virtual Object in the fileList parameter of the
request. In this Virtual Object, add a DIVA_OFFSET_PAIR Virtual Object using the
offsetVector parameter that contains the start and end time. Use
DIVA_OFFSET_TC_END to indicate the final timecode in the media file. The fileFolder
and range fields within the DIVA_OFFSET_SOURCE_DEST Virtual Object do not need to
be populated.

Example:

start=01:01:01:00 end=02:02:02:00

Files and Folders

Caution: In the following process The offsetVector, sourceFile, destFile, and
range parameters should not be specified for the Files and Folders
Partial Virtual Object restore type.

The format equals DIVA_FORMAT_FOLDER_BASED and provides for extracting entire
files from the archive, or extracting entire directories and their contents. In DIVA Core
you can extract multiple files and directories in the same request. The files are restored
with the file names and path names that were specified in the archive. No renaming
option is valid in Files and Folders Partial Restore. For example, a file archived as misc/

Use and Operations
Requests and Commands

119

C++ API Programmer’s Guide

12-2012/movie.avi would be partially restored to a misc/12-2012 subdirectory with the
name movie.avi.

When a folder is specified in a Files and Folders Partial Restore, the folder and all files
within that folder are restored. Each directory to be restored can have the -r option to
recursively restore all folders nested within the target folder.

To issue a Files and Folders Partial Restore, the format field in the request must be
populated with the DIVA_FORMAT_FOLDER_BASED value. Create a
DIVA_OFFSET_SOURCE_DEST Virtual Object in the fileList parameter of the request. In
the Virtual Object add a DIVA_FILE_FOLDER Virtual Object in the fileFolder parameter
containing the name of the file or folder to be restored, and any options (such as the
recursive option) for that directory.

DPX
The format equals DIVA_FORMAT_DPX and provides for extracting a range of DPX files
from the archive. In this type of restore, the entire Virtual Object is viewed as a single
media item. One DPX file represents one frame of media. Only .dpx, .tif, and .tiff files in
the archive are considered frames for the purposes of this command.

The first .dpx, .tif, or .tiff file in the archived Virtual Object is considered Frame 1, the
second .dpx in the archive is Frame 2, and so on.

For example, if you extract frame 10 through frame 15 using DPX Partial Restore, it
would restore the 10th .dpx file that appears in the archive, through (and including) the
15th .dpx file, resulting in six total files. Any other files (such as .wav files) are skipped by
DPX Partial Restore.

Special frame numbers 0 and -1 may be used to refer to the first and last frame
respectively. Frame 0 is valid as the start of a frame range and Frame -1 is valid as the
end of a range.

Valid frames and ranges are as follows:

• Frame 0 = first frame

• Frame 1 = the first frame in the sequence.

• Frame n = the nth frame in the sequence.

• Frame -1 = last frame

Specifying frame 0 as the last frame is invalid.

Specifying Frame 0 to 0 is invalid and will not return the first frame as you have
intended.

Specifying Frame 0 to 1 or Frame 1 to 1 will return the first frame.

Specifying the Frame -1 in the first frame produces an error. If the frame number of the
last frame is unknown, you cannot specify Frame -1 to -1 to return the exact last frame.

Use and Operations
Requests and Commands

120

C++ API Programmer’s Guide

Examples:

start=0 - end=1
This will restore only the first frame.

start=600 - end=635, start=679 - end=779
This will restore frames 600 through 635, and frames 679 through 779.

start=810 - end=-1
This will restore all frames from frame 810 to the end of the archive.

Caution: In the following process the offsetVector, sourceFile, destFile, and
fileFolder parameters should not be specified for the DPX Partial
Virtual Object restore type.

To issue a DPX Partial Restore you populate the format field in the request with the
value DIVA_FORMAT_DPX. Create a DIVA_OFFSET_SOURCE_DEST Virtual Object in the
fileList parameter of the request. In this Virtual Object, you add a DIVA_RANGE Virtual
Object in the range parameter that contains the start and end frames of the range to be
restored.

To specify another range of frames within the same request, another
DIVA_OFFSET_SOURCE_DEST Virtual Object should be added to the request in the
same manner.

The actual file name may, or may not, match the frame number in DIVA Core. During the
restore process DIVA Core interrogates the archive, finds the file order, and determines
the frame number from the resulting file order. It does not consider the file name. The
first .dpx, .tif, or .tiff file found is considered frame 1.

You must be careful when archiving DPX files to ensure they can be partially restored
properly, in part because DPX Partial Restore does not examine the file name or the
DPX header information to determine which file is assigned to which frame. The
assignment is based purely on the order in which the .dpx files appear in the archive. By
default, the ordering is established by the Source Server and is typically alphanumeric.
For example, NTFS DISK Servers order files and folders case insensitively as a general
rule except where diacritical marks such as ', `, ^, and so on are applied.

By default, when DIVA Core encounters a subfolder it recursively processes all of the
children of that folder before continuing with other files. If a folder appears in the
alphanumeric folder listing it is archived recursively in the order that it appears.

However, this can create some issues. For example, if you want all of the subdirectories
of a given directory processed first, followed by the files in the directory, or you might
want all files processed first and then subdirectories. The Actor allows the archive
options -file_order DIRS_FIRST or -file_order FILES_FIRST to address these issues.

DPX Partial Restore looks at the entire Virtual Object as a single piece of media. If
multiple reels or clips appear in an archive they can be stored in folders and partially
restored through a Files and Folders Partial Restore. However, they will be viewed as

Use and Operations
Requests and Commands

121

C++ API Programmer’s Guide

one long movie clip to DPX Partial Restore. If this is desired, ensure that the directories
are sorted alphanumerically in the order the frames should be arranged.

DIVA Core does not perform any special audio handling for DPX media other than what
might be embedded in DPX files themselves. DIVA Core supports transcoding of DPX
media; however a transcoder may change the file names and (or) file order of the DPX
archive.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_SPEC DIVA_partialRestoreObject (
IN string objectName,
IN string objectCollection,
IN int instanceID,
IN vector <DIVA_OFFSET_SOURCE_DEST> fileList,
IN string destination,
IN string filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN string restoreOptions,
IN DIVA_FORMAT format,
OUT int *requestNumber
);

objectName
The name of the Virtual Object to be partially restored.

objectCollection
Collection assigned to the Virtual Object when it was archived. This parameter can be a
null string, which can result in an error if several Virtual Objects have the same name.

instanceID
The ID of a non-spanned tape instance or DIVA_ANY_INSTANCE.

filelist
List of the files of the Virtual Object to be partially restored. Each structure contains the
Source Server file name, a vector of offset pairs, and a Destination Server file name. The
same source file can be used in several structures, but Destination Server files must be
unique. A file present in the Virtual Object cannot be in any structure or it won't be
restored.

destination
Destination Server (for example, a video server or browsing server) to put the Virtual
Object files. This name must be known by the DIVA Core configuration description.

Use and Operations
Requests and Commands

122

C++ API Programmer’s Guide

filesPathRoot
The root folder on the Destination Server where the Virtual Object files will be placed. If
this is null (string("")), the files will be placed in the FILES_PATH_ROOT folder specified
when archiving the Virtual Object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct
restore).

DIVA_QOS_CACHE_ONLY (-qos_cache_only)
Use cache restore only.

DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
Use direct restore only.

DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constant:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

Use and Operations
Requests and Commands

123

C++ API Programmer’s Guide

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA
Core to the Destination Server. These options supersede any options specified in the
DIVA Core configuration database. Currently the possible values for restoreOptions are:

• A null string to specify no Virtual Objects

• -do_not_overwrite executes this additional service

• -do_not_check_existence executes this additional service

• -delete_and_write executes this additional service

• -login represents the log in required for some Source Servers. This option obsoletes
the -gateway option in earlier releases.

• -pass represents the password used with the -login option for some Source Servers.

format

DIVA_FORMAT_BYTES
Offsets must be given as byte offsets. When the offsetVector field of a DIVA_OFF-
SET_SOURCE_DEST structure contains more than one DIVA_OFFSET_PAIR element,
every corresponding extract is concatenated to create the Destination Server file.

DIVA_FORMAT_BYTES_HEADER
This has been deprecated but left for compatibility purposes only.

DIVA_FORMAT_VIDEO_GXF
Offsets must be given as timecodes, and the file to be partially restored must be in
GXF format.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element.

The offsetVector vector parameter must contain only one DIVA_OFFSET_PAIR ele-
ment.

Only the DIVA_QOS_DIRECT_ONLY Quality Of Service is supported for this format.

Use and Operations
Requests and Commands

124

C++ API Programmer’s Guide

DIVA_FORMAT_VIDEO_SEA
Offsets must be given as timecodes. The file to be partially restored must be in SAF
format and provide an index file.

A part description then contains one DIVA_OFFSET_SOURCE_DEST structure for
each WAV file of the clip. There must be at least one WAV file per clip part.

– The Source Server file name in each structure must have the .wav or the .WAV
extension.

– Each structure must contain exactly one DIVA_OFFSET_PAIR structure with a
timecode pair equal to the timecode pair associated with the AVI file.

– The next part is delimited by the first DIVA_OFFSET_SOURCE_DEST structure
associated with an AVI file.

– The Destination Server must support the successive restore of each part, with the
AVI file (without WAV file) and then of the WAV files all at once in the same
connection session.

DIVA_FORMAT_VIDEO_MPEG2_TS
Offsets must be given as timecodes. The video file must be encoded using the
MPEG2 Transport Stream format. Use this for VELA encoders.

DIVA_FORMAT_VIDEO_MXF
Offsets must be given as timecodes. The file format expected by this type of Partial
File Restore is a single MXF file. A detailed matrix of supported MXF files is given in
the product description.

DIVA_FORMAT_VIDEO_PINNACLE
Offsets must be given as timecodes. This Partial File Restore format expects a spe-
cific Virtual Object structure. This is applicable to Pinnacle clips composed of three
files (header, ft, and std). DIVA Core prefers the MSS Server type for creating this
clip.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR ele-
ment. The DIVA_OFFSET_SOURCE_DEST element must be associated with the
header file only. The Destination Server name is also the header.

DIVA_FORMAT_VIDEO_OMNEON
Offsets must be given as timecodes. You can use this type of Partial File Restore to
partially restore QuickTime files (referenced and self-contained clips are sup-
ported). A detailed matrix of supported QuickTime clips is given in the product
description.

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR ele-
ment. The DIVA_OFFSET_SOURCE_DEST element must be associated with the .mov
file only if it's not a self-contained clip.

Use and Operations
Requests and Commands

125

C++ API Programmer’s Guide

DIVA_FORMAT_VIDEO_LEITCH
Offsets must be given as timecodes. The video file must be encoded using the
LEITCH Video Server and the format is LXF.

DIVA_FORMAT_VIDEO_QUANTEL
Offsets must be given as timecodes. You can use this type of Partial File Restore to
partially restore Quantel clips that have been archived with a QUANTEL_QCP Server
type.

DIVA_FORMAT_AUTODETECT
Offsets must be given as timecodes. This type of Partial File Restore can detect
video clips with the following archive formats:

– QuickTime self-contained

– QuickTime with referenced media files (the .mov file must be in the first position)

– DIF + WAV files

– AVI with audio interleaved (separated WAV is not currently supported)

– MXF (self-contained)

– MPEG PS

– LXF

– Seachange (the .pd file must be in the first position)

The fileList vector parameter must contain only one DIVA_OFFSET_SOURCE_DEST
element. The offsetVector vector must contain only one DIVA_OFFSET_PAIR ele-
ment. The DIVA_OFFSET_SOURCE_DEST element must be associated with the fol-
lowing:

– The .mov file if it is a QuickTime clip.

– The .dif file if it is a DV file.

– The .avi file if it is an AVI clip.

DIVA_FORMAT_FOLDER_BASED
Specifies a set of files and folders to be restored. You can set a recursive flag to
restore subfolders. All specified files and folders are restored.

DIVA_FORMAT_DPX
Specifies a set of intervals, frame X through frame Y, where frames are sorted and
traversed alphanumerically.

Only files with .tif or .tiff data formats are supported. All files must have a .dpx
extension. The first frame of a DPX Virtual Object is Frame 1. You can use frame
numbers 0 and -1 to refer to the first and last frame respectively.

Use and Operations
Requests and Commands

126

C++ API Programmer’s Guide

requestNumber
The request number assigned to this request. This number is used for querying the
status or canceling this request.
class DIVA_OFFSET_SOURCE_DEST {
public:
DIVA_STRING sourceFile;
vector<DIVA_OFFSET_PAIR> offsetVector;
DIVA_STRING destFile;
DIVA_FILE_FOLDER fileFolder;
DIVA_RANGE range;
};

sourceFile
The Source Server file name when the format is other than
DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

offsetVector
The vector of intervals to restore. The type of all offsets in all
DIVA_OFFSET_SOURCE_DEST structures must be compliant with the format parameter
of the Partial File Restore request. Valid only when the format is other than
DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

destFile
The file name to be used at the Destination Server. Valid only when format is other than
DIVA_FORMAT_FOLDER_BASED or DIVA_FORMAT_DPX.

fileFolder
The file or folder name. Used only when the format is DIVA_FORMAT_FOLDER_BASED.

range
The range of frames to be restored. Used only when the format is DIVA_FORMAT_DPX.

DIVA_OFFSET_PAIR (This class only has public functions.)
The following are the constructors:

DIVA_SPEC DIVA_OFFSET_PAIR (__int64 pBegin, __int64
pEnd, bool _isTimeCode)
Constructor for use with byte offsets. DIVA_OFFSET_BYTE_BEGIN and
DIVA_OFFSET_BYTE_END are valid.

Use and Operations
Requests and Commands

127

C++ API Programmer’s Guide

DIVA_SPEC DIVA_OFFSET_PAIR (const DIVA_STRING
&pBegin, const DIVA_STRING &pEnd)
Constructor for use with timecode offsets. Timecodes are formatted as HH:MM:SS:FF.

The following are the attribute accessors:

DIVA_SPEC bool isTimeCode();
This is true if the offset pair was constructed with timecode offsets.

DIVA_SPEC DIVA_STRING getTimeCodeBegin();
Return the beginning offset as a timecode.

DIVA_SPEC DIVA_STRING getTimeCodeEnd();
Return the ending offset as a timecode.

DIVA_SPEC __int64 getByteBegin();
Return the beginning offset as bytes.

DIVA_SPEC __int64 getByteEnd();
Return the ending offset as bytes.
class DIVA_FILE_FOLDER {
public:
 DIVA_STRING fileFolder;
 DIVA_STRING option
};

fileFolder
The file or folder name.

option
Options (for example, -r to recurse folders).
class DIVA_RANGE {
public:
 int startRange;
 int endRange;
};

startRange
The first frame number to be restored.

Use and Operations
Requests and Commands

128

C++ API Programmer’s Guide

endRange
The last frame number to be restored.

The format gives information about how to interpret the interval and about which
specific operation should eventually be performed.
typedef enum {
 DIVA_FORMAT_BYTES = 0,
 DIVA_FORMAT_BYTES_HEADER,
 DIVA_FORMAT_VIDEO_GXF,
 DIVA_FORMAT_VIDEO_SEA,
 DIVA_FORMAT_VIDEO_AVI_MATROX,
 DIVA_FORMAT_VIDEO_MPEG2_TS,
 DIVA_FORMAT_VIDEO_MXF,
 DIVA_FORMAT_VIDEO_PINNACLE,
 DIVA_FORMAT_VIDEO_OMNEON,
 DIVA_FORMAT_VIDEO_LEITCH,
 DIVA_FORMAT_VIDEO_QUANTEL,
 DIVA_FORMAT_AUTODETECT,
 DIVA_FORMAT_FOLDER_BASED,
 DIVA_FORMAT_DPX
} DIVA_FORMAT;

DIVA_FORMAT_BYTES
Raw bytes

DIVA_FORMAT_VIDEO_GXF
GXF video format

DIVA_FORMAT_VIDEO_SEA
Seachange video format

DIVA_FORMAT_VIDEO_AVI_MATROX
Matrox-specific AVI format (+ WAV files)

DIVA_FORMAT_VIDEO_MPEG_TS
MPEG Transport Stream

DIVA_FORMAT_VIDEO_MXF
MXF video format

DIVA_FORMAT_VIDEO_PINNACLE
Pinnacle video format

Use and Operations
Requests and Commands

129

C++ API Programmer’s Guide

DIVA_FORMAT_VIDEO_OMNEON
Omneon video format

DIVA_FORMAT_VIDEO_LEITCH
Leitch video format

DIVA_FORMAT_VIDEO_QUANTEL
Quantel QCP video format

DIVA_FORMAT_VIDEO_AUTODETECT
Automatic format detection

DIVA_FORMAT_FOLDER_BASED
Fully restore the specified files and (or) folders

DIVA_FORMAT_DPX
DPX video format

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

Use and Operations
Requests and Commands

130

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this
variable in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the Managed Storage and no Actor could provide a disk
instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_OFFLINE
The instance specified for restoring this Virtual Object is ejected, or the Actor owning
the specified disk instance is not available.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is unknown by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

Use and Operations
Requests and Commands

131

C++ API Programmer’s Guide

See also DIVA_restoreObject, DIVA_getRequestInfo, and
DIVA_getPartialRestoreRequestInfo.

DIVA_release
Indicates to the Core Manager that this instance can be externalized. This function has
no effect if the instance has already been released. The list of instances that are
RELEASED and INSERTED may be retrieved and shown at the System Management App.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_release (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID
);

objectName
The name of the Virtual Object to be copied.

objectCollection
The Collection assigned to the Virtual Object when it was archived. This parameter can
be a null string; however this may result in an error if several Virtual Objects have the
same name.

instanceID
A value of DIVA_EVERY_INSTANCE forces this function to apply to every instance of the
given Virtual Object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

Use and Operations
Requests and Commands

132

C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE
No tape instance exists for this Virtual Object.

DIVA_ERR_NO_INSTANCE_TAPE_EXIST
The specified Virtual Object has instances that are partially deleted.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

See also DIVA_require.

DIVA_require
Indicates to the Core Manager that this instance must be inserted. If the instance is
already inserted, this function has no effect. The list of instances that are REQUIRED and
EJECTED can be retrieved and shown at the System Management App.

Use and Operations
Requests and Commands

133

C++ API Programmer’s Guide

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_require(
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID
);

objectName
Name of the Virtual Object to be copied.

objectCollection
Collection assigned to the Virtual Object when it was archived. This parameter can be a
null string, however this may result in an error if several Virtual Objects have the same
name.

instanceID
A value of DIVA_EVERY_INSTANCE forces the function to apply to every instance of the
given Virtual Object.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

Use and Operations
Requests and Commands

134

C++ API Programmer’s Guide

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE
No tape instance exists for this Virtual Object.

DIVA_ERR_NO_INSTANCE_TAPE_EXIST
The specified Virtual Object has instances that are partially deleted.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

See also DIVA_release.

DIVA_restoreInstance
Restores an Virtual Object from a specific instance. If the instance is externalized the
operation fails even if there are other instances available for the Virtual Object.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_restoreInstance (
IN DIVA_STRING objectName,
IN DIVA_STRING CollectionName,
IN int instanceID,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,

Use and Operations
Requests and Commands

135

C++ API Programmer’s Guide

OUT int *requestNumber
);

objectName
Name of the Virtual Object to be restored.

objectCollection
Collection assigned to the Virtual Object when it was archived. This parameter can be a
null string, however this may result in an error if several Virtual Objects have the same
name.

instanceID
The instance identifier.

destination
The Destination Server (for example, a video server or browsing server) where the
Virtual Object files will be restored. This name must be known by the DIVA Core
configuration description.

filesPathRoot
Root folder on the Destination Server where the Virtual Object files will be placed. If this
is null (string("")), the files will be placed in the FILES_PATH_ROOT folder specified when
archiving the Virtual Object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct
and cache for restore operations).

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct restore only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache restore if available, or direct restore if cache restore is not available.

Use and Operations
Requests and Commands

136

C++ API Programmer’s Guide

DIVA_QOS_DIRECT_AND_CACHE
Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constant:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA
Core to the Destination Server. These options supersede any options specified in the
DIVA Core configuration database. Currently the possible values for restoreOptions are
as follows:

Null String
A null string specifies no options.

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

Use and Operations
Requests and Commands

137

C++ API Programmer’s Guide

requestNumber
A number identifying this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
Count of simultaneous requests has reached the maximum allowed value. This variable
is set in the manager.conf configuration file. The default is 300.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

Use and Operations
Requests and Commands

138

C++ API Programmer’s Guide

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_INSTANCE_OFFLINE
The specified instance for restoring this Virtual Object is ejected, or the Actor owning
the specified disk instance is not available.

DIVA_ERR_INSTANCE_DOESNT_EXIST
The instance specified for restoring this Virtual Object does not exist.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

See also DIVA_archiveObject and DIVA_getObjectInfo.

DIVA_restoreObject
Submits an Virtual Object Restore request to the Core Manager and the Core Manager
chooses the appropriate instance to be restored. This function returns as soon as the
Core Manager accepts the request. To check that the operation was successful, the
application must call the function DIVA_getRequestInfo().

If the requested Virtual Object is on media that is not available, the request will fail. The
media names (tape barcodes and disk names) that contain instances of the Virtual
Object will be included in the additionalInfo field of the DIVA_getRequestInfo()
response.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_restoreObject (
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN DIVA_STRING destination,
IN DIVA_STRING filesPathRoot,
IN DIVA_RESTORE_QOS qualityOfService,
IN int priorityLevel,
IN DIVA_STRING restoreOptions,
OUT int *requestNumber
);

Use and Operations
Requests and Commands

139

C++ API Programmer’s Guide

objectName
Name of the Virtual Object to be restored.

objectCollection
Collection assigned to the Virtual Object when it was archived. This parameter can be a
null string, but this may result in an error if several Virtual Objects have the same name.

destination
The Destination Server (for example, a video server or browsing server) where the
Virtual Object files will be restored. This name must be known by the DIVA Core
configuration description.

filesPathRoot
Root folder on the Destination Server where the Virtual Object files will be placed. If this
is null (string("")), the files will be placed in the FILES_PATH_ROOT folder specified when
archiving the Virtual Object using the DIVA_archiveObject() function.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently direct
and cache for restore operations).

DIVA_QOS_CACHE_ONLY (-qos_cache_only)
Use cache restore only.

DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
Use direct restore only.

DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
Use cache restore if available, or direct restore if cache restore is not available.

DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
Use direct restore if available, or cache restore if direct restore is not available.

Additional and optional services are available. To request those services, use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constant:

DIVA_QOS_NEARLINE_ONLY (-qos_nearline_only)
Use nearline restore only. Nearline restore will restore from a disk instance if it
exists, otherwise, it will create a disk instance and restore from the newly created
disk instance.

Use and Operations
Requests and Commands

140

C++ API Programmer’s Guide

DIVA_QOS_NEARLINE_AND_DIRECT (-qos_nearline_and_direct)
Use Nearline restore if available, or direct restore if Nearline restore is not available.
Additional and optional services are available. To request those services use a logi-
cal OR between the previously documented Quality Of Service parameter and the
following constants:

DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
Do not overwrite existing files on the Destination Server.

DIVA_RESTORE_SERVICE_DO_NOT_CHECK_EXISTENCE
Do not check existence of the clip on the server.

DIVA_RESTORE_SERVICE_DELETE_AND_WRITE
Force delete and rewrite if Virtual Object exists on the server.

DIVA_RESTORE_SERVICE_DEFAULT
Operate using the default setting in the Core Manager configuration.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

restoreOptions
Additional options that must be used for performing the transfer of data from DIVA
Core to the Destination Server. These options supersede any options specified in the
DIVA Core configuration database. Currently the possible values for restoreOptions are
as follows:

Null String
A null string specifies no options.

Use and Operations
Requests and Commands

141

C++ API Programmer’s Guide

-login
A user name and password is required to log in to some Source Servers. This option
obsoletes the -gateway option from earlier releases.

-pass
The password used with -login.

requestNumber
Request number assigned to this request. This number is used for querying the status
or canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
DIVA Core can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
The Core Manager or API detected an internal error.

DIVA_ERR_INVALID_PARAMETER
The Core Manager did not understand a parameter value.

Use and Operations
Requests and Commands

142

C++ API Programmer’s Guide

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this
variable in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_DOESNT_EXIST
The specified Virtual Object does not exist in the DIVA Core database.

DIVA_ERR_OBJECT_OFFLINE
There is no inserted instance in the Managed Storage and no Actor could provide a Disk
Instance.

DIVA_ERR_SEVERAL_OBJECTS
More than one Virtual Object with the specified name exists in the DIVA Core database.

DIVA_ERR_OBJECT_IN_USE
The Virtual Object is currently in use (being Archived, Restored, Deleted, and so on).

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

See also DIVA_getRequestInfo and DIVA_copyToGroup and DIVA_copy.

DIVA_transcodeArchive
Submits a Transcode Archive request to the Core Manager. The original Virtual Object
will be restored to the local Actor cache then transcoded to the format defined in the
option field. A new Virtual Object containing the transcoded clip will then be archived
back to DIVA Core.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_transcodeArchive (
IN DIVA_STRING parentObjectName,
IN DIVA_STRING parentObjectCollection,
IN int instance,
IN DIVA_STRING objectName,
IN DIVA_STRING objectCollection,
IN DIVA_STRING mediaName,
IN DIVA_STRING comments,

Use and Operations
Requests and Commands

143

C++ API Programmer’s Guide

IN DIVA_STRING archiveOptions,
IN DIVA_ARCHIVE_QOS qualityOfService,
IN bool bCascadeDelete,
IN int priorityLevel,
OUT int *requestNumber
);

parentObjectName
Name of the original Virtual Object to be transcoded.

parentObjectCollection
Collection assigned to the original Virtual Object.

instance
Instance of the parent Virtual Object. The default is -1.

objectName
Name of the resulting transcoded Virtual Object from the transcoding operation.

objectCollection
Collection of the transcoded Virtual Object.

mediaName
The tape group or disk array where the Virtual Object is to be saved. The media may be
defined as follows:

Name (of the Tape Group or Array)
Provide the tape group or disk array name as defined in the configuration. The Vir-
tual Object is saved to the specified media and assigned to the default SP (Storage
Plan).

SP Name
Provide a SP Name (Storage Plan Name) as defined in the configuration. The Virtual
Object will be assigned to the specified Storage Plan and saved to the default
media specified.

Both of the above (Name and SP Name)
The Virtual Object is saved to the specified media as in Name, and assigned to the
specified Storage Plan as in SP Name. The Name and the SP Name must be sepa-
rated by the & delimiter (this is configurable).

When this parameter is a null string, the default group of tapes called DEFAULT is used.
Complex Virtual Objects can only be saved to AXF media types.

Use and Operations
Requests and Commands

144

C++ API Programmer’s Guide

comments
Optional information describing the Virtual Object. This can be a null string.

archiveOptions
Additional options that must be used for performing the transfer of data from the
Source Server to DIVA Core. These options supersede any options specified in the DIVA
Core configuration database. Currently the possible values for archiveOptions are:

-tr_archive_format FORMAT
Destination Server format of the retrieved Virtual Object. This is required.

-tr_names trans1
Names of the transcoders that have to perform this operation. If more than one
transcoder is selected, the performing transcoder will be chosen based on the cur-
rent loading. If this option is not specified, the performing transcoder will be cho-
sen from all DIVA Core transcoders based on the current loading. This is optional.

-tr_names trans1,trans2
Names of the transcoders that have to perform this operation. Multiple transcoders
are identified in a comma separated list (trans1, trans2, and so on). If more than one
transcoder is selected, the performing transcoder will be chosen based on the cur-
rent loading. If this option is not specified, the performing transcoder will be cho-
sen from all DIVA Core transcoders based on the current loading. This is optional.

qualityOfService
One of the following codes:

DIVA_QOS_DEFAULT
Restoring is performed according to the default Quality Of Service (currently cache
for archive operations).

DIVA_QOS_CACHE_ONLY
Use cache archive only.

DIVA_QOS_DIRECT_ONLY
Use direct archive only - no disk instance is created.

DIVA_QOS_CACHE_AND_DIRECT
Use cache archive if available, or direct archive if cache archive is not available.

DIVA_QOS_DIRECT_AND_CACHE
Use direct archive if available, or cache archive if direct archive is not available.

Use and Operations
Requests and Commands

145

C++ API Programmer’s Guide

bCascadeDelete
Shows if transcoded Virtual Object is linked to the original Virtual Object. If true both
the original Virtual Object and the transcoded Virtual Object will be deleted.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

requestNumber
Request number assigned to this request. This number is used for querying the status
or canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system can no longer accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

Use and Operations
Requests and Commands

146

C++ API Programmer’s Guide

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. You set the timeout duration using the DIVA_API_TIMEOUT variable. The
default value is one hundred-eighty (180) seconds.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. You set this
variable in the manager.conf configuration file. The default value is three hundred.

DIVA_ERR_OBJECT_ALREADY_EXISTS
The specified Virtual Object already exists in the DIVA Core database.

DIVA_ERR_OBJECT_PARTIALLY_DELETED
The specified Virtual Object has instances that are partially deleted.

See also DIVA_linkObjects.

DIVA_transferFiles
Submits a Transfer Files request to the Core Manager. The request will transfer files from
a remote server (the Source Server) to another remote server (the Destination Server).
This function returns as soon as the Core Manager accepts the request. The application
must call the function DIVA_getRequestInfo()to confirm that the operation completed
successfully.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_transferFiles (
IN DIVA_STRING source,
IN DIVA_STRING sourcePathRoot,
IN vector<DIVA_STRING> filenamesList,
IN DIVA_STRING destination,
IN DIVA_STRING destinationPathRoot,

Use and Operations
Requests and Commands

147

C++ API Programmer’s Guide

IN int priorityLevel,
OUT int *requestNumber
);

source
Name of the Source Server (for example, a video server or browsing server). This name
must be known by the DIVA Core configuration description.

sourcePathRoot
Root folder for the files specified by the filenamesList parameter.

filenamesList
List of file path names relative to the folder specified by the sourcePathRoot parameter.
When the sourcePathRoot is null, path names must be absolute names.

destination
Name of the Destination Server (for example a video server or browsing server). This
name must be known by the DIVA Core configuration description.

destinationPathRoot
Root folder where the files will be placed at the Destination Server.

priorityLevel
The priority level for this request. The priorityLevel can be in the range zero to one
hundred, or the value DIVA_DEFAULT_REQUEST_PRIORITY. The value zero is the lowest
priority and one hundred the highest priority.

There are six predefined values as follows:

• DIVA_REQUEST_PRIORITY_MIN

• DIVA_REQUEST_PRIORITY_LOW

• DIVA_REQUEST_PRIORITY_NORMAL

• DIVA_REQUEST_PRIORITY_HIGH

• DIVA_REQUEST_PRIORITY_MAX

• DIVA_DEFAULT_REQUEST_PRIORITY

When the DIVA_DEFAULT_REQUEST_PRIORITY value is used, the Core Manager
uses the default priority defined in the Core Manager configuration for the request.

Using a value either outside of the range of zero to one hundred, or predefined values
yields a DIVA_ERR_INVALID_PARAMETER error.

Use and Operations
Requests and Commands

148

C++ API Programmer’s Guide

requestNumber
Request number assigned to this request. This number is used for querying the status
or canceling this request.

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

DIVA_ERR_INVALID_PARAMETER
A parameter value was not understood by the Core Manager.

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS
The count of simultaneous requests reached the maximum allowed value. This variable
is set in the manager.conf configuration file and the default value is three hundred.

Use and Operations
Requests and Commands

149

C++ API Programmer’s Guide

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST
The specified Server is not known by the DIVA Core system.

Also see DIVA_getRequestInfo.

DIVA_unlockObject
A call to this function will unlock an Virtual Object. Locked Virtual Objects cannot be
restored.

Synopsis
#include “DIVAapi.h”

DIVA_STATUS DIVA_unlockObject (
IN DIVA_STRING objectName,
IN DIVA_STRING Collection,
IN string options
);

objectName
Name of the Virtual Object.

Collection
The Collection assigned to the Virtual Object when it was archived.

options
TBD

Return Values
One of the following DIVA_STATUS constants defined in DIVAapi.h:

DIVA_OK
The request was correctly submitted and accepted by the Core Manager.

DIVA_ERR_NOT_CONNECTED
No connection is open.

DIVA_ERR_SYSTEM_IDLE
The DIVA Core system is no longer able to accept connections and queries.

Use and Operations
Requests and Commands

150

C++ API Programmer’s Guide

DIVA_ERR_BROKEN_CONNECTION
The connection with the Core Manager was broken.

DIVA_ERR_TIMEOUT
The timeout limit was reached before communication with the Core Manager could be
performed. The timeout duration is set by the DIVA_API_TIMEOUT variable and equals
one hundred-eighty (180) seconds by default.

DIVA_ERR_UNKNOWN
An unknown status was received from the Core Manager.

DIVA_ERR_INTERNAL
An internal error was detected by the Core Manager or by the API.

151

Using the API with DIVA
Connect

In addition to being able to connect to a DIVA Core system, you can use the API to
connect to an DIVA Connect system. This functionality enables applications to access
content across multiple DIVA Core systems, possibly in different geographical locations.
DIVA Connect enables the content in each system to be retrieved and stored as if the
sites together were one large archival system.

Topics:
■ What is DIVA Connect?

■ DIVA Core API Support

■ Input Parameters

■ Return Parameters

■ Return Codes

■ getObjectDetailsList Call

Using the API with DIVA Connect
What is DIVA Connect?

152

C++ API Programmer’s Guide

What is DIVA Connect?
DIVA Connect provides a unified view of archived content across multiple, distributed
DIVA Core systems. It facilitates the moving of content among DIVA Core sites, and from
customer Source and Destination Servers and disk. The purpose is for disaster recovery,
content distribution, access control, performance, and content availability.

DIVA Connect synchronizes asset information from each DIVA Core site, so that users
always have an up-to-date inventory of where content is. DIVA Connect uses this
information to choose the best site for various requests, for example restores and
copies. DIVA Connect also provides access rules to limit the operations that users are
permitted to perform.

DIVA Connect 2.2 is compatible with DIVA Core 8.2 Linux-based installations. DIVA
Connect 2.2 also runs on Windows-based systems. However, it is not backward
compatible to releases before DIVA Core 7.3.1. You must use either DIVA Connect 2.0 or
Legacy DIVA Connect when running DIVA Core releases earlier than DIVA Core 7.3.1.

The Legacy DIVA Connect is still available for connecting DIVA Core systems with
different software release levels, and releases before DIVA Core 7.3.1.

If you are operating a DIVA Core release earlier than 7.3.1, refer to the DIVA Connect
Installation, Configuration, and Operations Guide (named DIVA Connect for DIVA Core
releases 6.5 and 7.2).

DIVA Core API Support
DIVA Connect has partial support for the full API command set. Refer to the appropriate
DIVA Connect documentation for a complete list of supported API commands. DIVA
Connect will support client connections from API clients release 8.2 and earlier. New
parameters or features added to the API after release 7.5 are not supported by Legacy
DIVA Connect. In general, a released DIVA Connect can connect to newer releases of
DIVA Core, and sometimes also can connect to older releases. This ability varies based
on the specific release of DIVA Connect.

Using the API with DIVA Connect
Input Parameters

153

C++ API Programmer’s Guide

Input Parameters
Invoking API calls to a DIVA Connect server is largely the same as invoking calls to DIVA
Core. However, there are some differences. DIVA Connect sometimes accepts additional
information by using common DIVA Core API parameters in a slightly a different way.

For example, you can use the DIVA Connect Copy command (CopyToGroup) to copy
content from one DIVA Core system to another. DIVA Connect needs to know, at a
minimum, what the target DIVA Core site is. This information can be provided in
multiple ways, for example you can prefix the target_sitename to the media provided
in the call (for example, sitename2_mytapegroup). Refer to the appropriate DIVA
Connect documentation for more information on specifying DIVA Connect-specific
information in API calls.

Using the API with DIVA Connect
Return Parameters

154

C++ API Programmer’s Guide

Return Parameters
A DIVA Connect system sometimes returns API information that is slightly different
than you would typically see in a DIVA Core system. For example, the DIVA Connect
getObjectInfo() call returns information about an archived Virtual Object across all DIVA
Core sites. To distinguish which site is which, the Source Server site name is prefixed to
the media of each archived Virtual Object instance returned in the call. For example, a
Virtual Object on sitename2 that is stored on mytapegroup would have a media value
of sitename2_mytapegroup.

Another example of a slight difference is the Virtual Object instance ID. DIVA Core has a
unique instance ID for each instance of an archived Virtual Object (starting at zero and
incrementing by one for each new instance). However, this value is not unique across
DIVA Core sites. DIVA Connect applies a simple algorithm to the instance ID to make it
unique across sites (but not across Virtual Objects). The unique DIVA Connect instance
IDs for a Virtual Object can be queried by making a DIVA Connect getObjectInfo() call.

The Request ID returned by each DIVA Connect request does not necessarily
correspond to a DIVA Core Request ID. Refer to the appropriate DIVA Connect
documentation for more information.

Return Codes
DIVA Connect will return DIVA_ERR_ACCESS_DENIED if a user or connection does not
have permission to perform a particular action. DIVA Core does not return this code.
DIVA Connect can possibly refuse an API connection altogether because of configured
permissions. DIVA Core will accept the connection if it hasn't run out of available
connections. There are cases where DIVA Connect will choose to acknowledge a
request with DIVA_OK and then subsequently return an error (for example, an Invalid
Media error). DIVA Core will simply reject the request with the
DIVA_ERR_INVALID_PARAMETER error.

Using the API with DIVA Connect
getObjectDetailsList Call

155

C++ API Programmer’s Guide

getObjectDetailsList Call
The GetObjectDetailsList() command retrieves a list of Virtual Objects from each site.
DIVA Connect retrieves the Virtual Object information directly from each DIVA Core
system, one site at a time, in a round-robin fashion. It returns one batch per site to the
initiator. The initiator must keep calling GetObjectDetailsList() with the same query
parameters - passing all received list position data as input to the next call.

If a Virtual Object is returned in one batch, the initiator can possibly receive the same
Virtual Object again in the next batch (for the second site). This makes
GetObjectDetailsList() different from GetObjectInfo(), which returns information from
all sites in one call.

The query parameters and time ranges queried in each batch are specific to each site. It
is possible that if Site1 contains many Virtual Objects in a given query (and Site2 does
not). The batches from Site2 that are near the end of the calling sequence might be
completely empty.

Keep calling GetObjectDetailsList(), ignoring empty batches until the call returns either
a status of DIVA_WARN_NO_MORE_OBJECTS or an error. All DIVA Core sites in the DIVA
Connect network must be online for GetObjectDetailsList() to succeed. If, for any
reason, an error is returned before the list has been fully returned the entire calling
sequence must be repeated.

Other details of the GetObjectDetailsList() call remain in effect for the DIVA Connect
release. For example, while the batches returned are ordered by time, the order of
entries within each batch is not guaranteed. Although duplicate Virtual Objects will not
appear within a batch, the same Virtual Object may appear in the next batch - the
likelihood of this occurrence increases when you use the MODIFIED_SINCE parameter.

If a Virtual Object has been deleted and subsequently re-added, GetObjectDetailsList()
will return one record for every time this has occurred for the entire period that DIVA
Core retains the records.

To continuously monitor DIVA Connect for new Virtual Objects and instances, you can
continue to call GetObjectDetailsList() even after it has returned a status of
DIVA_WARN_NO_MORE_OBJECTS. To do this you must provide the exact same query
information (passing all received list position data into the next call) to get any new
updates since you last called it. If an error occurs, you must use the exact same list
position that was received on the last successful call.

Refer to the appropriate DIVA Connect documentation for more information on specific
API calls.

156

Appendix

The following sections include additional information not previously described in this
book.

Topics:
■ List of Authorized Special Characters in DIVA Core

■ Maximum Allowed Number of Characters

■ API Static Constant Values

Appendix
List of Authorized Special Characters in DIVA Core

157

C++ API Programmer’s Guide

List of Authorized Special Characters in DIVA Core
The following table lists the special characters that can be used in DIVA Core and in
which fields they are valid.

Character Name Collection Source Media Path File Comments Options

~ Yes Yes Yes Yes Yes Yes Yes Yes

' Yes Yes Yes Yes Yes Yes Yes Yes

! Yes Yes Yes Yes Yes Yes Yes Yes

@ Yes Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes Yes Yes

$ Yes Yes Yes Yes Yes Yes Yes Yes

% Yes Yes Yes Yes Yes Yes Yes Yes

^ Yes Yes Yes Yes Yes Yes Yes Yes

& Yes Yes Yes Yes Yes Yes Yes No

* No No Yes Yes No Yes Yes Yes

(Yes Yes Yes Yes Yes Yes Yes Yes

) Yes Yes Yes Yes Yes Yes Yes Yes

_ Yes Yes Yes Yes Yes Yes Yes Yes

- Yes Yes Yes Yes Yes Yes Yes Yes

+ Yes Yes Yes Yes Yes Yes Yes Yes

= Yes Yes Yes Yes Yes Yes Yes Yes

| Yes Yes Yes Yes No Yes Yes Yes

\ Yes Yes Yes Yes No Yes Yes Yes

{ Yes Yes Yes Yes Yes Yes Yes Yes

[Yes Yes Yes Yes Yes Yes Yes Yes

} Yes Yes Yes Yes Yes Yes Yes Yes

] Yes Yes Yes Yes Yes Yes Yes Yes

: Yes Yes Yes Yes No Yes Yes Yes

; Yes Yes Yes Yes Yes1 Yes Yes Yes

" Yes Yes Yes Yes No Yes Yes No

' Yes Yes No No Yes1 Yes Yes Yes

Appendix
List of Authorized Special Characters in DIVA Core

158

C++ API Programmer’s Guide

< Yes Yes Yes Yes No Yes Yes No

, Yes Yes Yes Yes Yes1 Yes Yes Yes

> Yes Yes Yes Yes No Yes Yes Yes

. Yes Yes Yes Yes No Yes Yes Yes

? Yes Yes Yes Yes No Yes Yes Yes

/ Yes Yes Yes Yes No Yes Yes Yes

Space Yes Yes Yes Yes No Yes Yes Yes

1. In a Windows environment, the file and folder name restrictions depend on the file system
restrictions. File and folder names cannot solely consist of one or more spaces, and cannot contain
a double-quote.

Character Name Collection Source Media Path File Comments Options

Appendix
Maximum Allowed Number of Characters

159

C++ API Programmer’s Guide

Maximum Allowed Number of Characters
The maximum allowable number of characters are as follows:

Name
192 maximum characters

Collection
96 maximum characters

Source
96 maximum characters

Media
96 maximum characters

Path and File Name
1536 maximum characters per folder or per file

Comments
4000 maximum characters

Options
768 maximum characters

Appendix
API Static Constant Values

160

C++ API Programmer’s Guide

API Static Constant Values
The following table identifies the values for each of the API static constants.

Static Constant Name Description Value

DIVA_OK The request was
correctly
submitted and
accepted by the
Core Manager.

1000

DIVA_ERR_UNKNOWN An unknown status
was received from
the Core Manager.

1001

DIVA_ERR_INTERNAL An internal error
was detected by
the Core Manager
or the API.

1002

DIVA_ERR_NO_ARCHIVE_SYSTEM Problem when
establishing a
connection with
the specified DIVA
Core system.

1003

DIVA_ERR_BROKEN_CONNECTION The connection
with the Core
Manager was
broken.

1004

DIVA_ERR_DISCONNECTING Problem when
disconnecting. The
connection is still
considered to be
open.

1005

DIVA_ERR_ALREADY_CONNECTED A connection is
already open.

1006

DIVA_ERR_WRONG_VERSION Release level of the
API and the Core
Manager are not
compatible.

1007

DIVA_ERR_INVALID_PARAMETER A parameter value
was not
understood by the
Core Manager.

1008

Appendix
API Static Constant Values

161

C++ API Programmer’s Guide

DIVA_ERR_OBJECT_DOESNT_EXIST The specified
Virtual Object does
not exist in the
DIVA Core
database.

1009

DIVA_ERR_SEVERAL_OBJECTS More than one
Virtual Object with
the specified name
exists in the DIVA
Core database.

1010

DIVA_ERR_NO_SUCH_REQUEST The requestNumber
identifies no
request.

1011

DIVA_ERR_NOT_CANCELABLE The request is at
the point where it
cannot be
canceled.

1012

DIVA_ERR_SYSTEM_IDLE The DIVA Core
System is no
longer able to
accept
connections and
queries.

1013

DIVA_ERR_WRONG_LIST_SIZE The list size is zero
or larger than the
maximum
allowable value.

1014

DIVA_ERR_LIST_NOT_INITIALIZED The specified list
was not properly
initialized.
Initialization call
was not executed.

1015

DIVA_ERR_OBJECT_ALREADY_EXISTS A Virtual Object
with this name and
Collection already
exists in the DIVA
Core system.

1016

DIVA_ERR_GROUP_DOESNT_EXIST The specified Tape
Group does not
exist.

1017

Static Constant Name Description Value

Appendix
API Static Constant Values

162

C++ API Programmer’s Guide

DIVA_ERR_SOURCE_OR_DESTINATION_DOESNT_EXIST The specified
Source or
Destination Server
does not exist.

1018

DIVA_WARN_NO_MORE_OBJECTS The end of the list
was reached
during the call.

1019

DIVA_ERR_NOT_CONNECTED No open
connection.

1020

DIVA_ERR_GROUP_ALREADY_EXISTS The specified Tape
Group already
exists.

1021

DIVA_ERR_GROUP_IN_USE The Tape Group
contains at least
one Virtual Object
instance.

1022

DIVA_ERR_OBJECT_OFFLINE There is no
inserted instance
in the Managed
Storage and no
Actor could
provide a disk
instance.

1023

DIVA_ERR_TIMEOUT The timeout limit
was reached
before
communication
with the Core
Manager could be
performed. The
timeout duration is
set by the
DIVA_API_TIMEOU
T variable and
equals one
hundred-eighty
(180) seconds by
default.

1024

Static Constant Name Description Value

Appendix
API Static Constant Values

163

C++ API Programmer’s Guide

DIVA_ERR_LAST_INSTANCE DIVA_deleteObject
() must be used to
delete the last
instance of a
Virtual Object.

1025

DIVA_ERR_PATH_DESTINATION The specified
Destination Server
path is invalid.

1026

DIVA_ERR_INSTANCE_DOESNT_EXIST Instance specified
for restoring this
Virtual Object does
not exist.

1027

DIVA_ERR_INSTANCE_OFFLINE Instance specified
for restoring this
Virtual Object is
ejected, or the
Actor owning the
specified disk
instance is
unavailable.

1028

DIVA_ERR_INSTANCE_MUST_BE_ON_TAPE The specified
instance is not a
tape instance.

1029

DIVA_ERR_NO_INSTANCE_TAPE_EXIST No tape instance
exists for this
Virtual Object.

1030

DIVA_ERR_OBJECT_IN_USE The Virtual Object
is currently in use
(being Archived,
Restored, Deleted,
and so on).

1031

DIVA_ERR_CANNOT_ACCEPT_MORE_REQUESTS The count of
simultaneous
requests reached
the maximum
allowed value. This
variable is set in
the manager.conf
configuration file.
The default is 300.

1032

Static Constant Name Description Value

Appendix
API Static Constant Values

164

C++ API Programmer’s Guide

DIVA_ERR_TAPE_DOESNT_EXIST There is no tape
associated with the
given barcode.

1033

DIVA_ERR_INVALID_INSTANCE_TYPE Cannot partially
restore this
instance.

1034

DIVA_ERR_OBJECT_PARTIALLY_DELETED The specified
Virtual Object has
instances that are
partially deleted.

1036

DIVA_ERR_COMPONENT_NOT_FOUND The specified
component (file) is
not found.

1038

DIVA_ERR_OBJECT_IS_LOCKED Attempted to
restore a Virtual
Object that has
been locked. A
locked Virtual
Object cannot be
Restored or Copied
to New.

1039

DIVA_ALL_REQUESTS Specify all
requests. Used by
DIVA_cancelRequest.

-2

DIVA_ALL_INSTANCE Specify all
instances. Used by
DIVA_release.

-1

DIVA_ANY_INSTANCE Allow Core
Manager to choose
the instance.

-1

DIVA_DEFAULT_REQUEST_PRIORITY The default
request priority.
This is used if no
specific priority is
selected when the
request is
configured.

-1

DIVA_REQUEST_PRIORITY_MIN The default
minimum request
priority.

Default
= 0

Static Constant Name Description Value

Appendix
API Static Constant Values

165

C++ API Programmer’s Guide

DIVA_REQUEST_PRIORITY_LOW The default low
request priority.

Default
= 25

DIVA_REQUEST_PRIORITY_NORMAL The default normal
request priority.

Default
= 50

DIVA_REQUEST_PRIORITY_HIGH The default high
request priority.

Default
= 75

DIVA_REQUEST_PRIORITY_MAX The default
maximum request
priority.

Default
= 100

DIVA_MEDIA_FORMAT_UNKNOWN The specified tape
format is unknown.

-1

DIVA_MEDIA_FORMAT_LEGACY The specified
media format for
the Tape Group or
array is Legacy.

0

DIVA_MEDIA_FORMAT_AXF The specified
media format for
the Tape Group or
array is AXF 0.9.

1

DIVA_MEDIA_FORMAT_AXF_10 The specified
media format for
the Tape Group or
array is AXF 1.0.

2

DIVA_OFFSET_BYTE_BEGIN __int64 - The
beginning byte of
the file.

0

DIVA_OFFSET_BYTE_END __int64 - The
ending byte of the
file.

-1

DIVA_OFFSET_INVALID __int64 - The
specified timecode
offset is invalid.

-2

DIVA_OFFSET_TC_BEGIN string - The file's
beginning
timecode.

00:00:0
0:00

DIVA_OFFSET_TC_END string - The file's
ending timecode.

99:99:9
9:99

Static Constant Name Description Value

166

Glossary

Archive Related Operations Initiator

An entity submitting requests to DIVA Core (typically, an automation process).

Array

In DIVA Core, an array designates a collection of disks identified by their name as they
are declared in the DIVA Core configuration. A disk name is associated with a mounting
point. Archive requests can be submitted with an array as the Destination Server. DIVA
Core is responsible for choosing the disk location to write the data to when several
disks belong to the same array.

AXF (Archive Exchange Format)

The AXF (Archive Exchange Format), or AXF Media Format, is based on a file and storage
media agnostic encapsulation approach which abstracts the underlying file system,
operating system, and storage technology making the format truly open and non-
proprietary.

Collection

Part of the access key to a Virtual Object. Categories are an approach to linking the
Virtual Object with the user activity field. It must not be confused with a Tape Group,
which is a storage concept.

Complex Virtual Object

A Virtual Object is defined as complex when it contains 1000 (this is the default, but the
value is configurable) or more components. Complex Virtual Object handling may
differ from non-complex Virtual Objects as noted throughout this document.

Critical Section

A piece of code that accesses a shared resource (data structure or device) that must not
be concurrently accessed by more than one execution thread.

Destination

A system that receives restored data in the DIVA Core system (for example, video
servers, remote computers, FTP servers, and so on). Destination Servers can also be
used as a Source certain operations.

Glossary 167

C++ API Programmer’s Guide

DPX (Digital Moving-Picture Exchange)

The DPX (Digital Moving-Picture Exchange) format is a high quality video format that
consists of one or more files for each frame of video. This format is likely to be used with
complex Virtual Objects.

Externalization

A Virtual Object instance is ejected (externalized) when one of the tapes containing the
instance's elements is ejected. A Virtual Object is ejected when all of its instances are
ejected. A Virtual Object is considered inserted when at least one instance of the Virtual
Object is inserted.

Initiator

See Archive Related Operations Initiator previously described.

Legacy Format

DIVA Core proprietary storage format used in DIVA Core releases 1.0 through 6.5.

Media Format

Tapes and disks may be formatted as either AXF (Archive Exchange Format) or Legacy
Format. The format is set for tape groups and disk arrays during configuration.

Medium (Media)

A set of storage resources. Currently DIVA Core provides two types of media: Groups of
Tapes and Arrays of Disks. The DIVA_archiveObject() and DIVA_copyToGroup() requests
transfer Virtual Objects to a Medium.

Migration

Copying of data from a DIVA Core media to a tape (Archive operation) or from a tape to
a DIVA Core media (Restore operation).

Mutual Exclusion (Mutex)

Mutual Exclusion (mutex) avoids the simultaneous use of a common resource (that is,
mutual exclusion among threads).

Name

Part of the access key to an Virtual Object. Names (file names) typically identify the
Virtual Object based on the content within the Virtual Object.

Repack

Elimination of blank blocks between two Virtual Objects on a tape (these blocks are
caused by the deletion of Virtual Objects), by moving the Virtual Objects to a different,
empty tape.

Request

A request is an operation running in DIVA Core which progresses though steps
(migration, transfer, and so on) and ends as either Completed, Aborted, or Canceled.

Resource

Used to denote the necessary elements involved for processing requests (for example,
Actors, Core Managers, Disks, Drives, and Tapes).

Glossary 168

C++ API Programmer’s Guide

Set (of Tapes)

Every tape in a DIVA Core system belongs to one and only one Set. If the tape is not
available to DIVA Core, it belongs to Set #0, otherwise it belongs to a set with a strictly
positive ID (for example, Set #1). Each Tape Group is associated with a Set. When the
Tape Group needs an additional tape, it takes it from its associated Set.

Source

A system that produces data to be archived in the DIVA Core system (for example, video
servers, browsing servers, remote computers, and so on). Source Servers can also be
used as a Destination for certain operations.

Spanning

Splitting an Virtual Object's components onto several tapes (typically two). This can
occur when the component size is larger than the remaining size left on the initial tape.

Tape Group

A Tape Group is a logical notion for characterizing a set of Virtual Object instances. This
concept has a direct influence on the instance's storage policy for tapes. Instances of
the same Tape Group will be stored on the same tapes. However, Virtual Objects cannot
have multiple instances stored on the same tape.

Tape Groups are based on the DIVA Core Tape Set. Each tape inserted in the system is
assigned to a Set. Tape Groups are then associated with a single Set. Multiple Tape
Groups may be associated with the same set. No Tape Group can use the set number 0.

Several kinds of tape can be used in a DIVA Core system. Tape Groups can be defined
either by using a Set, in which you assign only tapes of the same type, or by defining
the Set in which you can mix tape types. Therefore, the first case specifies the tape type
that stores the Virtual Object instance. See Set (of Tapes) in this section for more
information.

Transfer

Copying data from a Source to a DIVA Core media (Archive operation) or from a DIVA
Core media to a Destination (Restore operation). See Request for more information.

UUID (Universally Unique Identifier)

A UUID (Universally Unique Identifier) uniquely identifies each Virtual Object created in
DIVA Core across all Telestream customer sites. Virtual Objects created using the Copy
As request are not assigned a UUID. A Virtual Object created by a Copy As request
contains the same UUID as that of the Source Server Virtual Object.

Virtual Object

Virtual Objects are archive entries in DIVA Core. A Virtual Object is identified by a pair
(Name and Collection) and contains one or more components. A component is the
DIVA Core representation of a file. The components are stored in DIVA Core as an Virtual
Object Instance. Also see Complex Virtual Object.

Virtual Object Instance

The mapping of an Virtual Object's components onto a set of storage resources
belonging to the same storage space. Deleting instances cannot result in deleting the

Glossary 169

C++ API Programmer’s Guide

related Virtual Object and therefore the deletion of an instance, when that instance is
unique, is not permitted.

	C++ API Programmer’s Guide
	Telestream Contact Information
	Preface
	Audience
	Documentation Accessibility
	Access to Telestream Support

	Related Documents
	Document Updates

	Overview
	C++ API Overview
	DIVA Core Release Compatibility
	Alternate APIs
	New and Enhanced Features and Functionality
	New Terminology
	Managing Connections
	Securing the API
	Java API
	C++ API

	SSL (Secure Sockets Layer) and Authentication

	Compilers
	Visual C++ Compiler on Windows
	Supported Platforms
	Supported Compilers
	API Library Options
	API Compilation
	Initiator Sample Program API Usage

	C++ Compiler on Linux
	Supported Platforms
	API Compilation

	Using the API in Multithreaded Applications
	Using Unicode Strings in the API

	Use and Operations
	Session Management Commands
	DIVA_getApiVersion
	Synopsis

	DIVA_SSL_initialize
	Synopsis

	DIVA_connect
	Synopsis
	Return Values

	DIVA_disconnect
	Synopsis
	Multithreaded Applications
	Return Values

	Requests and Commands
	DIVA_addGroup
	Synopsis
	Return Values

	DIVA_archiveObject
	Synopsis
	Name (of the Tape Group or Array)
	SP Name
	Both of the above (Name and SP Name)
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY
	DIVA_QOS_DIRECT_ONLY
	DIVA_QOS_CACHE_AND_DIRECT
	DIVA_QOS_DIRECT_AND_CACHE
	DIVA_ARCHIVE_SERVICE_DELETE_ON_SOURCE
	Null string
	-delete_on_source
	-r
	-login
	-pass
	-gcinfilelist [gcType]
	requestNumber

	Return Values

	DIVA_associativeCopy
	Synopsis
	Return Values

	DIVA_cancelRequest
	Synopsis
	Return Values

	DIVA_changeRequestPriority
	Synopsis
	Return Values

	DIVA_copyToGroup and DIVA_copy
	Synopsis
	Return Values

	DIVA_copyToNewObject
	Synopsis
	source.objectName
	source.objectCollection
	source.group
	source.instanceID
	target.objectName
	target.objectCollection
	target.group
	target.instanceID
	attrs.priority
	attrs.qos
	attrs.comments
	attrs.options
	Name (of the Tape Group or Array)
	SP Name
	Both of the above (Name and SP Name)

	Return Values

	DIVA_deleteGroup
	Synopsis
	Return Values

	DIVA_deleteInstance
	Synopsis
	Return Values

	DIVA_deleteObject
	Synopsis
	Return Values

	DIVA_ejectTape
	Synopsis
	Return Values

	DIVA_enable_Automatic_Repack
	Synopsis
	Return Values

	DIVA_getArchiveSystemInfo
	Synopsis
	Return Values

	DIVA_getArrayList
	Synopsis
	Return Values

	DIVA_getFinishedRequestList
	Synopsis
	Return Values

	DIVA_getFilesAndFolders
	Synopsis
	Return Values

	DIVA_getGroupsList
	Synopsis
	Return Values

	DIVA_getObjectDetailsList
	Synopsis
	Return Values
	Use with DIVA Connect
	Use and Recommended Practices
	Recommended Practices for Continuous Updates Notification Design Pattern (No Media Filter)

	DIVA_getObjectInfo
	Synopsis
	Return Values

	DIVA_getPartialRestoreRequestInfo
	Synopsis
	Return Values

	DIVA_getRequestInfo
	Synopsis
	Return Values
	Additional_Info

	DIVA_getSourceDestinationList
	Synopsis
	Return Values

	DIVA_getStoragePlanList
	Synopsis
	Return Values

	DIVA_getTapeInfo
	Synopsis
	Return Values

	DIVA_insertTape
	Synopsis
	Return Values

	DIVA_linkObjects
	Synopsis
	Return Values

	DIVA_lockObject
	Synopsis
	Return Values

	DIVA_multipleRestoreObject
	Synopsis
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY
	DIVA_QOS_DIRECT_ONLY
	DIVA_QOS_CACHE_AND_DIRECT
	DIVA_QOS_DIRECT_AND_CACHE
	DIVA_QOS_NEARLINE_ONLY
	DIVA_QOS_NEARLINE_AND_DIRECT
	DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE

	Return Values

	DIVA_partialRestoreObject
	start=0 - end=1
	start=600 - end=635, start=679 - end=779
	start=810 - end=-1
	Synopsis
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY (-qos_cache_only)
	DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
	DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
	DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
	DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
	DIVA_FORMAT_BYTES
	DIVA_FORMAT_BYTES_HEADER
	DIVA_FORMAT_VIDEO_GXF
	DIVA_FORMAT_VIDEO_SEA
	DIVA_FORMAT_VIDEO_MPEG2_TS
	DIVA_FORMAT_VIDEO_MXF
	DIVA_FORMAT_VIDEO_PINNACLE
	DIVA_FORMAT_VIDEO_OMNEON
	DIVA_FORMAT_VIDEO_LEITCH
	DIVA_FORMAT_VIDEO_QUANTEL
	DIVA_FORMAT_AUTODETECT
	DIVA_FORMAT_FOLDER_BASED
	DIVA_FORMAT_DPX

	Return Values

	DIVA_release
	Synopsis
	Return Values

	DIVA_require
	Synopsis
	Return Values

	DIVA_restoreInstance
	Synopsis
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY
	DIVA_QOS_DIRECT_ONLY
	DIVA_QOS_CACHE_AND_DIRECT
	DIVA_QOS_DIRECT_AND_CACHE
	DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
	Null String
	-login
	-pass

	Return Values

	DIVA_restoreObject
	Synopsis
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY (-qos_cache_only)
	DIVA_QOS_DIRECT_ONLY (-qos_direct_only)
	DIVA_QOS_CACHE_AND_DIRECT (-qos_cache_and_direct)
	DIVA_QOS_DIRECT_AND_CACHE (-qos_direct_and_cache)
	DIVA_QOS_NEARLINE_ONLY (-qos_nearline_only)
	DIVA_QOS_NEARLINE_AND_DIRECT (-qos_nearline_and_direct)
	DIVA_RESTORE_SERVICE_DO_NOT_OVERWRITE
	DIVA_RESTORE_SERVICE_DO_NOT_CHECK_EXISTENCE
	DIVA_RESTORE_SERVICE_DELETE_AND_WRITE
	DIVA_RESTORE_SERVICE_DEFAULT
	Null String
	-login
	-pass

	Return Values

	DIVA_transcodeArchive
	Synopsis
	Name (of the Tape Group or Array)
	SP Name
	Both of the above (Name and SP Name)
	-tr_archive_format FORMAT
	-tr_names trans1
	-tr_names trans1,trans2
	DIVA_QOS_DEFAULT
	DIVA_QOS_CACHE_ONLY
	DIVA_QOS_DIRECT_ONLY
	DIVA_QOS_CACHE_AND_DIRECT
	DIVA_QOS_DIRECT_AND_CACHE

	Return Values

	DIVA_transferFiles
	Synopsis
	Return Values

	DIVA_unlockObject
	Synopsis
	Return Values

	Using the API with DIVA Connect
	What is DIVA Connect?
	DIVA Core API Support
	Input Parameters
	Return Parameters
	Return Codes
	getObjectDetailsList Call

	Appendix
	List of Authorized Special Characters in DIVA Core
	Maximum Allowed Number of Characters
	API Static Constant Values

	Glossary

